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1 Introduction

Let Ω ⊆ R
N(N ≥ 1) be a bounded domain with smooth boundary ∂Ω. We are concerned with the

behavior of the following superlinear wave equation with dissipation















utt − ∆u − ω∆ut + µ|ut|
m−1ut = |u|p−1u, x ∈ Ω, t ≥ 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where ω ≥ 0, µ ≥ 0, m ≥ 1, p > 1, and















1 < p ≤

{ N+2
N−2 for ω > 0

N
N−2 for ω = 0

if N ≥ 3,

1 < p < ∞ if N = 1, 2.

(1.2)

u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω). (1.3)

We introduce some related works first and then explain in detail which are our main results. For the

well posedness of problem (1.1) and why the natural regularity for the initial data is precisely that

of (1.3), we refer to [8]. Equations with damping terms have been considered by many authors. For

equations with linear weak damping, we refer to [7, 10, 14]. For equations with possibly nonlinear

weak damping, we refer to [9, 12, 16, 20, 23]. Much less work is known for equations with strong

damping, see the seminal paper by Levine [15] and also [18, 19], but still many problems unsolved.

Gazzola et.al. [8] discussed the case when the weak damping term and the strong damping term

are both linear (m = 1 in (1.1)). It is our purpose to shed some further light on damped wave

equations of the kind in the problem (1.1) in both presence of nonlinear weak damping and linear

strong damping.

1This work was supported by PRC Grants NSFC 10771032.
2E-mail: yushengqi@126.com.
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Cazenave [5] proved the boundedness of global solutions to (1.1) for ω = µ = 0, while Esquivel-

Avila [7] recovered the same result for ω = 0 and µ > 0 and showed that this property may fail

in presence of nonlinear disspation, however, by exploiting the same technique in [7], we proved,

under the restrictions E(t) ≥ d,∀ t ≥ 0 (the energy goes beyond the mountain pass level all the

times) and m < p, the global solutions can still be bounded even in presence of nonlinear weak

damping.

From a different angle of consideration, it is interested to find out for which initial data (1.3)

problem (1.1) does have a global solution. For the weakly damped case(ω = 0, µ > 0), Iketa [12]

proved that the solution is global and converges to equilibria φ ≡ 0 as t → ∞ if and only if E(0) < d

and u0 ∈ N+. In Theorem 4.2 we extend this result to the case ω > 0. For related asymptotic

stability results the reader is referred to [2, 3], where the authors investigate qualitative aspects

of global solutions of hyperbolic Kirchhoff systems, both in the classical framework and in a more

general setting given by anisotropic Lebesgue and Sobolev spaces. In particular it is shown that a

global solution u converges to an equilibrium state in the sense of the energy decay, provided that

the initial data are sufficiently small.

Not all local solutions of (1.1) are global in time. For the weakly damped case(ω = 0, µ >

0, m = 1), Pucci and Serrin [21] proved nonexistence of global solutions when E(0) < d and

u0 ∈ N−. In the case when ω > 0 and µ = 0. Ono [19] showed that the solution of (1.1) blow up

in finite time if E(0) < 0, which automatically implies u0 ∈ N+. Ohta [18] improves this result

by allowing E(0) < d and u0 ∈ N+. Gazzola and Squassina [8] extended this result to the case

when µ 6= 0 and E(0) ≤ d. All those works mentioned above dealt with the linear damping case

(m = 1) or when the weak damping is absent(µ = 0). In the case of (1.1) with m > 1 however,

the most frequently used technique in the proof of blow up named ”concavity argument” no longer

apply, so it is necessary to use another approach, namely the blow up theorem 2.3 in [17] for all

negative initial energies. In the recent paper [4], thanks to a new combination of the potential well

and concavity methods, the global nonexistence of solutions has been proved for Kirchhoff systems

when ω = 0 and the initial energy is possibly above the critical level d.

The paper is organized as follows. In section 2, we state the local existence result and recall

some notations and useful lemmas. In section 3, we present the boundedness result of global

solutions under the assumptions E(t) ≥ d and m < p. In section 4, we state a sufficient and

necessary condition on which the solution of (1.1) is global. In section 5, blow up behavior of (1.1)

is investigated. In section 6, we present a exponential decay result.

2 Preliminaries

We specify some notations first. In this context, we denote ‖ · ‖q by the Lq norm for 1 ≤ q ≤ ∞,

and ‖∇u‖2 the Dirichlet norm of u in H1
0 (Ω). We define the C1 functionals I, J, E: H1

0 (Ω) → R
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by:

I(u) = ‖∇u‖2
2 − ‖u‖p+1

p+1, J(u) =
1

2
‖∇u‖2

2 −
1

p + 1
‖u‖p+1

p+1,

E(t) = E(u(t)) =
1

2
‖ut‖

2
2 + J(u).

Note that E(t) satisfies the energy identity

E(t) + ω

∫ t

s
‖∇ut(τ)‖2

2dτ + µ

∫ t

s
‖ut(τ)‖m+1

m+1dτ = E(s), ∀ 0 ≤ s ≤ t ≤ Tmax, (2.1)

where Tmax is the maximal existence time of u(t). The mountain pass level of J is defined as

d = inf
u∈H1

0
(Ω)\{0}

max
λ≥0

J(λu). (2.2)

Denote the best sobolev constant for the embedding H1
0 (Ω) ↪→ Lp+1(Ω) as Cp+1

Cp+1 = inf
u∈H1

0
(Ω)\{0}

‖∇u‖2

‖u‖p+1
. (2.3)

We introduce the sets

S = {φ ∈ H1
0 (Ω) : φ is a stationary solution of (1.1)},

Sl = {φ ∈ S : J(φ) = l} (l ∈ R
+).

