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Abstract

In this paper, we investigate the existence of positive solutions for a class of singular nth-order three-point

boundary value problem. The associated Green’s function for the boundary value problem is given at first,

and some useful properties of the Green’s function are obtained. The main tool is fixed-point index theory.

The results obtained in this paper essentially improve and generalize some well-known results.
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1. Introduction

In recent years, the existence of positive solutions for higher-order boundary value problems has

been studied by many authors using various methods (see [1-4, 7-14] and the references therein). For

example, in paper [3], by using the Krasnosel’skii fixed point theorem, Eloe and Ahmad established

the existence of at least one positive solution for the following nth-order three-point boundary value

problem
{

u(n)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = 0, · · · , u(n−2)(0) = 0, u(1) = αu(η),
(1.1)

where 0 < η < 1, 0 < αηn−1 < 1, a : [0, 1] → [0,∞) is continuous and nonsingular, f ∈

C([0,∞), [0,∞)) is either superlinear or sublinear.

In this paper, we study the existence of positive solutions for a singular nth-order three-point

boundary value problem as follows
{

u(n)(t) + h(t)f(t, u(t)) = 0, t ∈ [a, b],

u(a) = αu(η), u′(a) = 0, · · · , u(n−2)(a) = 0, u(b) = βu(η),
(1.2)
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where a < η < b, 0 ≤ α < 1, 0 < β(η − a)n−1 < (1 − α)(b − a)n−1 + α(η − a)n−1, f ∈ C([a, b] ×

[0,∞), [0,∞)) and h ∈ C([a, b], [0,+∞)) may be singular at t = a and t = b.

Up to now, no paper has appeared in the literature which discusses the existence of positive

solutions for the problem (1.2). This paper attempts to fill this gap in the literature. In order to

obtain our result, we give at first the associated Green’s function for the problem (1.2), which is

the base for further discussion. Our results extend and improve the results of Eloe and Ahmad [3]

(α = a = 0, b = 1 and f(t, u) = f(u)). Our results are obtained under certain suitable weaker

conditions than that in [3]. It is also noted that our method here is different from that of Eloe and

Ahmad [3].

2. Expression and properties of Green’s function

Lemma 2.1. If y ∈ C[a, b], then the problem

{

u(n)(t) + y(t) = 0, a ≤ t ≤ b,

u(a) = 0, u′(a) = 0, · · · , u(n−2)(a) = 0, u(b) = 0,
(2.1)

has a unique solution

w(t) =

∫ b

a

H(t, s)y(s)ds, (2.2)

where

H(t, s) =















(b− s)n−1(t− a)n−1 − (b− a)n−1(t− s)n−1

(b− a)n−1(n− 1)!
, a ≤ s ≤ t ≤ b,

(b− s)n−1(t− a)n−1

(b− a)n−1(n− 1)!
, a ≤ t < s ≤ b.

(2.3)

Proof. In fact, if w(t) is a solution of the problem (2.1), then we may suppose that

w(t) = −

∫ t

a

(t− s)n−1

(n− 1)!
y(s)ds +A(t− a)n−1 +

n−2
∑

i=1

Ai(t− a)i +B.

Since w(i)(a) = 0 for i = 0, 1, 2, · · · , n− 2, we get B = Ai = 0 for i = 1, 2, · · · , n− 2. By w(b) = 0, we

have

A =
1

(b− a)n−1

∫ b

a

(b− s)n−1

(n− 1)!
y(s)ds.

Therefore, the problem (2.1) has a unique solution

w(t) = −

∫ t

a

(t− s)n−1

(n− 1)!
y(s)ds +

∫ b

a

(b− s)n−1(t− a)n−1

(b− a)n−1(n− 1)!
y(s)ds =

∫ b

a

H(t, s)y(s)ds,

where H(t, s) is defined by (2.3).

Lemma 2.2. H(t, s) has the following properties
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(i) 0 ≤ H(t, s) ≤ k(s), ∀t, s ∈ [a, b], where

k(s) =
(s− a)(b− s)n−1

(b− a)(n − 2)!
;

(ii) H(t, s) ≥ φ(t)k(s), ∀t, s ∈ [a, b], where

φ(t) =















(t− a)n−1

(n − 1)(b − a)n−1
, a ≤ t ≤ a+b

2 ,

(b− t)(t− a)n−2

(n − 1)(b − a)n−1
, a+b

2 ≤ t ≤ b.

