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Abstract. We investigated a quasilinear second order equation with damped term on
the real axis. We gave some suitable conditions for existence of the L1-maximal regular
solutions of this equation.
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1 Introduction and statement of main result

Let R := (−∞,+∞), L1 := L1(R) and ‖ · ‖1 be the norm of L1. We consider the equation

Ly := −y′′ + r(x, y)y′ + q(x, y)y = f (x), x ∈ R, (1.1)

where r is continuously differentiable and q is a continuous function, f ∈ L1. This is a useful
equation in mathematical physics (see [5, 26]).

By C(k)
0 (R) (k = 1, 2, . . .) we denote the set of k times continuously differentiable functions

with compact support. Let C(j)
loc(R) =

{
y : ψy ∈ C(j)

0 (R), ∀ψ ∈ C(∞)
0 (R)

}
( j = 1, 2).

Definition 1.1. Let y ∈ L1, if there is a sequence {yn}∞
n=1 ⊂ C(2)

loc (R) such that

lim
n→∞
‖ψ(yn − y)‖1 = 0 and lim

n→∞
‖ψ(Lyn − f )‖1 = 0,

∀ ψ ∈ C(∞)
0 (R). Then y is called a solution of (1.1).

The purpose of this work is to find some conditions for r and q such that for every f ∈ L1,
the equation (1.1) has a solution y which satisfies

‖y′′‖1 + ‖r(·, y)y′‖1 + ‖q(·, y)y‖1 < ∞.
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The separability of differential operators introduced by Everitt and Giertz in [7, 8] plays
an important role in the study of second order differential equations. Recall that the Sturm–
Liouville operator

L̃y := −y′′ + q1(x)y,

acting in L2(R) is separable, if there is a constant c > 0 such that

‖ − y′′‖2 + ‖q1(·)y‖2 ≤ c(‖L̃y‖2 + ‖y‖2), ∀ y ∈ D(L̃).

Everitt and Giertz [7, 8] proved that if q1 and its derivatives satisfy some conditions, then
L̃ is separable in L2(R). In the case q1 is not differentiable function, the separability of L̃
in L2(R) was discussed in [3, 23]. In [9], Everitt, Giertz and Weidmann give an example
of non-separable Sturm–Liouville operator in L2(R) with strongly oscillating and infinitely
smooth coefficient q1. The separability of linear partial differential operators was studied in
[4, 15, 17, 21, 24]. Some sufficient conditions of separability of operators on Riemann manifolds
are obtained in [1, 2, 12, 13].

The separability is also an important tool when dealing with quasilinear equations. In [16],
Muratbekov and Otelbaev used the separability to discuss the solvability of the nonlinear
equation

− y′′ + q0(x, y)y = f (x), (1.2)

where f ∈ L2(R). Grinshpun and Otelbaev showed that the solvability of the equation (1.2)
in L1 implies q0 ≥ 1 (see [6]). This method is useful for the multidimensional (Schrödinger)
equation −∆u + q(x, u)u = F(x), x ∈ Rn (see [17, 20] for details).

In general, the expression (1.1) can be converted neither to (1.2) nor to the form

−
(

p2(x, y)y′
)′
+ q2(x, y)y = f (x).

In [22], we considered the equation −y′′ + r(x, y)y′ = f (x), f ∈ L2(R), and found some
conditions for r such that this equation is solvable. In the present paper, we discuss the more
general equation (1.1), in the case f ∈ L1. Under weaker conditions on r than in [22] the
existence and regularity of solutions of (1.1) are established.

Schauder’s fixed-point theorem is used to prove our main result (see [10]).
Let g and h be some functions on R and let

αg,h(t) =
∫ t

0
|g(η)| dη ess sup

ξ∈(t,+∞)

|h(ξ)|−1, t > 0,

βg,h(τ) =
∫ 0

τ
|g(η)| dη ess sup

ξ∈(−∞, τ)

|h(ξ)|−1, τ < 0,

γg,h = max
(

sup
t>0

αg,h(t), sup
τ<0

βg,h(τ)

)
.

