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1. INTRODUCTION

Many results have been obtained for periodic solutions of Volterra integral equations

(for instance, [1-3] and references cited therein). Here we consider two systems of neutral

integral equations

x(t) = a(t) +
∫ t

0
D(t, s, x(s))ds+

∫

∞

t
E(t, s, x(s))ds, t ∈ R+ (1)

and

x(t) = p(t) +
∫ t

−∞

P (t, s, x(s))ds+
∫

∞

t
Q(t, s, x(s))ds, t ∈ R, (2)

where a, p, D, P, E and Q are at least continuous. Under suitable conditions, if φ is

a given Rn-valued bounded and continuous initial function on [0, t0) or (−∞, t0), then

both Eq.(1) and Eq.(2) have solutions denoted by x(t, t0, φ) with x(t, t0, φ) = φ(t) for

t < t0, satisfying Eq.(1) or Eq.(2) on [t0,∞). (cf. Burton-Furumochi [4].) A solution

x(t, t0, φ) may have a discontinuity at t0.

Concerning our contribution here, we first present two lemmas and then show that if

Eq.(1) has an asymptotically T -periodic solution, then Eq.(2) has a T -periodic solution.

Next, we use Schauder’s fixed point theorem to show that Eq.(1) has an asymptoti-

cally T -periodic solution, thus yielding a T -periodic solution of Eq.(2).

We also infer directly that Eq.(2) has T -periodic solutions using Schauder’s fixed

point theorem and growth conditions on P and Q.
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Finally, we give two theorems establishing relations between solutions of Equations

(1) and (2).

2. PRELIMINARIES

Consider the systems of neutral integral equations (1) and (2), where R+ := [0,∞),

R := (−∞,∞), and a : R+ → Rn, p : R → Rn, D : ∆− × Rn → Rn, P : ∆− ×

Rn → Rn, E : ∆+ × Rn → Rn, and Q : ∆+ × Rn → Rn are continuous, and where

∆− := {(t, s) : s ≤ t} and ∆+ := {(t, s : s ≥ t}. Throughout this paper suppose that:

q(t) := a(t) − p(t) → 0 as t→ ∞, and p(t) is T -periodic, (3)

where q : R+ → Rn, and T > 0 is constant,

F (t, s, x) := D(t, s, x) − P (t, s, x), and P (t+ T, s+ T, x) = P (t, s, x), (4)

where F : ∆− × Rn → Rn,

G(t, s, x) := E(t, s, x) −Q(t, s, x), and Q(t+ T, s+ T, x) = Q(t, s, x), (5)

where G : ∆+×Rn → Rn. Moreover, we suppose that for any J > 0 there are continuous

functions PJ , FJ : ∆− → R+ and QJ , GJ : ∆+ → R+ such that:

PJ(t + T, s+ T ) = PJ(t, s) if s ≤ t,

QJ(t + T, s+ T ) = QJ(t, s) if s ≥ t,

|P (t, s, x)| ≤ PJ(t, s) if s ≤ t and |x| ≤ J,

where | · | denotes the Euclidean norm of Rn;

|Q(t, s, x)| ≤ QJ(t, s) if s ≥ t and |x| ≤ J,

|F (t, s, x)| ≤ FJ(t, s) if s ≤ t and |x| ≤ J,

|G(t, s, x)| ≤ GJ(t, s) if s ≥ t and |x| ≤ J,

∫ t−τ

−∞

PJ(t, s)ds+
∫

∞

t+τ
(QJ(t, s) +GJ(t, s))ds→ 0 uniformly for t ∈ R as τ → ∞, (6)

and
∫ t

0
FJ(t, s)ds+

∫

∞

t
GJ(t, s)ds→ 0 as t→ ∞. (7)

In this paper, we discuss the existence of periodic and asymptotically periodic solu-

tions of Equations (1) and (2) by using the following theorem.

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 10, p. 2



Theorem 1 (Schauder’s first theorem). Let (C, ‖ · ‖) be a normed space, and let

S be a compact convex nonempty subset of C. Then every continuous mapping of S into

S has a fixed point.

Schauder’s second theorem deletes the compactness of S and asks that the map be

compact (cf. Smart [5; p. 25]).

3. ASYMPTOTICALLY PERIODIC SOLUTIONS OF (1)

For any t0 ∈ R+, let C(t0) be a set of bounded functions ξ : R+ → Rn such that ξ(t)

is continuous on R+ except at t0, and ξ(t0) = ξ(t0+). For any ξ ∈ C(t0), define ‖ξ‖+ by

‖ξ‖+ := sup{|ξ(t)| : t ∈ R+}.

Then clearly ‖ · ‖+ is a norm on C(t0), and (C(t0), ‖ · ‖+) is a Banach space. For any

ξ ∈ C(t0) define a map H on C(t0) by

(Hξ)(t) :=







ξ(t), 0 ≤ t < t0

a(t) +
∫ t
0 D(t, s, ξ(s))ds+

∫

∞

t E(t, s, ξ(s))ds, t ≥ t0.

Moreover, for any J > 0 let CJ(t0) := {ξ ∈ C(t0) : ‖ξ‖+ ≤ J}.

Definition 1 A function ξ : R+ → Rn is said to be asymptotically T -periodic if

ξ = ψ + µ such that ψ : R → Rn is continuous T -periodic, µ ∈ C(t0) for some t0 ∈ R+,

and µ(t) → 0 as t→ ∞.

First we have the following lemmas.