Proof. It is obvious that H(t, s) is nonnegative. Moreover,

H(t, s) =















(b− s)n−1(t− a)n−1 − (b− a)n−1(t− s)n−1

(b− a)n−1(n− 1)!
, a ≤ s ≤ t ≤ b,

(b− s)n−1(t− a)n−1

(b− a)n−1(n − 1)!
, a ≤ t < s ≤ b,

=
1

(b− a)n−1(n− 1)!























(s− a)(b− t){[(t− a)(b− s)]n−2

+[(t− a)(b− s)]n−3(b− a)(t− s) + · · ·
+(t− a)(b− s)[(b− a)(t− s)]n−3

+[(b− a)(t− s)]n−2}, a ≤ s ≤ t ≤ b,

(b− s)n−1(t− a)n−1, a ≤ t < s ≤ b,

≤
1

(b− a)n−1(n− 1)!

{

(n− 1)(s − a)(b− s)[(b− a)(b− s)]n−2, a ≤ s ≤ t ≤ b,

(b− s)n−1(s− a)n−1, a ≤ t < s ≤ b,

≤
(s− a)(b− s)n−1

(b− a)(n − 2)!
= k(s), t, s ∈ [a, b].

Thus, (i) holds.

If s = a or s = b, we easily see that (ii) holds. If s ∈ (a, b) and t ∈ [a, b], we have

H(t, s)

k(s)
=















(b− s)n−1(t− a)n−1 − (b− a)n−1(t− s)n−1

(n− 1)(s − a)(b− s)n−1(b− a)n−2
, a ≤ s ≤ t ≤ b,

(t− a)n−1

(n− 1)(s − a)(b− a)n−2
, a ≤ t < s ≤ b,

=































1

(n − 1)(s − a)(b− s)n−1(b− a)n−2
(s − a)(b− t){[(t − a)(b− s)]n−2

+[(t− a)(b− s)]n−3(b− a)(t− s) + · · ·
+(t− a)(b− s)[(b− a)(t− s)]n−3 + [(b− a)(t− s)]n−2}, a ≤ s ≤ t ≤ b,

(t− a)n−1

(n − 1)(s − a)(b− a)n−2
, a ≤ t < s ≤ b,

≥















(s− a)(b− t)(t− a)n−2(b− s)n−2

(n − 1)(s − a)(b− s)n−1(b− a)n−2
, a ≤ s ≤ t ≤ b,

(t− a)n−1

(n − 1)(s − a)(b− a)n−2
, a ≤ t < s ≤ b,
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≥















(b− t)(t− a)n−2

(n − 1)(b − a)n−1
, a ≤ s ≤ t ≤ b,

(t− a)n−1

(n − 1)(b − a)n−1
, a ≤ t < s ≤ b,

since,

(b− t)(t− a)n−2 ≥ (t− a)n−1, for t ∈ [a, a+b
2 ],

and

(t− a)n−1 ≥ (b− t)(t− a)n−2, for t ∈ [a+b
2 , b],

then

H(t, s) ≥ φ(t)k(s), for s ∈ (a, b) and t ∈ [a, b].

Thus, (ii) holds. The proof is completed.

Theorem 2.3. Suppose that ∆ =: (1−α)(b−a)n−1 +(α−β)(η−a)n−1 6= 0, then for any y ∈ C[a, b],

the problem

{

u(n)(t) + y(t) = 0, a ≤ t ≤ b,

u(a) = αu(η), u′(a) = 0, · · · , u(n−2)(a) = 0, u(b) = βu(η),
(2.4)

has a solution

u(t) =

∫ b

a

G(t, s)y(s)ds,

where

G(t, s) = H(t, s) +
1

∆
{α[(b − a)n−1 − (t− a)n−1] + β(t− a)n−1}H(η, s), (2.5)

here H(t, s) is given by (2.3).

Proof. The three-point boundary value problem (2.4) can be obtained from replacing u(a) = 0 by

u(a) = αu(η) and u(b) = 0 by u(b) = βu(η) in (2.1). Thus, we suppose the solution of the three-point

boundary value problem (2.4) can be expressed by

u(t) = w(t) +
n−1
∑

j=0

γj(t− a)jw(η), (2.6)

where w(t) is given as (2.2), γj (j = 0, 1, 2, · · · , n − 1) are constants that will be determined. By

calculating, we obtain

u(i)(t) = w(i)(t) +

n−1
∑

j=i

j!