And the Nehari manifold N is defined by

N = {u ∈ H1
0 (Ω) \ {0} : I(u) = 0},

which intersects H1
0 (Ω) into two unbounded sets

N+ = {u ∈ H1
0 (Ω) \ {0} : I(u) > 0} ∪ {0}, N− = {u ∈ H1

0 (Ω) \ {0} : I(u) < 0}.

We also consider the sublevels of J

Ja = {u ∈ H1
0 (Ω) : J(u) < a} (a ∈ R),

and we introduce the stable set S and the unstable set U defined by

S = Jd ∩ N+ and U = Jd ∩ N−.

Denote β = dist(0,N ) = inf
u∈N

‖∇u‖2, the following lemma is a direct consequence of (2.2) and (2.3).

Lemma 2.1 d has the following characterizations

d =
p − 1

2(p + 1)
C

p+1

p−1

p+1 =
p − 1

2(p + 1)
β2.

Now, we state the local existence theorem for the nonlinear wave equation (1.1).
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Theorem 2.2 Suppose that (1.2) holds, then for every initial data (u0, u1) satisfying (1.3), there

exists a unique (local) weak solution (u(t), ut(t)) = S(t)(u0, u1) of problem (1.1), that is

d

dt
(ut, w) + ω(∇ut,∇w) + µ(|ut|

m−1ut, w)2 = (|u|p−1u,w)2 a.e. in (0, T ),∀w ∈ H1
0 (Ω) ∩ Lm+1(Ω),

(2.4)

such that

u ∈ C([0, T ];H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)), ut ∈ Lm+1(Ω × (0, T )),

where S(t) denotes the corresponding semigroup on H1
0 (Ω) × L2(Ω), generated by problem (1.1).

Moreover, if

Tmax = sup{T > 0 : u = u(t) exists on [0, T ]} < ∞,

then lim
t→Tmax

‖u‖q = ∞ for all q ≥ 1 such that q >
N(p − 1)

2
.

We restricted ourselves to the case ω > 0, µ 6= 0 and N ≥ 3, the other cases being similar. For a

given T > 0, we choose the work space H = C([0, T ];H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)) endowed with the

norm ‖u‖2
H = max

t∈[0,T ]
(‖∇u(t)‖2

2 + ‖ut(t)‖
2
2). We divide the proof the local existence theorem into

two lemmas.

Lemma 2.3 For every T > 0, every w ∈ H and every initial data (u0, u1) satisfies (1.3), there

exists a unique u ∈ H such that ut ∈ L2([0, T ];H1
0 (Ω)) which satisfies the following problem















utt − ∆u − ω∆ut + µ|ut|
m−1ut = |w|p−1w, x ∈ Ω, t ≥ 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(2.5)

Proof. Existence. We consider a standard Galerkin approximation scheme for the solution of (2.5)

based on the eigenfunction {ek}
∞
k=1 of the operator −∆ with null boundary condition on ∂Ω. That

is, we let un(t) = Σn
k=1un,k(t)ek, where un(t) satisfies

(unt, v) + (∇un,∇v) + ω(∇unt,∇v) + µ(|unt|
m−1unt, v) = (|w|p−1w, v)

(un(0), v) = (u0, v), (unt(0), v) = (u1, v)
(2.6)

for all v ∈ Vn := the linear span of {e1, e2, . . . , en}, (·, ·) denotes the standard L2(Ω) inner product.

By standard nonlinear ODE theory one obtains the existence of a global solution to (2.6) with the

following a priori bounds uniformly in n

1

2
(‖∇un(t)‖2

2 + ‖unt(t)‖
2
2) + µ

∫ t

0
‖unt(τ)‖m+1

m+1dτ + ω

∫ t

s
‖∇unt(τ)‖2

2dτ

=
1

2
(‖∇un(0)‖2

2 + ‖unt(0)‖
2
2) +

∫ t

0

∫

Ω
|w(τ)|p−1w(τ)unt(τ)dxdτ, ∀ t ∈ (0, T ]. (2.7)

We estimate the last term on the right-hand side
∫ t

0

∫

Ω
|w(τ)|p−1w(τ)unt(τ)dxdτ

≤

∫ t

0
‖w(τ)‖p

p+1‖unt(τ)‖p+1 ≤
1

2ω

∫ t

0
‖∇w(τ)‖2pdτ +

ω

2

∫ t

0
‖∇unt(τ)‖2

2dτ

≤ C(T ) +
ω

2

∫ t

0
‖∇unt(τ)‖2

2dτ, ∀ t ∈ (0, T ]. (2.8)
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It follows from (2.7) and (2.8) that

(‖∇un(t)‖2
2 + ‖unt(t)‖

2
2) + µ

∫ t

0
‖unt(τ)‖m+1

m+1dτ + ω

∫ t

s
‖∇unt(τ)‖2

2dτ ≤ CT .

Hence, there exists a subsequence of un, which we still denoted by un, such that

un → u weakly ∗ in L∞([0, T ];H1
0 (Ω)),

unt → ut weakly ∗ in L∞([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)) ∩ Lm+1(Ω × [0, T ]),

untt → utt weakly ∗ in L2([0, T ];H−1(Ω)).

Since u ∈ H1([0, T ];H1
0 (Ω)), we get u ∈ C([0, T ];H1

0 (Ω)). Moreover, since ut ∈ L2([0, T ];H1
0 (Ω))

and utt ∈ L2([0, T ];H−1(Ω)), it follows from the Aubin compactness argument that ut ∈ C([0, T ];L2(Ω)).

The existence of u solving (2.5) is proved.

Uniqueness. If u1, u2 are two solutions of (2.5) with the same initial data, set u = u1 − u2,

substracting the equations and test with ut, we obtain

1

2
(‖∇u(t)‖2

2 + ‖ut(t)‖
2
2) + µ

∫ t

0
(g(u1t) − g(u2t))(u1t − u2t))dτ + ω

∫ t

0
‖∇ut(τ)‖2

2dτ = 0.