Lemma 1 If (3)-(7) hold, then for any t0 ∈ R+ and any J > 0 there is a continuous

increasing positive function δ = δt0 ,J(ε) : (0,∞) → (0,∞) with

|(Hξ)(t1) − (Hξ)(t2)| ≤ ε if ξ ∈ CJ(t0) and t0 ≤ t1 < t2 < t1 + δ. (8)

Proof For any ξ ∈ CJ(t0), t1 and t2 with t0 ≤ t1 < t2 we have

|(Hξ)(t1) − (Hξ)(t2)|

≤ |a(t1) − a(t2)| + |
∫ t1

0
D(t1, s, ξ(s))ds−

∫ t2

0
D(t2, s, ξ(s))ds|
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+|
∫

∞

t1

E(t1, s, ξ(s))ds−
∫

∞

t2

E(t2, s, ξ(s))ds|

≤ |a(t1) − a(t2)| +
∫ t1

0
|P (t1, s, ξ(s)) − P (t2, s, ξ(s))|ds (9)

+
∫ t1

0
|F (t1, s, ξ(s)) − F (t2, s, ξ(s))|ds+

∫ t2

t1

FJ(t2, s)ds

+
∫ t2

t1

QJ(t1, s)ds+
∫

∞

t2

|Q(t1, s, ξ(s))−Q(t2, s, ξ(s))|ds

+
∫ t2

t1

GJ(t1, s)ds+
∫

∞

t2

|G(t1, s, ξ(s)) −G(t2, s, ξ(s))|ds.

Since a(t) is uniformly continuous on R+ from (3), for any ε > 0 there is a δ > 0 with

|a(t1) − a(t2)| ≤
ε

9
if t0 ≤ t1 < t2 < t1 + δ1. (10)

From (6), for the ε there is a τ1 > max(t0, 1) with

∫ t−τ1

−∞

PJ(t, s)ds ≤
ε

27
if t ∈ R. (11)

Since P (t, s, x) is uniformly continuous on U1 := {(t, s, x) : t− 2τ1 ≤ s ≤ t and |x| ≤ J},

for the ε there is a δ2 such that 0 < δ2 < 1 and

|P (t1, s, x) − P (t2, s, x)| ≤
ε

27τ1
if (t1, s, x), (t2, s, x) ∈ U1 and |t1 − t2| < δ2. (12)

From (11) and (12), if τ1 ≤ t1 < t2 < t1 + δ2, then we have

∫ t1

0
|P (t1, s, ξ(s))− P (t2, s, ξ(s))|ds

≤
∫ t1−τ1

−∞

PJ(t1, s)ds+
∫ t1−τ1

−∞

PJ(t2, s)ds (13)

+
∫ t1

t1−τ1

|P (t1, s, ξ(s)) − P (t2, s, ξ(s))|ds ≤
ε

9
.

On the other hand, if t0 ≤ t1 < τ1 and t1 < t2 < t1 + δ2, then from (12) we obtain

∫ t1

0
|P (t1, s, ξ(s)) − P (t2, s, ξ(s))|ds ≤

ε

27
,

which together with (13), implies

∫ t1

0
|P (t1, s, ξ(s)) − P (t2, s, ξ(s))|ds ≤

ε

9
if t0 ≤ t1 < t2 < t1 + δ2. (14)
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Now let α := sup{PJ(t, s) : t − 1 ≤ s ≤ t}. Then, for the ε there is a δ3 such that

0 < δ3 < min(ε/9α, 1) and

∫ t2

t1

PJ(t2, s)ds ≤
ε

9
if t0 ≤ t1 < t2 < t1 + δ3. (15)

Next from (7), for the ε there is a τ2 > max(t0, 1) with

∫ t

0
FJ(t, s)ds ≤

ε

18
if t ≥ τ2, (16)

which yields
∫ t1

0
|F (t1, s, ξ(s))− F (t2, s, ξ(s))|ds

≤
∫ t1

0
FJ(t1, s)ds+

∫ t1

0
FJ(t2, s)ds (17)

≤
ε

9
if τ2 ≤ t1 < t2.

On the other hand, since F (t, s, x) is uniformly continuous on U2 := {(t, s, x) : 0 ≤ s ≤

t ≤ τ2 + 1 and |x| ≤ J}, for the ε there is a δ4 such that 0 < δ4 < 1 and

|F (t1, s, x) − F (t2, s, x)| ≤
ε

9τ2
if (t1, s, x), (t2, s, x) ∈ U2 and |t1 − t2| < δ4,

which together with (17), implies

∫ t1

0
|F (t1, s, ξ(s)) − F (t2, s, ξ(s))|ds ≤

ε

9
if t0 ≤ t1 < t2 < t1 + δ4. (18)

Now let β := sup{FJ(t, s) : 0 ≤ s ≤ t ≤ τ2 + 1}. Then, for the ε there is a δ5 such that

0 < δ5 < min(ε/9β, 1) and

∫ t2

t1

FJ(t2, s)ds ≤
ε

9
if t2 < τ2 and t0 ≤ t1 < t2 < t1 + δ5,

which together with (16), implies

∫ t2

t1

FJ(t2, s)ds ≤
ε

9
if t0 ≤ t1 < t2 < t1 + δ5. (19)

Similarly let γ := sup{QJ(t, s) : t − 1 ≤ s ≤ t}. Then, for the ε there is a δ6 such that

0 < δ6 < min(ε/9γ, 1) and

∫ t2

t1

QJ(t, s)ds ≤
ε

9
if t0 ≤ t1 < t2 < t1 + δ6. (20)

Next from (6), for the ε there is a τ3 > max(t0, 1) with
∫

∞

t+τ3

QJ(t, s)ds ≤
ε

27
if t ∈ R. (21)
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Since Q(t, s, x) is uniformly continuous on U3 := {(t, s, x) : t ≤ s ≤ t+2τ3 and |x| ≤ J},

for the ε there is a δ7 such that 0 < δ7 < 1 and

|Q(t1, s, x) −Q(t2, s, x)| ≤
ε

27τ3
if (t1, s, x), (t2, s, x) ∈ U3 and |t1 − t2| < δ7,

which together with (21), implies
∫

∞

t2

|Q(t1, s, ξ(s))−Q(t2, s, ξ(s))|ds

≤
∫ t2+τ3

t2

|Q(t1, s, ξ(s))−Q(t2, s, ξ(s))|ds+
∫

∞

t2+τ3

QJ(t1, s)ds+
∫

∞

t2+τ3

QJ(t2, s)ds (22)

≤
ε

9
if t0 ≤ t1 < t2 < t1 + δ7.