(j − i)!
γj(t− a)(j−i)w(η). (2.7)

Since u(i)(a) = 0 for i = 1, 2, · · · , n − 2 and (2.7), we obtain
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γj = 0, for j = 1, 2, · · · , n− 2. (2.8)

In view of (2.6) and (2.8), we have

u(t) = w(t) + [γ0 + γn−1(t− a)n−1]w(η). (2.9)

Then, by u(a) = αu(η) and u(b) = βu(η) (note (2.9)), we get

γ0w(η) = αw(η) + α[γ0 + γn−1(η − a)n−1]w(η),

and

[γ0 + γn−1(b− a)n−1]w(η) = βw(η) + β[γ0 + γn−1(η − a)n−1]w(η).

From this
{

γ0 = α[1 + γ0 + γn−1(η − a)n−1],
γ0 + γn−1(b− a)n−1 = β[1 + γ0 + γn−1(η − a)n−1].

(2.10)

By calculating, we obtain by (2.10) that











γ0 =
α

1 − α
+
α(β − α)(η − a)n−1

(1 − α) · ∆
,

γn−1 =
β − α

∆
.

(2.11)

Hence, by (2.9) and (2.11), we obtain

u(t) = w(t) + [
α

1 − α
+
α(β − α)(η − a)n−1

(1 − α) · ∆
+

(β − α)(t− a)n−1

∆
]w(η)

= w(t) +
1

∆
{β(t− a)n−1 + α[(b− a)n−1 − (t− a)n−1]}w(η).

Using this and (2.2), we see that

u(t) =

∫ b

a

H(t, s)y(s)ds +
1

∆
{β(t− a)n−1 + α[(b − a)n−1 − (t− a)n−1]}

∫ b

a

H(η, s)y(s)ds.

Thus, the Green’s function G(t, s) for the BVP (2.4) is described by (2.5).

By Theorem 2.3, we obtain the following corollary.

Corollary 2.4. Suppose that ∆ =: (1−α)(b−a)n−1 +(α−β)(η−a)n−1 6= 0, then for any y ∈ C[a, b],

the problem (2.4) has a unique solution

u(t) =

∫ b

a

G(t, s)y(s)ds,

where G(t, s) is given as in (2.5).

Proof. We need only prove the uniqueness. Suppose that u1(t) is also a solution of the problem
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(2.4). Let

x(t) = u1(t) − u(t), t ∈ [a, b].

Obviously,

x(n)(t) = u
(n)
1 (t) − u(n)(t) = 0, t ∈ [a, b], (2.12)

x(a) = u1(a) − u(a) = αu1(η) − αu(η) = αx(η), (2.13)

x(i)(a) = u
(i)
1 (a) − u(i)(a) = 0, i = 1, 2, · · · , n− 2, (2.14)

x(b) = u1(b) − u(b) = βu1(η) − βu(η) = βx(η). (2.15)

In view of (2.12), we have

x(t) = c0 + c1(t− a) + c2(t− a)2 + · · · + cn−1(t− a)n−1, (2.16)

where cj (j = 0, 1, 2, · · · , n− 1) are undetermined constants. By calculating, one has

x(i)(t) =

n−1
∑

j=i

j!

(j − i)!
cj(t− a)(j−i), i = 1, 2, · · · , n− 1. (2.17)

From (2.14) and (2.17), we get

c1 = c2 = · · · = cn−2 = 0, (2.18)

By (2.13), (2.15), (2.16) and (2.18), one has

c0 = α[c0 + cn−1(η − a)n−1], (2.19)

and

c0 + cn−1(b− a)n−1 = β[c0 + cn−1(η − a)n−1]. (2.20)

Thus, by (2.19), (2.20) and ∆ 6= 0, we can easily know that c0 = cn−1 = 0. So x(t) = 0, t ∈ [a, b],

which implies that the solution of the problem (2.4) is unique.