Observe that g(u) = |u|m−1u is increasing, we immediately get u1 = u2. The proof of the lemma is

complete.

Denote F the mapping defined by the equation (2.5), i.e., u = F (w). Let R2 = 2(‖∇u0‖
2 +

‖u1‖
2). Consider

BR = {u ∈ H : u(0) = u0, ut(0) = u1 and ‖u‖H ≤ R}.

Lemma 2.4 F (BR) ⊆ BR and F : BR → BR is compact.

Proof. By Lemma 2.3, for any given w ∈ BR, the corresponding solution satisfies the following

energy equality

‖∇u(t)‖2
2 + ‖ut(t)‖

2
2 + 2µ

∫ t

0
‖ut(τ)‖m+1

m+1dτ + 2ω

∫ t

0
‖∇ut(τ)‖2

2dτ

= (‖∇u(0)‖2
2 + ‖ut(0)‖

2
2) + 2

∫ t

0

∫

Ω
|w(τ)|p−1w(τ)ut(τ)dxdτ. (2.9)

We estimate the last term on the right-hand side by using Hölder, Young’s inequality and Sobolev

embedding theorem

2

∫ t

0

∫

Ω
|w(τ)|p−1w(τ)ut(τ)dxdτ

≤ |Ω|α
∫ T

0
‖w(τ)‖p

2∗‖ut(τ)‖2∗dτ ≤ C

∫ T

0
‖∇w(τ)‖2p

2 dτ + 2ω

∫ T

0
‖∇ut(τ)‖2

2dτ

≤ CTR2p + 2µ

∫ t

0
‖ut(τ)‖m+1

m+1dτ + 2ω

∫ t

0
‖∇ut(τ)‖2

2dτ, (2.10)

where 2∗ = 2N/(N − 2), α = 1 − (p + 1)/2∗, C = C(Ω, ω, p), but C is independent of T .

Combining (2.9) with (2.10), by choosing T sufficiently small, we get ‖u‖H ≤ R, which indicates
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that F (BR) ⊆ BR.

Observe that for any given ball K ⊆ H, any solution to (2.5) with w ∈ K with finite initial energy

must satisfy

‖∇u(t)‖2
2 + ‖ut(t)‖

2
2 ≤ C(‖w‖H, ‖∇u0‖2, ‖u1‖2).

The above inequality and Simon’s compactness lemma imply the compactness of F (K). We need

only to prove that F : BR → BR is continuous.

For this purpose, take w1, w2 ∈ BR, substracting the two equations (2.5) for u1 = F (w1) and

u2 = F (w2), set u = u1 − u2 and then we obtain for all η ∈ H1
0 (Ω),

〈utt, η〉 +

∫

Ω
∇u∇η + ω

∫

Ω
∇ut∇η + µ

∫

Ω
(|u1t|

m−1u1t − |u2t|
m−1u2t)η

=

∫

Ω
(|w1|

p−1w1 − |w2|
p−1w2)η,

take η = ut, integrate the above equality over (0, t], notice that the last term on the left-hand side

of the equality is nonnegative, we obtain

1

2
(‖∇u(t)‖2

2 + ‖ut(t)‖
2
2) + ω

∫ t

0
‖∇ut(τ)‖2

2dτ

≤

∫ t

0

∫

Ω
p(|w1(τ)| + |w2(τ)|)p−1(w1 − w2)ut(τ)dxdτ

≤ CR2(p−1)T‖w1 − w2‖
2
H + ω

∫ t

0
‖∇ut(τ)‖2

2dτ,

which implies that

‖F (w1) − F (w2)‖
2
H ≤ C‖w1 − w2‖

2
H.

The proof of the lemma is complete.

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Combining Lemma 2.3 and Lemma 2.4, the main statement of the theorem

is a direct consequence of Schauder’s fixed point theorem.

It follows from the above proof that, the local existence time of u merely depends on the norms of

the initial data, therefore, if Tmax < ∞, we obtain

lim
t→Tmax

‖u(t)‖2
H = ∞ (2.11)

As a consequence of the energy identity (2.1), E(t) is nonincreasing and the following inequality

holds
1

2
(‖∇u(t)‖2

2 + ‖ut(t)‖
2
2) ≤

1

p + 1
‖u‖p+1

p+1 + E(0), ∀ t ∈ [0, Tmax), (2.12)

which, together with (2.11) yields

lim
t→Tmax

‖u‖p+1 = ∞ (2.13)

The Sobolev embedding theorem implies

lim
t→Tmax

‖∇u‖2 = ∞ (2.14)
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Moreover, by (2.12) we obtain

‖∇u‖2
2 ≤ 2E(0) +

2

p + 1
‖u(t)‖p+1

p+1, t ∈ [0, Tmax),

combining with the Gagliardo-Nirenberg inequality, it follows

C‖∇u‖2
2 − C ≤ ‖u(t)‖p+1

p+1 ≤ C‖u(t)‖(p+1)(1−θ)
q ‖∇u(t)‖

(p+1)θ
2 ,

where θ = 2N(p + 1 − q)/((p + 1)(2N + 2q − Nq)).

Since N(p−1)/2 < q < p+1 implies θ ∈ (0, 1) and (p+1)θ < 2, the above inequality combined with

(2.14) immediately yields the last assertion of the theorem. This completes the proof of Theorem

2.2.

Lemma 2.5 ([7]) For every solution of (1.1), given by Theorem 2.2, only one of the following

holds,

(i) there exists a t0 ≥ 0, such that E(t0) ≤ d, u(t0, ·) ∈ S, and remains there for all t ∈ [t0, Tmax),

(ii) there exists a t0 ≥ 0, such that E(t0) ≤ d, u(t0, ·) ∈ U , and remains there for all t ∈ [t0, Tmax),

(iii) u(t, ·) ∈ {u|E(u) ≥ d} for all t ≥ 0.