The main result of this paper is the following.

Theorem 1.2. Let r be a continuously differentiable function and q a continuous function satisfying

r ≥ δ1

√
1 + x2 (δ1 > 0) (1.3)

and
sup
c0∈R

γq(·,c0),r(·,c0) < ∞. (1.4)
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Then for any f ∈ L1, the equation (1.1) has a solution y such that

‖y′′‖1 + ‖r(·, y)y′‖1 + ‖q(·, y)y‖1 < ∞. (1.5)

Example 1.3. Let r = 10 + x10 + 5y4, q = x3 + cos4 x + 2y. Then r and q satisfy the conditions
of Theorem 1.2.

2 Auxiliary statements

By Muckenhoupt’s theorem (Theorem 2 in [14]), we obtain the following lemma.

Lemma 2.1. Let g and h be continuous functions on R such that γg,h < ∞. Then∫
R
|g(x)y(x)| dx ≤ γg,h

∫
R
|h(x)y′(x)| dx, ∀ y ∈ C(1)

0 (R). (2.1)

Moreover, γg,h is the smallest constant which satisfies (2.1).

Let r be a continuously differentiable function and

l0y = −y′′ + r(x)y′, D(l0) = C(2)
0 (R).

Denote by l the closure of l0 in L1.

Lemma 2.2. Let r be continuously differentiable and satisfy (1.3). Then l is invertible, R(l) = L1 and

‖y′′‖1 + ‖ry′‖1 ≤ 3‖ly‖1, ∀ y ∈ D(l). (2.2)

Proof. We use the method of [25] to prove (2.2). Let y ∈ C(2)
0 (R) be a real function, and

γ > −1. Then by integration by parts, we get∫
R
(ly)y′

[
(y′)2]γ/2

dx =
∫

R
r
[
(y′)2]γ/2+1

dx.

By Hölder’s inequality, we have that

∫
R

r
[
(y′)2]γ/2+1

dx ≤
[∫

R
|r−αly|p dx

]1/p [∫
R
|rα(y′)γ+1|q dx

]1/q

, (2.3)

where 1 < p < ∞, q = p/(p− 1). We choose α and γ as follows: (γ + 1) q = γ + 2, αq = 1.
This implies γ + 2 = p. So from (2.3) it follows that ‖r1/py′‖p ≤ ‖r−1/qly‖p. Taking the limit
p→ 1, we get

‖ry′‖1 ≤ ‖ly‖1, y ∈ C(2)
0 (R). (2.4)

Since ‖y′′‖1 ≤ ‖ly‖1 + ‖ry′‖1 ≤ 2‖ly‖1, we have ‖y′′‖1 + ‖ry′‖1 ≤ 3‖ly‖1, ∀ y ∈ C(2)
0 (R). Since

l is a closed operator, the last inequality holds for any y ∈ D(l).
From Lemma 2.1, (1.3) and (2.4) follows that

‖y‖1 ≤ c1‖ly‖1, y ∈ D(l). (2.5)

So the inverse l−1 of l exists.
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Next, we show that R(l) = L1. Let R(l) 6= L1. Since l is closed, (2.5) implies R(l) is closed.
Hence there exists a nonzero element z0 ∈ ⊥R(l) such that l∗z0 = −z′′0 − (r(x)z0)′ = 0, where
l∗ is adjoint operator of l. Then[

z0 exp
(∫ x

a
r(η) dη

)]′
= c2 exp

(∫ x

a
r(η) dη

)
.

Let c2 6= 0. Without loss of generality, we can assume that c2 = −1. Then(
z0 exp

(∫ x

a
r(η) dη

))′
< 0,

i.e. z0(x) is a monotonically decreasing function, moreover z0(x − k) > exp(k)z0(x), x ∈ R,
k = 1, 2, . . ., which implies that z0 /∈ L∞(R).

Let c2 = 0. Then

z0 = c3 exp
(
−
∫ x

a
r(η) dη

)
, c3 6= 0.