Theorem 2.5. G(t, s) has the following properties

(i) G(t, s) ≥ 0, ∀t, s ∈ [a, b];

(ii) G(t, s) ≤M1k(s), ∀t, s ∈ [a, b], where k(s) as in Lemma 2.2, and

M1 = max

{

1

∆
[(b− a)n−1 + α(η − a)n−1],

1

∆
{(b− a)n−1 + β[(b− a)n−1 − (η − a)n−1]}

}

;

(iii) min
t∈[τ, a+b

2
]
G(t, s) ≥M2k(s), ∀t, s ∈ [a, b], where τ ∈ (a, a+b

2 ) and
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M2 =
(τ − a)n−1

(n− 1)(b− a)n−1
+

1

∆
[β(τ − a)n−1 +

α(2n−1 − 1)(b− a)n−1

2n−1
]φ(η),

here φ(t) and k(s) as in Lemma 2.2.

Proof. It is clear that (i) holds. Next we will divide the proof of (ii) into two cases.

Case (1) If a ≤ t ≤ η, then, by Lemma 2.2 (i), we have

G(t, s) = H(t, s) +
1

∆
{β(t− a)n−1 + α[(b − a)n−1 − (t− a)n−1]}H(η, s)

≤ k(s) +
1

∆
[β(η − a)n−1 + α(b− a)n−1]k(s)

=
1

∆
[(b− a)n−1 + α(η − a)n−1]k(s) ≤M1k(s).

Case (2) If η ≤ t ≤ b, similarly, we obtain

G(t, s) = H(t, s) +
1

∆
{β(t− a)n−1 + α[(b − a)n−1 − (t− a)n−1]}H(η, s)

≤ k(s) +
1

∆
{β(b− a)n−1 + α[(b− a)n−1 − (η − a)n−1]}k(s)

=
1

∆
{(b− a)n−1 + β[(b− a)n−1 − (η − a)n−1]}k(s) ≤M1k(s).

By the inequality above, we know that (ii) holds.

(iii) By Lemma 2.2 (ii), we have

min
t∈[τ, a+b

2
]
G(t, s) = min

t∈[τ, a+b
2

]
{H(t, s) +

1

∆
{β(t− a)n−1 + α[(b− a)n−1 − (t− a)n−1]}H(η, s)}

≥ min
t∈[τ, a+b

2
]
{φ(t)k(s) +

1

∆
[β(τ − a)n−1 +

α(2n−1 − 1)(b − a)n−1

2n−1
]φ(η)k(s)}

= {
(τ − a)n−1

(n− 1)(b − a)n−1
+

1

∆
[β(τ − a)n−1 +

α(2n−1 − 1)(b− a)n−1

2n−1
]φ(η)}k(s)

= M2k(s).

Thus, (iii) holds.

3. Main results

Throughout this paper, we assume the following conditions hold.

(H1) h : [a, b] → [0,+∞) is continuous, and

0 <

∫ b

a

(b− s)n−1h(s)ds < +∞.

(H2) f : [a, b] × [0,+∞) → [0,+∞) is continuous.
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Let C[a, b] be Banach space with the norm ‖u‖ = max
a≤t≤b

|u(t)|. Define the cones K and P by

K = {u ∈ C[a, b] : u(t) ≥ 0, t ∈ [a, b]},

and

P = {u ∈ C[a, b] : u(t) ≥ 0, t ∈ [a, b], and min
t∈[τ, a+b

2
]
u(t) ≥ γ‖u‖},

where τ ∈ (a, a+b
2 ), γ := M2

M1
(here M1 and M2 are defined as in Theorem 2.5). Obviously, K and P

are cones of C[a, b]. Define the operators A1, A2 and T by

(A1u)(t) =

∫ b

a

G(t, s)h(s)u(s)ds, ∀t ∈ [a, b], (3.1)

(A2u)(t) =

∫ a+b
2

τ

G(t, s)h(s)u(s)ds, ∀t ∈ [a, b], (3.2)

and

(Tu)(t) =

∫ b

a

G(t, s)h(s)f(s, u(s))ds, ∀t ∈ [a, b], (3.3)

It is clear that the problem (1.2) has a positive solution u = u(t) if and only if u is a fixed point of

T .

Lemma 3.1. Suppose (H0) − (H2) hold. Then

(i) The operator A1 : C[a, b] → C[a, b] is completely continuous and satisfies A1(K) ⊂ K.

(ii) The operator A2 : C[a, b] → C[a, b] is completely continuous and satisfies A2(K) ⊂ K.

(iii) The operator T : P → C[a, b] is completely continuous and satisfies T (P ) ⊂ P .

Proof. It is obvious that (i) and (ii) hold. By Theorem 2.3, we know that T (P ) ⊂ P . Next, we will

prove that the operator T is completely continuous.