Now from (7), for the ε there is a τ4 > max(t0, 1) with
∫

∞

t
GJ(t, s)ds ≤

ε

9
if t ≥ τ4. (23)

Let δ := sup{QJ(t, s) : 0 ≤ t ≤ s ≤ τ4 + 1}. Then, for the ε there is a δ8 such that

0 < δ8 < min(ε/9δ, 1) and

∫ t2

t1

GJ(t1, s)ds ≤
ε

9
if t1 < τ4 and t0 ≤ t1 < t2 < t1 + δ8,

which together with (23), implies

∫ t2

t1

GJ(t1, s)ds ≤
ε

9
if t0 ≤ t1 < t2 < t1 + δ8. (24)

Finally from (6), for the ε there is a τ5 > max(t0, 1) with
∫

∞

t+τ5

GJ(t, s)ds ≤
ε

27
if t ∈ R. (25)

Since G(t, s, x) is uniformly continuous on U4 := {(t, s, x) : 0 ≤ t ≤ s ≤ t+ τ5 and |x| ≤

J}, for the ε there is a δ9 such that 0 < δ9 < 1 and

|G(t1, s, x) −G(t2, s, x)| ≤
ε

27τ5
if (t1, s, x), (t2, s, x) ∈ U4 and |t1 − t2| < δ9,

which together with (25), implies
∫

∞

t2

|G(t1, s, ξ(s))−G(t2, s, ξ(s))|ds

≤
∫ t2+τ5

t2

|G(t1, s, ξ(s)) −G(t2, s, ξ(s))|ds+
∫

∞

t2+τ5

GJ(t1, s)ds+
∫

∞

t2+τ5

GJ(t2, s)ds (26)
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≤
ε

9
if t0 ≤ t1 < t2 < t1 + δ9.

Thus, from (9), (10), (14), (15), (18)-(20), (22), (24) and (26), for the δ∗ := min{δi : 1 ≤

i ≤ 9} we have (8) with δ = δ∗. Since we may assume that δ∗ is nondecreasing, we can

easily conclude that there is a continuous increasing function δ = δt0.J : (0,∞) → (0,∞)

which satisfies (8).

Lemma 2 If (3)-(7) hold, then for any asymptotically T -periodic function ξ(t) on R+

such that ξ(t) = π(t) + ρ(t), ξ, ρ ∈ C(t0) for some t0 ∈ R+, π(t+T ) = π(t) on R+ and

ρ(t) → 0 as t→ ∞, the function

I(t) :=
∫ t

0
D(t, s, ξ(s))ds+

∫

∞

t
E(t, s, ξ(s))ds, t ∈ R+

is continuous, asymptotically T -periodic, and the T -periodic part of I(t) is given by
∫ t
−∞

P (t, s, π(s))ds+
∫

∞

t Q(t, s, π(s))ds.

Proof By (4)-(7), one can easily check that the functions d(t) :=
∫ t
0 D(t, s, ξ(s))ds,

φ(t) :=
∫ t
−∞

P (t, s, π(s))ds, e(t) :=
∫

∞

t E(t, s, ξ(s))ds and ψ(t) :=
∫

∞

t Q(t, s, π(s))ds

belong to the space C(t0) and that φ(t) and ψ(t) are T -periodic. Therefore, in order to

establish the lemma, it is sufficient to show that d(t)− φ(t) and e(t)− ψ(t) tend to 0 as

t→ ∞. Let J > 0 be a number with ‖ξ‖+ ≤ J . Then clearly we have ‖π‖+ ≤ J .

First we prove that d(t) − φ(t) → 0 as t → ∞. From (6), for any ε > 0 there is a

τ1 > 0 with
∫ t−τ1

−∞

PJ(t, s)ds < ε if t ∈ R.

Then, for t ≥ τ1 we have

|d(t) − φ(t)| = |
∫ t

0
P (t, s, ξ(s))ds−

∫ t

−∞

P (t, s, π(s))ds+
∫ t

0
F (t, s, ξ(s))ds|

≤
∫ t−τ1

0
PJ(t, s)ds+

∫ t−τ1

−∞

PJ(t, s)ds+
∫ t

t−τ1

|P (t, s, ξ(s))−P (t, s, π(s))|ds+
∫ t

0
FJ(t, s)ds

< 2ε+
∫ t

t−τ1

|P (t, s, ξ(s))− P (t, s, π(s))|ds+
∫ t

0
FJ(t, s)ds.

Since P (t, s, x) is uniformly continuous on U1 := {(t, s, x) : t− τ1 ≤ s ≤ t and |x| ≤ J},

for the ε there is a δ1 > 0 with

|P (t, s, x) − P (t, s, y)| <
ε

τ1
if (t, s, x), (t, s, y) ∈ U1 and |x− y| < δ1.

Moreover, since ρ(t) → 0 as t→ ∞, for the δ1 there is a τ2 > 0 with

|ρ(t)| = |ξ(t) − π(t)| < δ1 if t ≥ τ2.
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By (7), we may assume that

∫ t

0
FJ(t, s)ds < ε if t ≥ τ2.

Hence, if t ≥ τ1 + τ2, then |d(t)−φ(t)| < 4ε. This proves that d(t)−φ(t) → 0 as t→ ∞.