Therefore z0 /∈ L∞(R). We obtain a contradiction, hence R(l) = L1.

We consider the following linear equation

ly := −y′′ + r1(x)y′ + q1(x)y = f (x), x ∈ R. (2.6)

The function y ∈ L1 is called a solution of (2.6), if there exists a sequence {yn}∞
n=1 ⊂ C(2)

0 (R)

such that ‖yn − y‖1 → 0 and ‖lyn − f ‖1 → 0 as n→ ∞.

Lemma 2.3. Let r1 be a continuously differentiable function such that r1 ≥ δ1
√

1 + x2. Assume q1 is
a continuous function and γq1,r1 < ∞. Then for every f ∈ L1, the equation (2.6) has a unique solution
y such that

‖y′′‖1 + ‖r1y′‖1 + ‖q1y‖1 ≤ c4‖ f ‖1, (2.7)

where c4 depends only on γq1,r1 .

Proof. Let x = at (a > 0), then (2.6) becomes that

− ỹ′′ + a−1r̃1(t)ỹ′ + a−2q̃1(t)ỹ = f̃ , (2.8)

where ỹ(t) = y(at), r̃1(t) = r1(at), q̃1(t) = q1(at), f̃ (t) = a−2 f (at). Let l0aỹ = −ỹ′′tt + a−1r̃1ỹ′,
ỹ ∈ C(2)

0 (R). By la we denote the closure in L1 of l0a. Since a−1r̃1(t) satisfies the conditions of
Lemma 2.2, it follows that the operator la is continuously invertible and

‖ỹ′′‖1 + ‖a−1r̃1ỹ′‖1 ≤ 3‖laỹ‖1, ∀ ỹ ∈ D(la). (2.9)

Let a = 4
(
1 + γq̃1,r̃1

)
. By 2.1, we obtain that

‖a−2q̃1ỹ‖1 ≤
γq̃1,r̃1

a2 ‖r̃1ỹ′‖1 ≤
3
4
‖laỹ‖1, ∀ ỹ ∈ D(la). (2.10)

Hence, by a well-known theorem (see [11, Chapter 4, Theorem 1.16]), we find that the operator
la + a−2q̃1(t)E corresponding to (2.8) is invertible and R

(
la + a−2q̃1E

)
= L1. Let ỹ be a solution

of the equation (2.8), by (2.9) and (2.10), we obtain that

‖ỹ′′‖1 + ‖a−1r̃1ỹ′‖1 + ‖a−2q̃1ỹ‖1 ≤ 4‖laỹ‖1. (2.11)



L1-maximal regularity for differential equation with damped term 5

From (2.10) it follows that

‖a−2q̃1ỹ‖1 ≤ 3‖
(
la + a−2q̃1E

)
ỹ‖1.

So
‖laỹ‖1 ≤ ‖

(
la + a−2q̃1E

)
ỹ‖1 + ‖a−2q̃1ỹ‖1 ≤ 4‖

(
la + a−2q̃1E

)
ỹ‖1. (2.12)

The inequalities (2.11) and (2.12) imply that for the solution ỹ of (2.8), the following inequality
holds:

‖ỹ′′‖1 + ‖a−1r̃1ỹ′‖1 + ‖a−2q̃1ỹ‖1 ≤ 16‖ f̃ ‖1.

Taking t = a−1x, we to obtain (2.7).

Remark 2.4. Let r1(x) be continuously differentiable. Assume q1(x) is a continuous function.
L will denote the closure in L1 of the operator L0y := −y′′ + r1y′ + q1y, D(L0) = C(2)

0 (R). If
there is a constant c5 > 0 such that ‖− y′′‖1 + ‖r1(·)y′‖1 + ‖q1(·)y‖1 ≤ c5 (‖Ly‖1 + ‖y‖1) , ∀ y ∈
D(L), then L is called separable in L1.

If the conditions of Lemma 2.3 hold, then the operator L is separable in L1.