For m ≥ 2, define hm by

hm(t) =











inf
a≤s< am+b

m+1

h(s), a ≤ t < am+b
m+1 ,

h(t), am+b
m+1 ≤ t ≤ a+bm

m+1 ,

inf a+bm
m+1

<s≤b
h(s), a+bm

m+1 < t ≤ b,

and define the operator Tm as follows

(Tmu)(t) =

∫ b

a

G(t, s)hm(s)f(s, u(s))ds, t ∈ [a, b].

It is easy to show that the operator Tm is compact on P for all m ≥ 2 by using Arzela-Ascoli theorem.

In addition, the continuity of G(t, s)hm(s) on [a, b] × [a, b] implies the continuity of Tm : P → P .
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Therefore, Tm is a completely continuous operator. It follows from (H1) that

0 <

∫ b

a

k(s)h(s) <
1

(n− 1)!

∫ b

a

(b− s)n−1h(s)ds <∞.

Using this and by the absolute continuity of the integral, we have

lim
m→∞

∫

e(m)
k(s)h(s)ds = 0,

where k(s) is given as in Lemma 2.2, e(m) = [a, am+b
m+1 ] ∪ [a+bm

m+1 , b].

For each R > 0, set ΩR = {u ∈ P : ‖u‖ ≤ R} and M = maxt∈[a,b],u∈[0,R] f(t, u). Then fix R > 0 and

u ∈ ΩR, we have from Theorem 2.5 and (H2) that

|(Tmu)(t) − (Tu)(t)| =

∣

∣

∣

∣

∫ b

a

G(t, s)(hm(s) − h(s))f(s, u(s))ds

∣

∣

∣

∣

≤M1M

∫ am+b
m+1

a

k(s)|h(s) − hm(s)|ds +M1M

∫ b

a+bm
m+1

k(s)|h(s) − hm(s)|ds

≤M1M

∫

e(m)
k(s)h(s)ds → 0, (m → ∞).

Hence, the completely continuous operator Tm converges uniformly to T as m→ ∞ on any bounded

subset of P , and T : P → P is completely continuous.

By Virtue of Krein-Rutmann theorems, It is easy to see that the following lemma holds.

Lemma 3.2 [6]. Suppose A is a completely continuous operator and A(K) ⊂ K. If there exists

ψ ∈ C[a, b]\(−K) and a constant c > 0 such that cKψ ≥ ψ, then the spectral radius r(A) 6= 0 and A

has a positive eigenfunction ϕ corresponding to its first eigenvalue λ = (r(A))−1, that is, ϕ = λAϕ.

Lemma 3.3. Suppose that (H0) and (H1) hold. Then the spectral radius r(A1) 6= 0 and A1 has a

positive eigenfunction corresponding to its first eigenvalue λ1 = (r(A1))
−1.

Proof. It follows from (2.5) that

G(t, t) ≥ H(t, t) =
(b− t)n−1(t− a)n−1

(b− a)n−1(n − 1)!
> 0, ∀t ∈ (a, b).

From this and (H1), we know that there exists t0 ∈ (a, b), such that G(t0, t0)h(t0) > 0, then there is

[α, β] such that t0 ∈ (α, β) and G(t, s)h(s) > 0, ∀t, s ∈ [α, β]. We take ψ ∈ C[a, b] such that ψ(t) ≥ 0,

∀t ∈ [a, b], ψ(t0) > 0 and ψ(t) = 0, ∀t /∈ [α, β]. Then for all t ∈ [a, b], we have

(A1ψ)(t) =

∫ b

a

G(t, s)h(s)ψ(s)ds =

∫ β

α

G(t, s)h(s)ψ(s)ds > 0.

Then there exists a constant c > 0 such that c(A1ψ) ≥ ψ, ∀t ∈ [a, b]. By Lemma 3.2, we see that the

spectral radius r(A1) 6= 0 and A1 has a positive eigenfunction corresponding to its first eigenvalue
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λ1 = (r(A1))
−1.

To establish the existence of positive solutions of the problem (1.2), we will employ the following

lemmas.

Lemma 3.4 [5]. Let E be Banach space, P be a cone in E, and Ω be a bounded open set in E.

Suppose that T : P ∩ Ω → P is a completely continuous operator. If there exists u0 ∈ P\{θ} such

that

u− Tu 6= µu0, ∀u ∈ P ∩ ∂Ω, µ ≥ 0.