Next we prove that e(t) − ψ(t) → 0 as t → ∞. From (6), for any ε > 0 there is a

τ3 > 0 with
∫

∞

t+τ3

QJ(t, s)ds < ε if t ∈ R.

Then, for t ≥ τ3 we obtain

|e(t) − ψ(t)| = |
∫

∞

t
Q(t, s, ξ(s))ds+

∫

∞

t
G(t, s, ξ(s))ds−

∫

∞

t
Q(t, s, ψ(s))ds|

≤ 2
∫

∞

t+τ3

QJ(t, s)ds+
∫ t+τ3

t
|Q(t, s, ξ(s))−Q(t, s, ψ(s))|ds+

∫

∞

t
GJ(t, s)ds

< 2ε+
∫ t+τ3

t
|Q(t, s, ξ(s)) −Q(t, s, ψ(s))|ds+

∫

∞

t
GJ(t, s)ds.

Since Q(t, s, x) is uniformly continuous on U2 := {(t, s, x) : t ≤ s ≤ t + τ3 and |x| ≤ J},

for the ε there is a δ2 > 0 with

|Q(t, s, x) −Q(t, s, y)| <
ε

τ3
if (t, s, x), (t, s, y) ∈ U2 and |x− y| < δ2.

Moreover, since ρ(t) → 0 as t→ ∞, for the δ2 there is a τ4 > 0 with

|ρ(t)| = |ξ(t) − π(t)| < δ2 if t ≥ τ4.

By (7), we may assume that
∫

∞

t
GJ(t, s)ds < ε if t ≥ τ4.

Hence, if t ≥ τ3 + τ4, then |e(t)−ψ(t)| < 4ε. This proves that e(t)−ψ(t) → 0 as t→ ∞.

Now we have the following theorem.

Theorem 2 If (3)-(7) hold, and if Eq.(1) has an asymptotically T -periodic solution

with an initial time t0 in R+, then the T -periodic extension to R of its T -periodic part is

a T -periodic solution of Eq.(2). In particular, if the asymptotically T -periodic solution

of Eq.(1) is asymptotically constant, then Eq.(2) has a constant solution.

Proof Let x(t) be an asymptotically T -periodic solution of Eq.(1) with an initial time

t0 ∈ R+ such that x(t) = y(t) + z(t), x, y ∈ C(t0), y(t+ T ) = y(t) on R+ and z(t) → 0

as t→ ∞. Then we have

y(t) + z(t) = p(t) + q(t) +
∫ t

0
D(t, s, x(s))ds+

∫

∞

t
E(t, s, x(s))ds, t ≥ t0. (27)
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From Lemma 2, taking the T -periodic part of the both sides of (27) we obtain

y(t) = p(t) +
∫ t

−∞

P (t, s, y(s))ds+
∫

∞

t
Q(t, s, y(s))ds, t ≥ t0.

From this, it is easy to see that y(t) is a T -periodic solution of Eq.(2). The latter part

follows easily from the above conclusion.

In order to prove the existence of an asymptotically T -periodic solution of Eq.(1) us-

ing Schauder’s first theorem, we need more assumptions. In addition to (3)-(7), suppose

that for some t0 ∈ R+ and J > 0 the inequality

‖a‖t0 +
∫ t

0
(PJ(t, s) + FJ(t, s))ds+

∫

∞

t
(QJ(t, s) +GJ(t, s))ds ≤ J if t ≥ t0 (28)

holds, where ‖a‖t0 := sup{|a(t)| : t ≥ t0}, and that there are continuous functions L−

J :

∆− → R+, L+
J : ∆+ → R+ and qJ : [t0.∞) → R+ such that L−

J (t+ T, s + T ) = L−

J (t, s)

and L+
J (t+ T, s+ T ) = L+

J (t, s) satisfying:

|P (t, s, x) − P (t, s, y)| ≤ L−

J (t, s)|x− y| if (t, s) ∈ ∆−, |x| ≤ J and |y| ≤ J ; (29)

|Q(t, s, x) −Q(t, s, y)| ≤ L+
J (t, s)|x− y| if (t, s) ∈ ∆+, |x| ≤ J and |y| ≤ J ; (30)

qJ(t) → 0 as t→ ∞; (31)

and

|q(t)| +
∫ t0

−∞

PJ(t, s)ds+
∫ t0

0
PJ(t, s)ds+

∫ t

0
FJ(t, s)ds

+
∫ t

t0

L−

J (t, s)qJ(s)ds+
∫

∞

t
L+

J (t, s)qJ(s)ds+
∫

∞

t
GJ(t, s)ds (32)

≤ qJ(t) if t ≥ t0.

Then we have the following theorem.

Theorem 3 If (3)-(7) and (28)-(32) hold for some t0 ∈ R+ and J > 0, then for

any continuous initial function φ0 : [0, t0) → Rn with sup{|φ0(s)| : 0 ≤ s < t0} ≤ J ,

Eq.(1) has an asymptotically T -periodic solution x(t) = y(t) + z(t) such that x, y ∈

CJ(t0), y(t + T ) = y(t) on R+, x(t) satisfies Eq.(1) and |z(t)| ≤ qJ(t) on [t0,∞), and

the T -periodic extension to R of y(t) is a T -periodic solution of Eq.(2).
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Proof Let S be a set of functions ξ ∈ CJ(t0) such that ξ = π + ρ, π ∈ CJ(t0), ξ(t) =

φ0(t) on [0, t0), π(t+ T ) = π(t) on R+ and

|ρ(t)| ≤ qJ(t) if t ≥ t0, (33)

and that for the function δ = δt0 ,J(ε) in (8), |ξ(t1) − ξ(t2)| ≤ ε if t0 ≤ t1 < t2 < t1 + δ.