Lemma 2.6 Under the assumptions of Lemma 2.5, the following inequalities hold

J(u) >
p − 1

2(p + 1)
‖∇u‖2

2 if 0 6= µ ∈ S, (2.15)

d <
p − 1

2(p + 1)
‖∇u‖2

2 if 0 6= µ ∈ U . (2.16)

The proof of the above two lemmas are elemental, so we omit it.

3 Boundedness of Global Solutions

Lemma 3.1 Assume that E(t) ≥ d for all t ≥ 0, then for every t ≥ 0, there exists a positive

constant C, such that

‖∇u(t) −∇u(t + 1)‖ ≤ C for ω > 0,

‖u(t) − u(t + 1)‖m+1 ≤ C for ω = 0.

Theorem 3.2 Assume that ω > 0, let m < p and E(t) ≥ d for all t ≥ 0, then every global solution

to (1.1) is bounded. Moreover, if n = 1, 2 or if n ≥ 3 and 1 < p < n+2
n−2 , then there exists a positive

constant l such that Sl 6= ∅,

lim
t→∞

E(t) = l, lim
t→∞

distH1
0
(u(t),Sl) = 0, lim

t→∞
‖ut‖

2
2 = 0. (3.1)

Proof. According to [8], the difficult part is to prove the boundedness of global solution. Once the

boundedness result is established, the convergence up to a sequence of solutions of (1.1) towards a

steady-state result of the theorem can be arrived by following the same arguments as in [8] step by

step.
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Taking into account that ut(τ) ∈ H1
0 (Ω) for a.e. τ ≥ 0, combine Poincaré inequality with the

energy equality (2.1), we have for every t > 0,

∫ t

0
‖ut(τ)‖2

2dτ ≤
1

λ1

∫ t

0
‖∇ut(τ)‖2

2dτ ≤ C(E(0) − d).

Letting t → ∞, we can conclude

∫ ∞

0
‖ut(τ)‖2

2dτ < ∞ and

∫ ∞

0
‖∇ut(τ)‖2

2dτ < ∞. (3.2)

It is easy to observe from the above inequality that, for every t ≥ 0, there exists a positive constant

C, such that

‖ut(t)‖
2
2 ≤ C. (3.3)

Furthermore, by the definition of E(t), we can obtain

‖u(t)‖p+1
p+1 ≥

p + 1

2
‖∇u(t)‖2

2 − (p + 1)E(0). (3.4)

Set Ẽ(t) = ‖ut(t)‖
2
2 + ‖∇u(t)‖2

2, inspired by [7], we shall prove

∫ t+1

t
Ẽ(τ)dτ ≤ C, (3.5)

where C > 0 is a constant.

For this purpose we introduce the function

H(t) , (u(t), ut(t)) − ME(t),

where M > 0 to be specified later. Hence and from the energy equality, by applying Hölder and

Young’s inequality, in view of the convex property of the norm ‖u‖m+1
m+1, we have

Ḣ(t) = ‖ut(t)‖
2
2 − ‖∇u(t)‖2

2 − ω(∇u(t),∇ut(t)) − µ

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx

+‖u(t)‖p+1
p+1 + M‖ut(t)‖

m+1
m+1 + M‖∇ut(t)‖

2
2

≥ ‖ut(t)‖
2
2 − ‖∇u(t)‖2

2 −
ε

2
‖∇u(t)‖2

2 −
1

2ε
‖∇ut(t)‖

2
2 −

ε

m + 1
‖ut(t)‖

m+1
m+1

−
m

m + 1
ε−

1

m ‖ut(t)‖
m+1
m+1 + ‖u(t)‖p+1

p+1 + M‖ut(t)‖
m+1
m+1 + M‖∇ut(t)‖

2
2

≥ ‖ut(t)‖
2
2 − ‖∇u(t)‖2

2 −
ε

2
‖∇u(t)‖2

2 −
ε

p + 1
‖u(t)‖p+1

p+1 −
ε

2
‖u(t)‖2

2 + ‖u(t)‖p+1
p+1

≥ ‖ut(t)‖
2
2 + (1 − ε)‖u(t)‖p+1

p+1 −

(

1 +
ε

2
+

ε

2λ1

)

‖∇u(t)‖2
2

≥ ‖ut(t)‖
2
2 +

(p + 1)(1 − ε)

2
‖∇u(t)‖2

2 − (1 − ε)(p + 1)E(0) −

(

1 +
ε

2
+

ε

2λ1

)

‖∇u(t)‖2
2

≥ ‖ut(t)‖
2
2 +

(

(p + 1)(1 − ε)

2
−

(

1 +
ε

2
+

ε

2λ1

))

‖∇u(t)‖2
2 − (p + 1)E(0)

, δ‖∇u(t)‖2
2 + ‖ut(t)‖

2
2 − (p + 1)E(0), (3.6)
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we take ε = (p + 1)/(4 + 2p + 2/λ1), then δ = δ(ε) , (p + 1)(1 − ε)/2 − (1 + ε/2 + ε/2λ1) > 0.

For this chosen ε, take M = max{ 1
2ε ,

m
m+1ε−

1

m }, then all the above inequalities hold.

Take η = min{δ, 1} > 0, we get from (3.6) that

Ḣ(t) ≥ ηẼ(t) − (p + 1)E(0). (3.7)

Integrate the above inequality over (t, t + 1) and then estimate the integral on the left-hand side,

from Hölder inequality and (3.3),

∫ t+1

t
Ḣ(s)ds = (u(t + 1), ut(t + 1)) − (u(t), ut(t)) − ME(t + 1) + ME(t)

≤ ‖u(t + 1) − u(t)‖‖ut(t + 1) − ut(t)‖ + M(E(0) − d)

≤ C‖∇u(t + 1) −∇u(t)‖ + M(E(0) − d),

combining (3.7) with Lemma 3.1, the above inequality yields (3.5).