Then the fixed point index i(T, P ∩ Ω, P ) = 0.

Lemma 3.5 [5]. Let E be Banach space, P be a cone in E, and Ω be a bounded open set in E.

Suppose that T : P ∩ Ω → P is a completely continuous operator. If

Tu 6= µu, ∀u ∈ P ∩ ∂Ω, µ ≥ 1.

Then the fixed point index i(T, P ∩ Ω, P ) = 1.

For convenience, we introduce the following notations

f0 = lim infu→0+mina≤t≤b(f(t, u)/u), f0 = lim supu→0+maxa≤t≤b(f(t, u)/u),

f∞ = lim infu→∞mina≤t≤b(f(t, u)/u), f∞ = lim supu→+∞maxa≤t≤b(f(t, u)/u).

Theorem 3.6. Let λ1 be the first eigenvalue of A1 defined as in (3.1). Suppose the previous

hypotheses (H0) − (H2) hold, in addition we assume f0 > λ1 and f∞ < λ1. Then problem (1.2) has

at least one positive solution.

Proof. In view of f0 > λ1, there exists R1 > 0, such that

f(t, u) ≥ λ1u, for all t ∈ [a, b], u ∈ [0, R1]. (3.4)

Let ΩR1
= {u ∈ C[a, b] : ‖u‖ < R1}, for u ∈ P ∩ ∂ΩR1

, we have by (3.4) that

(Tu)(t) =

∫ b

a

G(t, s)h(s)f(s, u(s))ds ≥ λ1

∫ b

a

G(t, s)h(s)u(s)ds = λ1(A1u)(t), ∀t ∈ [a, b]. (3.5)

Let u∗ be the positive eigenfunction of A1 corresponding to λ1, thus u∗ = λ1A1u
∗. We may suppose

that T has no fixed point on P ∩∂ΩR1
, otherwise, the proof is finished. In the following we will show

that

u− Tu 6= µu∗, ∀u ∈ P ∩ ∂ΩR1
, µ ≥ 0. (3.6)

If (3.6) is not true, then there is u0 ∈ P ∩ ∂ΩR1
and µ0 ≥ 0 such that u0 − Tu0 = µ0u

∗. It is clear

that µ0 > 0 and
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u0 = Tu0 + µ0u
∗ ≥ µ0u

∗.

Set

µ∗ = sup{µ : u0 ≥ µu∗}. (3.7)

Obviously, µ∗ ≥ µ0 > 0. It follows from A1(K) ⊂ K that

λ1A1u0 ≥ µ∗λ1A1u
∗ = µ∗u∗.

Using this and (3.5), we have

u0 = Tu0 + µ0u
∗ ≥ λ1A1u0 + µ0u

∗ ≥ µ∗u∗ + µ0u
∗,

which contradicts (3.7). Thus, (3.6) holds. By Lemma 3.4, we have

i(T, P ∩ ΩR1
, P ) = 0. (3.8)

On the other hand, it follows from f∞ < λ1 that there are 0 < ρ < 1 and R2 > R1 such that

f(t, u) ≤ ρλ1u, ∀t ∈ [a, b], u ≥ R2. (3.9)

Put

B = {u ∈ K : u = σTu, 0 ≤ σ ≤ 1} , u(t) = min{u(t), R2} and w(t) = {t ∈ [a, b] : u(t) > R2}.

Now we will show that B is bounded. For all u in B, we have by (3.9) and Theorem 2.5 (ii) that

u(t) = σ(Tu)(t) ≤

∫ b

a

G(t, s)h(s)f(s, u(s))ds

=

∫

w(t)
G(t, s)h(s)f(s, u(s))ds +

∫

[a,b]\w(t)
G(t, s)h(s)f(s, u(s))ds

≤ ρλ1

∫ b

a

G(t, s)h(s)u(s)ds +M1

∫ b

a

k(s)h(s)f(s, u(s))ds

= ρλ1(A1u)(t) +M = (A1u)(t) +M .

where A1u = ρλ1A1u, u ∈ C[a, b] and M = M1 supu∈P∩ΩR2

∫ b

a
k(s)h(s)f(s, u(s))ds.

Thus, ((I − A1)u)(t) ≤ M , t ∈ [a, b]. Since λ1 is the first eigenvalue of A1 and 0 < ρ < 1, then the

first eigenvalue of A1, (r(A1))
−1 > 1. Thus, the inverse operator (I −A1)

−1 exists and

(I −A1)
−1 = I +A1 +A

2
1 + · · · +A

n

1 + · · ·.