First we prove that S is a compact convex nonempty subset of C(t0). Since any

ξ ∈ CJ(t0) such that ξ(t) = φ0(t) on [0, t0) and ξ(t) ≡ ξ(t0) on [t0,∞) is contained in S,

S is nonempty. Clearly S is a convex subset of C(t0). In order to prove the compactness

of S, let {ξk} be an infinite sequence in S such that ξk = πk+ρk, πk ∈ CJ(t0), πk(t+T ) =

πk(t) on R+ and |ρk(t)| ≤ qJ(t) on [t0,∞). From the definition of S, if k, l ∈ N and

t0 ≤ t1 < t2 < t1 + δ, then we have

|πk(t1) − πk(t2)| = |πk(t1 + lT ) − πk(t2 + lT )|

≤ |ξk(t1 + lT ) − ξk(t2 + lT )| + |ρk(t1 + lT ) − ρk(t2 + lT )|

≤ ε+ qJ(t1 + lT ) + qJ(t2 + lT ).

This implies |πk(t1) − πk(t2)| ≤ ε by letting l → ∞, where N is the set of positive

integers and δ = δt0,J(ε) is the function in (8). Hence the sets of functions {πk} and

{ρk} are uniformly bounded and equicontinuous on [t0,∞). Thus, taking a subsequence

if necessary, we may assume that the sequence {πk} converges to a π ∈ CJ(t0) uniformly

on R+, and the sequence {ρk} converges to a ρ ∈ C(t0) uniformly on any compact subset

of R+. Clearly π(t) is T -periodic on R+, and ρ(t) satisfies (33), and hence the sequence

{ξk} converges to the asymptotically T -periodic function ξ := π + ρ uniformly on any

compact subset of R+ as k → ∞. It is clear that ξ ∈ S. Now we show that ‖ρk‖+ → 0

as k → ∞. From (31), for any ε > 0 there is a τ ≥ t0 with

qJ(t) <
ε

2
if t ≥ τ,

which yields

|ρk(t) − ρ(t)| ≤ 2qJ(t) < ε if k ∈ N and t ≥ τ. (34)

On the other hand, since {ρk(t)} converges to ρ(t) uniformly on [0, τ ] as k → ∞, for the

ε there is a κ ∈ N with

|ρk(t) − ρ(t)| < ε if k ≥ κ and 0 ≤ t ≤ τ,

which together with (34), implies ‖ρk − ρ‖+ < ε if k ≥ κ. This yields ‖ρk − ρ‖+ → 0 as

k → ∞, and hence, ‖ξk − ξ‖+ → 0 as k → ∞. Thus S is compact.
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Next we prove that H maps S into S continuously. For any ξ ∈ S such that ξ =

π + ρ, π ∈ CJ(t0), π(t + T ) = π(t) on R+ and |ρ(t)| ≤ qJ(t) on [t0,∞), let φ := Hξ.

Then from (28), for t ≥ t0 we have

|φ(t)| ≤ |a(t)|+
∫ t

0
(|P (t, s, ξ(s))|+|F (t, s, ξ(s))|)ds+

∫

∞

t
(|Q(t, s, ξ(s))|+|G(t, s, ξ(s))|)ds

≤ ‖a‖t0 +
∫ t

0
(PJ(t, s) + FJ(t, s))ds+

∫

∞

t
(QJ(t, s) +GJ(t, s))ds ≤ J,

which together with ξ ∈ CJ(t0) and Lemma 1, implies that φ ∈ CJ(t0). Now from

Lemma 2, φ has the unique decomposition φ = ψ + µ, ψ ∈ CJ(t0), ψ(t + T ) = ψ(t) on

R+, and µ(t) → 0 as t→ ∞, where the restriction of µ(t) on [t0,∞) is given by

µ(t) := q(t) −
∫ t0

−∞

P (t, s, π(s))ds

+
∫ t0

0
P (t, s, ξ(s))ds+

∫ t

0
F (t, s, ξ(s))ds+

∫ t

t0

(P (t, s, ξ(s))− P (t, s, π(s)))ds

+
∫

∞

t
(Q(t, s, ξ(s)) −Q(t, s, π(s)))ds+

∫

∞

t
G(t, s, ξ(s))ds, t ≥ t0.

Thus from (32), for t ≥ t0 we obtain

|µ(t)| ≤ |q(t)| +
∫ t0

−∞

PJ(t, s)ds+
∫ t0

0
PJ(t, s)ds+

∫ t

0
FJ(t, s)ds

+
∫ t

t0

L−

J (t, s)qJ(s)ds+
∫

∞

t
L+

J (t, s)qJ(s)ds+
∫

∞

t
GJ(t, s)ds ≤ qJ(t).

Moreover, Lemma 1 implies that for the function δ = δt0 ,J(ε) in (8) the inequality

|φ(t1) − φ(t2)| ≤ ε if t0 ≤ t1 < t2 < t1 + δ

holds. Thus H maps S into S. Next we must prove that H is continuous. For any

ξi ∈ S (i = 1, 2) and t ≥ t0 we have

|(Hξ1)(t) − (Hξ2)(t)|

≤
∫ t

0
|D(t, s, ξ1(s)) −D(t, s, ξ2(s))|ds+

∫

∞

t
|E(t, s, ξ1(s)) − E(t, s, ξ2(s))|ds

≤
∫ t

0
|P (t, s, ξ1(s)) − P (t, s, ξ2(s))|ds+

∫ t

0
|F (t, s, ξ1(s)) − F (t, s, ξ2(s))|ds (35)

+
∫

∞

t
|Q(t, s, ξ1(s)) −Q(t, s, ξ2(s))|ds+

∫

∞

t
|G(t, s, ξ1(s)) −G(t, s, ξ2(s))|ds.