Following the proof of Theorem 2.8[7], we can prove there exists a positive constant κ, such that

Ẽ(t) ≤ κ(Ẽ(s) + 1) (3.8)

for any 0 ≤ s ≤ t ≤ s + 1.

Consequently, (3.5) and (3.8) imply

‖ut(t)‖
2
2 + ‖∇u(t)‖2

2 =

∫ t

t−1
Ẽ(t)ds ≤ κ

∫ t

t−1
(Ẽ(s) + 1)ds ≤ κ(C + 1).

The proof is complete.

For the weakly damped case(ω = 0), we have the following

Theorem 3.3 Assume that ω = 0, let m < p and E(t) ≥ d ∀ t ≥ 0, suppose further that















1 < p ≤

{

N
N−2 for N ≥ 3,

5 for N = 2,

1 < p < ∞ for N = 1.

Then every global solution to (1.1) is bounded. Moreover, if n = 1, 2 or if N ≥ 3 and 1 < p < N
N−2 ,

then there exists a positive constant l such that Sl 6= ∅,

lim
t→∞

E(t) = l, lim
t→∞

distH1
0
(u(t),Sl) = 0, lim

t→∞
‖ut‖

2
2 = 0. (3.9)

Similar proof can be done following the arguments of Theorem 3.2 by utilizing Lemma 3.1.

4 Global Existence

Theorem 4.1 Assume that (1.2) and (1.3) being fulfilled, and let u be the unique local solution to

(1.1). If m ≥ p, then problem (1.1) admits a unique solution u(t, x) such that for any T > 0,

u(t, x) ∈ C([0, T ];H1
0 (Ω)), ut(t, x) ∈ C([0, T ];L2(Ω)) ∩ Lm+1([0, T ] × Ω).
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Proof can be done by following the arguments in [9].

Now let us turn to the global existence of solutions starting with suitable initial data.

Theorem 4.2 Assume that (1.2) and (1.3) being fulfilled, and let u be the unique local solution to

(1.1) as in Theorem 2.2. Then there exists a t0 ∈ [0, Tmax), such that u(t0) ∈ S and E(u(t0)) < d

if and only if Tmax = ∞ and lim
t→∞

‖∇u(t)‖2 = lim
t→∞

‖ut(t)‖2 = 0.

Proof. Necessity. Consider the case ω > 0, µ > 0. Since the energy function E(t) is nonincreasing,

by virtue of Lemma 2.5(i), we have u(t) ∈ S and E(t) < d, ∀ t ∈ [t0, Tmax).

Combining (2.15) with the definition of E(t), it yields, there exists a M > 0, such that

‖∇u(t)‖2
2 + ‖ut(t)‖

2
2 ≤ M ∀ t ∈ [0, Tmax) (4.1)

which implies that Tmax = ∞ by virtue of Theorem 2.2.

It follows again from the energy identity (2.1)
∫ t

t0

‖∇ut(τ)‖2
2dτ <

d

ω
,

∫ t

t0

‖ut(τ)‖m+1
m+1dτ <

d

µ
, ∀ t ∈ [t0,∞). (4.2)

By integrating over [t0, t] the trivial inequality

d

dt
((1 + t)E(t)) ≤ E(t)

we have

(1 + t)E(t) ≤ (1 + t0)E(t0) +
1

2

∫ t

t0

‖ut(τ)‖2
2dτ +

∫ t

t0

J(u(τ))dτ.

Since J(u) ≤ CI(u)(see [12] Lemma 2.5), the above inequality yields

(1 + t)E(t) ≤ (1 + t0)E(t0) +
1

2

∫ t

t0

‖ut(τ)‖2
2dτ + C

∫ t

t0

I(u(τ))dτ, ∀ t ∈ [t0,∞). (4.3)

Moreover, by testing the equation (1.1) with u, we have for all t ∈ [t0,∞),

〈utt(t), u(t)〉 + ‖∇u(t)‖2
2 + ω

∫

Ω
∇u(t)∇ut(t)dx + µ

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx = ‖u(t)‖p+1
p+1,

which implies

I(u(t)) = −
d

dt

∫

Ω
ut(t)u(t)dx + ‖ut(t)‖

2
2 − µ

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx − ω

∫

Ω
∇u(t)∇ut(t)dx.

By integrating the above equality over [t0, t], we have
∫ t

t0

I(u(τ))dτ ≤

∫ t

t0

‖ut(τ)‖2
2dτ + ‖u(t)‖2

2‖ut(t)‖
2
2 + ‖u0‖

2
2‖u1‖

2
2

+

∫ t

t0

‖∇u(τ)‖2
2‖∇ut(τ)‖2

2dτ +

∫ t

t0

∫

Ω

∣

∣|ut(τ)|m−1ut(τ)u(τ)
∣

∣ dxdτ.

In view of [12] Lemma 3.4, we get

∫ t

t0

‖ut(τ)‖2
2dτ ≤ C(t − t0)

m−1

m+1

(
∫ t

t0

‖ut(τ)‖m+1
m+1dτ

)

2

m+1

,

∫ t

t0

∣

∣|ut(τ)|m−1ut(τ)u(τ)
∣

∣ dτ ≤ C(t − t0)
1

m+1

(
∫ t

t0

‖ut(τ)‖m+1
m+1dτ

)

m

m+1

.
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It follows from (4.1)–(4.3) that

(1 + t)E(t) ≤ (1 + t0)E(0) + C1(t − t0)
m−1

m+1 + C2(t − t0)
1

m+1 ,

which indicates

lim
t→∞

E(t) = 0.

Since u(t) ∈ S, ∀ t ∈ [t0,∞), it holds

lim
t→∞

‖ut(t)‖
2
2 = lim

t→∞
J(u(t)) = 0.