3 Proof of the main theorem

Let C(R) be the space of bounded continuous functions on R with the norm ‖y‖C(R) =

supx∈R |y(x)|. Let ε and A be positive numbers. Set

SA =

{
z ∈ C(R) : sup

x∈R

|z(x)| ≤ A

}
.

Let v ∈ SA. Lv,ε denote the closure in L1 of the following linear differential expression

L0,v,εy := −y′′ +
[
r(x, v(x)) + ε

(
1 + x2)] y′ + q(x, v(x))y, ∀ y ∈ C(2)

0 (R).

We consider the equation
Lv,εy = f (x). (3.1)

r̃1,ε,v(x) := r(x, v(x)) + ε
(
1 + x2) and q̃v(x) := q(x, v(x)) satisfy all of the conditions of

Lemma 2.3. Indeed, by (1.3), r̃1,ε,v(x) ≥ δ1
√

1 + x2, δ1 > 0. Hence γ1,r̃1,ε,v < ∞. From (1.4)
it follows that γq̃v(x),r̃1,ε,v(x) ≤ C1 supt∈R γq(x,t),r(x,t) < ∞. Therefore, for any f ∈ L1, the equation
(3.1) has a unique solution y and

‖y′′‖1 +
∥∥[r (· , v(·)) + ε(1 + x2)

]
y′
∥∥

1 + ‖q (· , v(·)) y‖1 ≤ C2‖ f ‖1, (3.2)

where C2 does not depend on A. By 2.1, we have that

‖y‖1 ≤ C3‖r̃1,ε,vy′‖1,
∥∥√1 + x2y

∥∥
1 ≤ C4

∥∥(1 + x2) y′
∥∥

1 . (3.3)

By using (3.2), (3.3) and Theorem 1 given in Chapter 3 of [18], we obtain that

‖y‖W := ‖y′′‖1 +
∥∥[r(·, v(·)) + (1 + x2)

]
y′
∥∥

1 +
∥∥∥[|q(·, v(·))|+

√
1 + x2

]
y
∥∥∥

1

+ sup
x∈R

∣∣∣(1 + x2)3/8y(x)
∣∣∣ ≤ C5‖ f ‖1, y ∈ D(Lv,ε),

(3.4)
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where C5 also does not depend on A.
Let A = C5‖ f ‖1 + 1. Set Pε(v) = L−1

v,ε f , where v ∈ SA, ε > 0, f ∈ L1 and L−1
v,ε is inverse to

Lv,ε. According to (3.4), the operator Pε maps SA into itself. Moreover, the operator Pε maps
SA to the set

QA := {y : ‖y‖W ≤ C5‖ f ‖1}.

QA is compact in C(R). Indeed, let γ > 0, then by (3.4) there exists l ∈ N such that for any
z ∈ QA

‖z′′‖L1(R\[−l, l]) +
∥∥[r(·, v(·)) + (1 + x2)

]
z′
∥∥

L1(R\[−l, l])

+
∥∥∥[|q(·, v(·))|+

√
1 + x2

]
z
∥∥∥

L1(R\[−l, l])
< γ/2, (3.5)

and

sup
x:|x|≥l

C5‖ f ‖1 + 1

(1 + x2)3/8 < γ/2. (3.6)

Let ϕl ∈ C(∞)
0 (−l− 1, l + 1) (l = 1, 2, . . .) such that ϕl(x) = 1 for x ∈ [−l, l], ϕl(x) = 0 for

x /∈ [−l − 1, l + 1] and 0 ≤ ϕl ≤ 1. We denote Tl = {ϕlz : z ∈ QA}. By (3.5) and (3.6), Tl is a
γ-net of QA. On the other hand, Tl is a subset of the Sobolev space

◦
W2

1(−l − 1, l + 1) =
{

θ ∈W2
1 (−l − 1, l + 1) : θ(x) = 0, as |x| ≥ l + 1

}
.

Notice that the embedding of
◦

W2
1(−l − 1, l + 1) in C0[−l − 1, l + 1] is compact, where

C0[−l − 1, l + 1] = {η ∈ C[−l − 1, l + 1] : η(x) = 0, as |x| ≥ l + 1} (see [19, 27]). So Tl is a
compact γ-net of QA. By Hausdorff’s theorem (see [10, Chapter 1]), QA is compact in C(R).