From (6), for any ε > 0 there is a τ1 > t0 with

∫ t−τ1

−∞

PJ(t, s)ds <
ε

15
if t ∈ R. (36)
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Since P (t, s, x) is uniformly continuous on U1 := {(t, s, x) : t− τ1 ≤ s ≤ t and |x| ≤ J},

for the ε there is a δ1 > 0 with

|P (t, s, x) − P (t, s, y)| <
ε

15τ1
if (t, s, x), (t, s, y) ∈ U1 and |x− y| < δ1. (37)

From (36) and (37), for the ε we obtain

∫ t

0
|P (t, s, ξ1(s)) − P (t, s, ξ2(s))|ds <

ε

15
if t0 ≤ t < τ1 and ‖ξ1 − ξ2‖+ < δ1, (38)

and if t ≥ τ1 and ‖ξ1 − ξ2‖+ < δ1, then we have

∫ t

0
|P (t, s, ξ1(s)) − P (t, s, ξ2(s))|ds

≤ 2
∫ t−τ1

−∞

PJ(t, s)ds+
∫ t

t−τ1

|P (t, s, ξ1(s)) − P (t, s, ξ2(s))|ds <
ε

5
.

This, together with (38), yields

∫ t

0
|P (t, s, ξ1(s)) − P (t, s, ξ2(s))|ds <

ε

5
if ‖ξ1 − ξ2‖+ < δ1. (39)

Next from (7), for the ε there is a τ2 > 0 with

∫ t

0
FJ(t, s)ds <

ε

10
if t > τ2,

which implies

∫ t

0
|F (t, s, ξ1(s)) − F (t, s, ξ2(s))|ds ≤ 2

∫ t

0
FJ(t, s)ds <

ε

5
if t > τ2. (40)

Since F (t, s, x) is uniformly continuous on U2 := {(t, s, x) : 0 ≤ s ≤ t ≤ τ2 and |x| ≤ J},

for the ε there is a δ2 > 0 with

|F (t, s, x) − F (t, s, y)| <
ε

5τ2
if (t, s, x), (t, s, y) ∈ U2 and |x− y| < δ2,

which yields

∫ t

0
|F (t, s, ξ1(s)) − F (t, s, ξ2(s))ds <

ε

5
if 0 ≤ t ≤ τ2 and ‖ξ1 − ξ2‖+ < δ2.

This together with (40), implies

∫ t

0
|F (t, s, ξ1(s)) − F (t, s, ξ2(s))|ds <

ε

5
if ‖ξ1 − ξ2‖+ < δ2. (41)

Next from (6), for the ε there is a τ3 > 0 with
∫

∞

t+τ3

(QJ(t, s) +GJ(t, s))ds <
ε

10
if t ∈ R,
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which implies
∫

∞

t+τ3

|Q(t, s, ξ1(s)) −Q(t, s, ξ2(s))|ds+
∫

∞

t+τ3

|G(t, s, ξ1(s)) −G(t, s, ξ2(s))|ds <
ε

5
. (42)

Since Q(t, s, x) is uniformly continuous on U3 := {(t, s, x) : t ≤ s ≤ t + τ3 and |x| ≤ J},

for the ε there is a δ3 > 0 with

|Q(t, s, x) −Q(t, s, y)| <
ε

5τ3
if (t, s, x), (t, s, y) ∈ U3 and |x− y| < δ3,

which yields

∫ t+τ3

t
|Q(t, s, ξ1(s)) −Q(t, s, ξ2(s))|ds <

ε

5
if ‖ξ1 − ξ2‖+ < δ3. (43)

Finally from (7), for the ε there is a τ4 > 0 with
∫

∞

t
GJ(t, s)ds <

ε

10
if t > τ4,

which implies

∫ t+τ4

t
|G(t, s, ξ1(s)) −G(t, s, ξ2(s))|ds ≤ 2

∫

∞

t
GJ(t, s)ds <

ε

5
if t > τ4. (44)

Since G(t, s, x) is uniformly continuous on U4 := {(t, s, x) : 0 ≤ t ≤ s ≤ t+ τ4 and |x| ≤

J}, for the ε there is a δ4 > 0 with

|G(t, s, x) −G(t, s, y)| <
ε

5τ4
if (t, s, x), (t, s, y) ∈ U4 and |x− y| < δ4,

which yields

∫ t+τ4

t
|G(t, s, ξ1(s)) −G(t, s, ξ2(s))|ds <

ε

5
if 0 ≤ t ≤ τ4 and ‖ξ1 − ξ2‖+ < δ4.

This, together with (44), implies

∫ t+τ4

t
|G(t, s, ξ1(s)) −G(t, s, ξ2(s))|ds <

ε

5
if ‖ξ1 − ξ2‖+ < δ4. (45)

Thus, from (35), (39), (41)-(43) and (45), for the δ := min(δ1, δ2, δ3, δ4) we obtain

‖Hξ1 −Hξ2‖+ < ε if ξ1, ξ2 ∈ S and ‖ξ1 − ξ2‖+ < δ,

and hence H is continuous.

Now, applying Theorem 1, H has a fixed point in S, which is a desired asymptotically

T -periodic solution of Eq.(1). The latter part is a direct consequence of Theorem 2.