Using (2.15) again and we obtain the final result.

Sufficiency. The Sobolev embedding theorem implies lim
t→∞

‖u(t)‖p+1 = 0, which indicates

lim
t→∞

J(u(t)) ≤ lim
t→∞

E(u(t, ·), ut(t, ·)) = 0 and lim
t→∞

I(u(t)) = 0. Note that S is a bounded neigh-

borhood of 0 in H1
0 (Ω), we can conclude there exists a t0 ∈ [0,∞), such that u(t0, ·) ∈ S and

E(u(t0, ·), ut(t0, ·)) < d.

The proof of the theorem is then complete.

5 Blow up

We come to a blow up result for solutions starting in the unstable set.

Theorem 5.1 Suppose m < p < 2(m+1)
N + 1, assume further that (1.2) and (1.3) hold and

(u(t), ut(t)) = S(t)(u0, u1) be a local solution to problem (1.1). A necessary and sufficient con-

dition for nonglobality, blow up by Theorem 2.2, is there exists a t0 ≥ 0, such that u(t0) ∈ U and

E(u(t0)) < d.

This theorem is an extension of Iketa’s work [12], in which a necessary and sufficient condition of

blowing up was given for the linear weakly damped case(ω = 0,m = 1). The concavity method no

longer applies in this particular situation when nonlinear dissipation appears, we need the following

blow up result here

Lemma 5.2 [17] Let m < p, ω ≥ 0, and suppose the conditions (1.2) and (1.3) are fulfilled, then

any weak solution to problem (1.1) blows up in finite time if the initial energy E(0) is negative.

Proof of Theorem 5.1. Sufficiency. Suppose on the contrary that for some initial data satisfies

the condition of Theorem 5.1, the weak solution of problem (1.1) exists for all t ≥ 0, then E(t)

has to be nonnegative for all t ≥ 0. Since if there exists a t1, such that E(t1) < 0, by Lemma 5.2,

the solution must blow up in finite time. Thus, we have E(t) ≥ 0 for all t ≥ 0, which leads to a

constant control of the rate of energy decrease. That is, from the energy identity (2.1), we obtain

d ≥ E(t0) − E(t) = ω

∫ t

t0

‖∇ut(τ)‖2
2dτ + µ

∫ t

t0

‖ut(τ)‖m+1
m+1dτ, ∀ t ≥ t0.

Denote F (t) = ‖u(t)‖2
2, it follows from equation of (1.1) that

F ′′(t) = 2

(

‖ut(t)‖
2
2 − I(u(t)) − ω(∇u(t),∇ut(t)) − µ

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx

)

. (5.1)
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To estimate the integral ω(∇u(t),∇ut(t)), we use Hölder and Young’s inequality

|ω(∇u(t),∇ut(t))| ≤ ε1‖∇u(t)‖2
2 + C(ε1)‖∇ut(t)‖

2
2. (5.2)

To estimate the term µ
∫

Ω |ut(t)|
m−1ut(t)u(t)dx, we use Hölder inequality and interpolation in-

equality

µ

∣

∣

∣

∣

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx

∣

∣

∣

∣

≤ ‖u(t)‖m+1‖ut(t)‖
m
m+1 ≤ ‖u(t)‖θ

2‖u(t)‖1−θ
p+1‖ut(t)‖

m
m+1

≤ C‖ut(t)‖
m
m+1‖u(t)‖

1−(p+1)/(m+1)−θ+(p+1)θ/2
p+1 ‖u(t)‖

(p+1)/(m+1)
p+1 (5.3)

where θ = ( 1
m+1 − 1

p+1)/(1
2 − 1

p+1).

In the above estimates, we used the equality followed from Lemma 2.5(ii), i.e.,

‖u(t)‖2
2 ≤

1

λ1
‖∇u(t)‖2

2 ≤
1

λ1
‖u(t)‖p+1

p+1, ∀ t ≥ t0.

Since 1− (p + 1)/(m + 1)− θ + (p + 1)θ/2 = 0, by using Young’s inequality, we get from (5.3) that

µ

∣

∣

∣

∣

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx

∣

∣

∣

∣

≤ ε2‖u(t)‖p+1
p+1 + C(ε2)‖ut(t)‖

m+1
m+1. (5.4)

It follows from (5.1), (5.2) and (5.4) that

1

2
F ′′(t) + C(ε1)‖∇ut(t)‖

2
2 + C(ε2)‖ut(t)‖

m+1
m+1

≥ ‖ut(t)‖
2
2 − I(u(t)) − ε1‖∇u(t)‖2

2 − ε2‖u(t)‖p+1
p+1. (5.5)

In view of the inequality

−I(u(t)) ≥ −I(u(t)) + σ(E(t) − E(t0))

≥ (1 − σ/(p + 1))‖u(t)‖p+1
p+1 +

σ

2
‖ut(t)‖

2
2 + (

σ

2
− 1)‖∇u(t)‖2

2 − σE(t0),

where the constant σ > 2 will be chosen later.

We obtain from (5.5) the inequality

1

2
F ′′(t) + C(ε1)‖∇ut(t)‖

2
2 + C(ε2)‖ut(t)‖

m+1
m+1

≥ (1 + σ/2)‖ut(t)‖
2
2 + (1 − σ/(p + 1) − ε2)‖u(t)‖p+1

p+1

+(σ/2 − 1 − ε1)‖∇u(t)‖2
2 − σE(t0), ∀ t ≥ t0. (5.6)

Choose the constant σ so that

2d(p + 1)(1 + ε1)

(p + 1)d − (p − 1)E(t0)
≤ σ < p + 1,

which is possible since E(t0) < d, and this guarantees σ > 2.