In view of A1(P ) ⊂ P , we get that (I −A1)
−1(P ) ⊂ P . Then we have u(t) ≤ (I −A1)

−1M , t ∈ [a, b]

and B is bounded.

Take R3 > max{R2, supB}, let ΩR3
= {u ∈ C[a, b] : ‖u‖ < R3}. Then by Lemma 3.5, one has
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i(T, P ∩ ΩR3
, P ) = i(θ, P ∩ ΩR3

, P ) = 1. (3.10)

It follows from (3.8) and (3.10) that

i(T, (P ∩ ΩR3
) \ (P ∩ ΩR1

), P ) = i(θ, P ∩ ΩR3
, P ) − i(θ, P ∩ ΩR1

, P ) = 1.

Hence, T has at least one fixed point on (P ∩ΩR3
) \ (P ∩ ΩR1

). This implies that the problem (1.2)

has at least one positive solution.

Theorem 3.7. Let λ1 be the first eigenvalue of A1 defined as in (3.1), λ2 be the first eigenvalue of

A2 defined as in (3.2). Suppose the previous hypotheses (H0) − (H2) hold, in addition we assume

f0 < λ1 and f∞ > λ2. Then problem (1.2) has at least one positive solution.

Proof. From f0 < λ1, we know that there exists R4 > 0, such that

f(t, u) ≤ λ1u, ∀t ∈ [a, b], u ∈ [0, R4]. (3.11)

Let ΩR4
= {u ∈ C[a, b] : ‖u‖ < R4}, for u ∈ P ∩ ∂ΩR4

, we have by (3.11) that (Tu)(t) ≤ λ1(A1u)(t).

Now we show that

i(T, P ∩ ΩR4
, P ) = 1. (3.12)

We may suppose that T has no fixed point on P ∩ ∂ΩR4
, otherwise, the proof is finished. In the

following we will show that

Tu 6= %u, ∀u ∈ P ∩ ∂ΩR4
, % ≥ 1. (3.13)

If otherwise, there exist u0 ∈ P ∩ ∂ΩR4
and %0 ≥ 1 such that Tu0 = %0u0. So %0 > 1 and %0u0 =

Tu0 ≤ λ1A1u0. From induction, we get that %j
0u0 ≤ λj

1A
j
1u0, ∀j ∈ N . Therefore, we have by

Gelfand’s formula that

r(A1) = lim
j→∞

j

√

‖Aj
1‖ ≥ lim

j→∞

j

√

‖Aj
1u0‖

‖u0‖
≥ lim

j→∞

j

√

%j
0‖u0‖

λj
1‖u0‖

=
%0

λ1
>

1

λ1
,

which is a contradiction with r(A1) = 1
λ1

, and so (3.13) holds. It follows from Lemma 3.5 that (3.12)

holds.

On the other hand, by f∞ > λ2, there exists R5 > R4 > 0 such that

f(t, u) ≥ λ2u, ∀t ∈ [a, b], u ≥ γR5. (3.14)

Let ΩR5
= {u ∈ C[a, b] : ‖u‖ < R5}, then, for all u ∈ P ∩ ∂ΩR5

, we have that min
t∈[τ, a+b

2
]
u(t) ≥ γ‖u‖ =

γR5. Using this and (3.14), one has

(Tu)(t) ≥ λ2

∫ a+b
2

τ

G(t, s)h(s)u(s)ds = λ2(A2u)(t), ∀t ∈ [a, b].
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Hence, by the same way as in Theorem 3.6, we obtain

i(T, P ∩ ΩR5
, P ) = 0. (3.15)

According to (3.12) and (3.15), we have

i(T, (P ∩ ΩR5
) \ (P ∩ ΩR4

), P ) = i(θ, P ∩ ΩR5
, P ) − i(θ, P ∩ ΩR4

, P ) = −1.

Consequently, T has at least one fixed point on (P ∩ΩR5
) \ (P ∩ΩR4

). Hence, the problem (1.2) has

at least one positive solution.

Corollary 3.8. Assume that (H0) − (H2) hold. If either

(i) f0 = 0, f∞ = ∞, or

(ii) f0 = ∞, f∞ = 0.

Then problem (1.2) has at least one positive solution.
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