Now we show two examples of a linear equation and a nonlinear equation.
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Example 1. Consider the scalar linear equation

x(t) = p(t) + ρe−t

+
∫ t

0
(e8(s−t) +

1

8
e−t−s)x(s)ds+

∫

∞

t
(e8(t−s) +

1

8
e−t−s)x(s)ds, t ∈ R+, (46)

where p : R → R is a continuous T -periodic function, and ρ is a constant with ‖p‖ +

|ρ| > 0 and 3‖p‖ ≥ 7|ρ|, and where ‖p‖ := sup{|p(t)| : t ∈ R}. Eq.(46) is obtained

from Eq.(1) taking n = 1, a(t) = p(t) + ρe−t, q(t) = ρe−t, D(t, s, x) = (e8(s−t) +

e−t−s/8)x, P (t, s, x) = e8(s−t)x, F (t, s, x) = G(t, s, x) = e−t−sx/8, E(t, s, x) = (e8(t−s) +

e−t−s/8)x, and Q(t, s, x) = e8(t−s)x. For J := 8(‖p‖ + |ρ|)/5, we can take the following

functions as PJ , QJ , FJ , GJ , L
−

J and L+
J :

PJ(t, s) := Je8(s−t) if (t, s) ∈ ∆−;

QJ(t, s) := Je8(t−s) if (t, s) ∈ ∆+;

FJ(t, s) :=
J

8
e−t−s if (t, s) ∈ ∆−;

GJ(t, s) :=
J

8
e−t−s if (t, s) ∈ ∆+;

L−

J (t, s) := e8(s−t) if (t, s) ∈ ∆−;

and

L+
J (t, s) := e8(t−s) if (t, s) ∈ ∆+.

It is easy to see that the above functions satisfy (3)-(7), (29) and (30). Moreover

(28) holds with t0 = 0 for the J , since we have ‖a‖+ ≤ ‖p‖ + |ρ|,
∫ t
0 PJ(t, s)ds <

J/8,
∫ t
0 FJ(t, s)ds+

∫

∞

t GJ(t, s)ds ≤ J/8 and
∫

∞

t QJ(t, s)ds ≤ J/8 on R+. Now define a

function qJ : R+ → R+ by

qJ(t) :=
J

t+ 1
, t ∈ R+.

Clearly (31) holds. We show that (32) holds with t0 = 0. It is easy to see that for any

t ∈ R+ we have

|q(t)| +
∫ 0

−∞

PJ(t, s)ds+
∫ t

0
FJ(t, s)ds

+
∫ t

0
L−

J (t, s)qJ(s)ds+
∫

∞

t
L+

J (t, s)qJ(s)ds+
∫

∞

t
GJ(t, s)ds

≤ (|ρ| +
J

4
)e−t + J

∫ t

0

e8(s−t)

s+ 1
ds+

J

8(t+ 1)
≤ (|ρ| +

J

4
)e−t +

9J

16(t+ 1)

≤
7J

16
e−t +

9J

16(t+ 1)
≤ qJ(t);
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that is, (32) holds with t0 = 0. Thus by Theorem 3, Eq.(46) has an asymptotically

T -periodic solution x(t) = y(t)+ z(t) such that x, y ∈ CJ := CJ(0), y(t+T ) = y(t) and

|z(t)| ≤ qJ(t) on R+, and the T -periodic extension to R of y(t) is a T -periodic solution

of the equation

x(t) = p(t) +
∫ t

−∞

e8(s−t)x(s)ds+
∫

∞

t
e8(t−s)x(s)ds, t ∈ R.

Example 2. Corresponding to Eq.(46), consider the scalar nonlinear equation

x(t) = p(t) + ρe−t

+
∫ t

0
(σe8(s−t) + τe−t−s)x2(s)ds+

∫

∞

t
(σe8(t−s) + τe−t−s)x2(s)ds, t ∈ R+, (47)

where p : R → R is a continuous T -periodic function, and ρ, σ and τ are constants

such that ‖p‖ + |ρ| > 0, (|σ| + 4|τ |)(‖p‖ + |ρ|) < 1, 4|σ|J ≤ 4|ρ||σ| + ‖p‖(5|σ| + 4|τ |),

and 9|σ|J < 8, where J = 2(1 −
√

1 − (|σ| + 4|τ |)(‖p‖ + |ρ|))/(|σ| + 4|τ |). Eq.(47)

is obtained from Eq.(1) taking n = 1, a(t) = p(t) + ρe−t, q(t) = ρe−t, D(t, s, x) =

τe−t−sx2, E(t, s, x) = (σe8(t−s) + τe−t−s)x2, and Q(t, s, x) = σe8(t−s)x2. It is easy to see

that ‖p‖ + |ρ| + (|σ|/4 + |τ |)J2 = J . For this J we can take the following functions as

PJ , QJ , FJ , GJ , L
−

J and L+
J ;

PJ(t, s) := J2|σ|e8(s−t) if (t, s) ∈ ∆−;

QJ(t, s) := J2|σ|e8(t−s) if (t, s) ∈ ∆+;

FJ(t, s) := J2|τ |e−t−s if (t, s) ∈ ∆−;

GJ(t, s) := J2|τ |e−t−s if (t, s) ∈ ∆+;

L−

J (t, s) := 2J |σ|e8(s−t) if (t, s) ∈ ∆−;

and

L+
J (t, s) := 2J |σ|e8(t−s) if (t, s) ∈ ∆+.