Then, using this choice and (2.16) we obtain

(σ/2 − 1 − ε1)‖∇u(t)‖2
2 − σE(t0) ≥ 0, ∀ t ≥ t0.
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For this chosen σ, we choose ε2 small enough so that

C1 = 1 − σ/(p + 1) − ε2 > 0.

Finally, the inequality (5.6), Lemma 2.5 and Lemma 2.6 yield

F ′′(t) + C(ε1)‖∇ut(t)‖
2
2 + C(ε2)‖ut(t)‖

m+1
m+1

≥ C1‖u(t)‖p+1
p+1 ≥ C1‖∇u(t)‖2

2 ≥ 2C1d(p + 1)/(p − 1), ∀ t ≥ 0. (5.7)

Integrate two times the inequality (5.7) over [t0, t] and take into account

∫ t

0
‖∇ut(τ)‖2

2 + ‖ut(τ)‖m+1
m+1dτ ≤ d,

we arrive at

F (t) ≥ C1{d(p + 1)/(p − 1)}t2 + {(−C(ε1) − C(ε2))d + F ′(t0)}t + F (t0), (5.8)

thus, the norm ‖u(t)‖2 has at least linear growth for t ≥ t0. On the other hand, we estimate the

norm ‖u(t)‖2 from above. For t ≥ t0, we have

‖u(t)‖2 ≤ ‖u(t0)‖2 +

∫ t

t0

‖ut(τ)‖2dτ

≤ ‖u(t0)‖2 + C(t − t0)
m−1

m+1

(
∫ t

t0

‖ut(τ)‖m+1
m+1dτ

)

1

m+1

≤ ‖u(t0)‖2 + C(t − t0)
m−1

m+1 , (5.9)

where in the above estimates we used the Hölder inequality with respect to t, the boundedness of

the integral
∫ t
t0
‖ut(τ)‖m+1

m+1dτ . Obviously, the inequality (5.9) contradicts with the inequality (5.8).

Sufficiency. Suppose Tmax < ∞, then it follows from the last assertion of Theorem 2.2 that

lim
t→Tmax

‖u(t)‖m+1 = ∞. (5.10)

Observe the energy equality (2.1), we obtain

E(0) − E(t) ≥ µ

∫ t

0
‖ut(τ)‖m+1

m+1dτ ≥ µt−m |‖u(t)‖m+1 − ‖u0‖m+1| ,

which combined with (5.10) imply

lim
t→Tmax

E(t) = −∞.

On the other hand, since

p + 1

2
‖ut(t)‖

2
2 +

p − 1

2
‖∇u(t)‖2

2 + I(u(t)) ≤ (p + 1)E(0),

we can conclude lim
t→Tmax

I(u(t)) = −∞, which implies there exists a t0 ∈ [0, Tmax), such that

J(u(t0)) ≤ E(u(t0)) < d, I(u(t0)) < 0.

The proof of Theorem 5.1 is then complete.

EJQTDE, 2009 No. 39, p. 13



Remark 5.3 As a byproduct of our proof, it is clear that under the restrictions on m and p, Tmax <

∞ if and only if E(t) → −∞ as t → Tmax. In particular, the blow up has a full characterization in

terms of negative energy blow up.

Remark 5.4 It can be observed from the proof that the condition m < p was given for necessity,

and p < 2(m + 1)/N + 1 was given for sufficiency.

6 Exponential Decay

In what follows, we shall assume, without loss of generality, that ω = µ = 1.

Theorem 6.1 Suppose that max{m, p} ≤ N+2
N−2 , u0 ∈ N+ and u0, u1 satisfies

α , Cp+1
p+1

(

2(p + 1)

p − 1
E(0)

)
p−1

2

< 1. (6.1)

Then there exist positive constants C and β such that the global solution to problem (1.1) satisfies

E(t) ≤ Ce−βt.

Lemma 6.2 Under the assumptions of Theorem 6.1, we have for all t ≥ 0, u(t) ∈ N+.

Proof . Since I(u0) > 0, there exists a T > 0, such that I(u(t)) ≥ 0 for all t ∈ [0, T ), which tells

J(u(t)) =
1

2
‖∇u(t)‖2

2 −
1

p + 1
‖u(t)‖p+1

p+1

≥
p − 1

2(p + 1)
‖∇u(t)‖2

2 ∀ t ∈ [0, T ). (6.2)

Therefore,

‖∇u(t)‖2
2 ≤

2(p + 1)

p − 1
J(u(t)) ≤

2(p + 1)

p − 1
E(u(t)) ≤

2(p + 1)

p − 1
E(0) ∀ t ∈ [0, T ). (6.3)

The Sobolev embedding theorem entails

‖u(t)‖p+1
p+1 ≤ Cp+1

p+1‖∇u(t)‖p+1
2 = Cp+1

p+1‖∇u(t)‖2
2C

p+1
p+1‖∇u(t)‖p−1

2

≤ Cp+1
p+1

(

2(p + 1)

p − 1
E(0)

)
p−1

2

‖∇u(t)‖2
2

= α‖∇u(t)‖2
2 < ‖∇u(t)‖2

2 ∀ t ∈ [0, T ), (6.4)

which implies u(t) ∈ N+, ∀ t ∈ [0, T ). Note that lim
t→T

Cp+1
p+1(2(p+1)

p−1 E(u(t), ut(t)))
p−1

2 ≤ α, we can

repeat the procedure and extend T to 2T , by continuing the argument and the lemma is so proved.

Proof of Theorem 6.1. We modify the function defined in Section 3 as follows

G(t) , ε

(

(u(t), ut(t)) +
1

2
‖∇u(t)‖2

2

)

+ E(t).