Next, we show that the operator Pε is continuous on SA. Let {vn}∞
n=1 ⊂ SA be a sequence

such that supx∈R |vn(x)− v(x)| → 0 as n→ +∞. If yn (n = 1, 2, . . .) and y satisfy

Lv,εy = f , Lvn,εyn = f . (3.7)

Then Pε(vn)− Pε(v) = yn − y. So it suffices to show that supx∈R |yn(x)− y(x)| → 0 as n→ ∞.
By (3.7), we deduce that

y− yn = L−1
v,ε
{
[r(x, vn(x))− r(x, v(x))] y′n + [q(x, vn(x))− q(x, v(x))] yn

}
. (3.8)

Since functions v and vn (n = 1, 2, . . .) are continuous, we see that r(x, vn(x)) − r(x, v(x))
and q(x, vn(x))− q(x, v(x)) are continuous functions. Therefore, from (3.8) it follows that

‖yn − y‖L1(−a,a) ≤ c max
x∈[−a,a]

[
r(x, vn(x))− r(x, v(x))|, |q(x, vn(x))− q(x, v(x))|

]
×
[
‖y′n‖L1(−a,a) + ‖yn‖L1(−a,a)

]
→ 0

(3.9)

as n → ∞, for every a > 0. On the other hand, by (3.4), we have {yn}+∞
n=1 ⊂ QA, ‖yn‖W ≤

A (n = 1, 2, . . .), y ∈ QA, ‖y‖W ≤ A. Since the set QA is compact in C(R), without loss of
generality, we can assume that the sequence {yn}+∞

n=1 converges to some z ∈ C(R). By (3.4)

lim
|x|→∞

y(x) = 0, lim
|x|→∞

z(x) = 0. (3.10)

Since the operator L−1
v,ε is closed, by (3.9) and (3.10), we obtain that z = y. Thus Pε is continu-

ous.



L1-maximal regularity for differential equation with damped term 7

So Pε is a completely continuous operator in C(R) and it maps the ball SA into itself. By
Schauder’s theorem (see [10, Chapter XVI]), Pε has a fixed point y in SA, i.e. Pε(y) = y. And
y satisfies the equality

−y′′ +
[
r(x, y) + ε(1 + x2)

]
y′ + q(x, y)y = f (x).

By Lemma 2.3, we obtain that

‖y′′‖1 + ‖
[
r (· , y) + ε(1 + x2)

]
y′‖1 + ‖q (· , y) y′‖1 ≤ C5‖ f ‖1.

Now, let
{

ε j
}∞

j=1 be a sequence of positive numbers such that limj→∞ ε j = 0. Recall that

Pε j(v) = L−1
v,ε j

f . If yj ∈ SA is the fixed point of the operator Pε j , then

−y′′j +
[
r(x, yj) + ε j(1 + x2)

]
y′j + q(x, yj)yj = f (x).

Then according to Lemma 2.3, we have∥∥y′′j
∥∥

1 +
∥∥[r (· , yj(·)

)
+ ε j

(
1 + x2)]y′j∥∥1 +

∥∥q
(
· , yj(·)

)
yj
∥∥

1 ≤ C5‖ f ‖1. (3.11)

Let (a, b) be an arbitrary finite interval. It is known that the space W2
1 (a, b) is compactly

embedded to L1(a, b). Therefore, by virtue of (3.11), we can select a subsequence
{

ỹj
}∞

j=1 of{
yj
}∞

j=1 ⊂W2
1 (a, b) such that ‖ỹj − y‖L1(a, b) → 0 as j→ ∞. By Definition 1.1, y is a solution of

equation (1.1). By Lemma 2.3, we obtain that for y the estimate (1.5) holds.

Remark 3.1. The condition (1.3) is natural. If (1.3) does not hold, from Lemma 2.1 it follows
that the domain D(L) of L is not included in L1.
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