We shall prove, for ε sufficiently small, there exist two positive constants c1 and c2 such that

c1E(t) ≤ G(t) ≤ c2E(t). (6.5)
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Actually,

G(t) ≤ E(t) +
ε

2
(‖ut(t)‖

2
2 + ‖u(t)‖2

2 + ‖∇u(t)‖2
2)

≤ (1 + ε)E(t) +
ε

2

(

1 +
1

λ1

)

‖∇u(t)‖2
2

≤ (1 + ε)E(t) +
ε

2

(

1 +
1

λ1

)

2(p + 1)

p − 1
E(t) , c2E(t),

and

G(t) ≥ E(t) − ε

{

δ‖u(t)‖2
2 +

1

4δ
‖ut(t)‖

2
2

}

+
ε

2
‖∇u(t)‖2

2

≥ E(t) −
ε

4δ
‖ut(t)‖

2
2 + ε

(

1

2
−

δ

λ1

)

‖∇u(t)‖2
2.

Take δ = ε, then choose ε small enough , we see there exists a c1 > 0, such that G(t) ≥ c1(t).

By Poincaré inequality and keeping in mind the energy equality (2.1), one obtains

G′(t) = −(‖ut(t)‖
m+1
m+1 + ‖∇u(t)‖2

2)

+ε

(

‖ut(t)‖
2
2 − ‖∇u(t)‖2

2 −

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx + ‖u(t)‖p+1
p+1

)

≤ −‖ut(t)‖
m+1
m+1 −

(

1 −
ε

λ1

)

‖∇u(t)‖2
2 − ε‖∇u(t)‖2

2

−ε

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx + ε‖u(t)‖p+1
p+1 (6.6)

To estimate the integral
∫

Ω |ut(t)|
m−1ut(t)u(t)dx, we use (6.3), Poincaré and Young’s inequality

∫

Ω
|ut(t)|

m−1ut(t)u(t)dx ≤ δ‖u(t)‖m+1
m+1 + C(δ)‖ut(t)‖

m+1
m+1

≤ δC0‖∇u(t)‖m+1
2 + C(δ)‖ut(t)‖

m+1
m+1

= δC0‖∇u(t)‖2
2‖∇u(t)‖m−1

2 + C(δ)‖ut(t)‖
m+1
m+1

≤ δC0

(

2(p + 1)

p − 1
E(0)

)
m−1

2 2(p + 1)

p − 1
E(t) + C(δ)‖ut(t)‖

m+1
m+1

≤ δCE(t) + C(δ){‖ut(t)‖
m+1
m+1 + ‖∇ut(t)‖

2
2}.

To estimate the norm ‖u(t)‖p+1
p+1 use Lemma 6.2 to obtain for some 0 < λ < 1

‖u(t)‖p+1
p+1 = λ‖u(t)‖p+1

p+1 + (1 − λ)‖u(t)‖p+1
p+1

≤ λ

(

p + 1

2
‖ut(t)‖

2
2 +

p + 1

2
‖∇u(t)‖2

2 − (p + 1)E(t)

)

+ (1 − λ)α‖∇u(t)‖2
2.
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Then (6.6) turns into

G′(t) ≤ −‖ut(t)‖
m+1
m+1 −

(

1 −
ε

λ1

)

‖∇u(t)‖2
2 − ε‖∇u(t)‖2

2 + εδCE(t)

+εδC{‖ut(t)‖
m+1
m+1 + ‖∇ut(t)‖

2
2} + (1 − λ)εα‖∇u‖2

2

+λε

(

p + 1

2
‖ut(t)‖

2
2 +

p + 1

2
‖∇u(t)‖2

2 − (p + 1)E(t)

)

≤ −(1 − εC(δ))‖ut(t)‖
m+1
m+1 −

[

1 − ε

(

1

λ1
+ C(δ) +

λ

λ1

p + 1

2

)]

‖∇ut(t)‖
2
2

−ε[λ(p + 1) − δC]E(t) + ε

[

(1 − λ)α +
λ(p + 1)

2
− 1

]

‖∇u‖2
2,

take γ = 1 − α in the above inequality, one obtains

G′(t) ≤ −(1 − εC(δ))‖ut(t)‖
m+1
m+1 −

[

1 − ε

(

1

λ1
+ C(δ) +

λ

λ1

p + 1

2

)]

‖∇ut(t)‖
2
2

−ε[λ(p + 1) − δC]E(t) + ε

[

p − 1

2
λ − γ(1 − λ)

]

‖∇u(t)‖2
2.

By taking λ close to 1, so that (p − 1)λ/2 − γ(1 − λ) > 0, in view of (6.3), we obtain

G′(t) ≤ −(1 − εC(δ))‖ut(t)‖
m+1
m+1 −

[

1 − ε

(

1

λ1
+ C(δ) +

λ

λ1

p + 1

2

)]

‖∇ut(t)‖
2
2

−ε[λ(p + 1) − δC]E(t) + ε

[

(p + 1)λ −
2(p + 1)

p − 1
γ(1 − λ)

]

E(t)

= −(1 − εC(δ))‖ut(t)‖
m+1
m+1 −

[

1 − ε

(

1

λ1
+ C(δ) +

λ

λ1

p + 1

2

)]

‖∇ut(t)‖
2
2

−ε

[

2(p + 1)

p − 1
γ(1 − λ) − δC

]

E(t) (6.7)

Then we choose δ small enough to guarantee

2(p + 1)

p − 1
γ(1 − λ) − δC > 0.

For this chosen δ, take ε sufficiently small to satisfy

1 − εC(δ) ≥ 0, 1 − ε

(

1

λ1
+ C(δ) +

λ

λ1

p + 1

2

)

> 0,

we reach the following differential inequality

G′(t) ≤ −
ε

c1

(

2(p + 1)

p − 1
γ(1 − λ) − δC

)

G(t).

A simple integration yields

E(t) ≤
1

c1
G(t) ≤

1

c1
G(0)e−βt , Ce−βt

where β = ε
c1

(γ 2(p+1)
p−1 (1 − λ) − δC). The proof is complete.
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