It is easy to see that these functions satisfy (3)-(7), (29) and (30). Moreover, by the

choice of J , (28) holds with t0 = 0, since we have ‖a‖+ ≤ ‖p‖ + |ρ|,
∫ t
0 PJ(t, s)ds ≤

J2|σ|/8,
∫ t
0 FJ(t, s)ds+

∫

∞

t GJ(t, s)ds ≤ J2|τ | and
∫

∞

t QJ(t, s)ds ≤ J |σ|2/8 on R+. Now

define a function qJ : R+ → R+ by

qJ(t) :=
J

t+ 1
, t ∈ R+.
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Then clearly (31) holds. We show that (32) holds with t0 = 0. It is easy to see that for

any t ∈ R+ we have

|q(t)| +
∫ 0

−∞

PJ(t, s)ds+
∫ t

0
FJ(t, s)ds

+
∫ t

0
L−

J (t, s)qJ(s)ds+
∫

∞

t
L+

J (t, s)qJ(s)ds+
∫

∞

t
GJ(t, s)ds

≤ (|ρ| +
|σ|

8
J2 + |τ |J2)e−t + 2|σ|J2

∫ t

0

e8(s−t)

s+ 1
ds+

|σ|J2

4(t+ 1)
≤ qJ(t),

that is, (32) holds with t0 = 0. Thus by Theorem 3, Eq.(47) has an asymptotically T -

periodic solution x(t) = y(t)+z(t) such that x, y ∈ CJ , y(t+T ) = y(t) and |z(t)| ≤ qJ(t)

on R+, and the T -periodic extension to R of y(t) is a T -periodic solution of the equation

x(t) = p(t) + σ
∫ t

−∞

e8(s−t)x2(s)ds+ σ
∫

∞

t
e8(t−s)x2(s)ds, t ∈ R.

4. PERIODIC SOLUTIONS

Although Theorem 3 assures the existence of T -periodic solutions of Eq.(2), we can

prove directly the existence of T -periodic solutions of Eq.(2) under weaker assumptions

than those in Theorem 3 using Schauder’s first theorem.

Let (PT , ‖ · ‖) be the Banach space of continuous T -periodic functions ξ : R → Rn

with the supremum norm. For any ξ ∈ PT , define a map H on PT by

(Hξ)(t) := p(t) +
∫ t

−∞

P (t, s, ξ(s))ds+
∫

∞

t
Q(t, s, ξ(s))ds, t ∈ R.

Then, by a method similar to the method used in the proof of Lemma 1, we can prove

the following lemma which we state without proof.

Lemma 3 If (3)-(6) hold with G(t, s, x) ≡ 0, then for any J > 0 there is a continuous

increasing positive function δ = δJ(ε) : (0,∞) → (0,∞) with

|(Hξ)(t1) − (Hξ)(t2)| ≤ ε if ξ ∈ PT , ‖ξ‖ ≤ J and |t1 − t2| < δ. (48)

Now we have the following theorem.

Theorem 4 In addition to (3)-(6) with G(t, s, x) ≡ 0, suppose that for some J > 0

the inequality

‖p‖ +
∫ t

−∞

PJ(t, s)ds+
∫

∞

t
QJ(t, s)ds ≤ J if t ∈ R (49)

holds. Then Eq.(2) has a T -periodic solution x(t) with ‖x‖ ≤ J .
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Proof Let S be a set of functions ξ ∈ PT such that ‖ξ‖ ≤ J and for the function

δ = δJ(ε) in (48), |ξ(t1) − ξ(t2)| ≤ ε if |t1 − t2| < δ.

First we can prove that S is a compact convex nonempty subset of PT by a method

similar to the one used in the proof of Theorem 3.

Next we prove that H maps S into S. For any ξ ∈ S, let φ := Hξ. Then, clearly

φ(t) is T -periodic. In addition, from (49) we have

|φ(t)| ≤ ‖p‖ +
∫ t

−∞

PJ(t, s)ds+
∫

∞

t
QJ(t, s)ds ≤ J if t ∈ R,

and hence ‖φ‖ ≤ J . Moreover, Lemma 3 implies that for the δ in (48) we obtain

|φ(t1) − φ(t2)| ≤ ε if ξ ∈ PT , ‖ξ‖ ≤ J and |t1 − t2| < δ.

Thus H maps S into S.

The continuity of H can be proved similarly as in the proof of Theorem 3.

Finally, applying Theorem 1 we can conclude that H has a fixed point x in S, which

is a T -periodic solution of Equation (2) with ‖x‖ ≤ J .

Remark In addition to the continuity of the map H, we can easily prove that H

maps each bounded set of PT into a compact set of PT . Thus Theorem 4 can be proved

using Schauder’s second theorem.

5. RELATIONS BETWEEN (1) AND (2)

In Theorem 2, we showed a relation between an asymptotically T -periodic solution

of Eq.(1) and a T -periodic solution of Eq.(2). Moreover, concerning relations between

Equations (1) and (2) we have the following theorem.

Theorem 5 Under the assumptions (3)-(7), the following five conditions are equiva-

lent:

(i) Eq.(2) has a T -periodic solution.

(ii) For some q(t), F (t, s, x) ≡ 0 and G(t, s, x) ≡ 0, Eq.(1) has a T -periodic

solution which satisfies (1) on R+.

(iii) For some q(t), F (t, s, x) ≡ 0 and G(t, s, x) ≡ 0, Eq.(1) has an asymptotically

T -periodic solution with an initial time in R+.

(iv) For some q(t), F (t, s, x) and G(t, s, x), Eq.(1) has a T -periodic solution which

satisfies (1) on R+.

(v) For some q(t), F (t, s, x) and G(t, s, x), Eq.(1) has an asymptotically T -periodic

solution with an initial time in R+.
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Proof First we prove that (i) implies (ii). Let π(t) be a T -periodic solution of Eq.(2),

and let

q(t) :=
∫ 0

−∞

P (t, s, π(s))ds, t ∈ R+.

Then, clearly q(t) is continuous and q(t) → 0 as t → ∞. Thus it is easy to see that for

the q(t), F (t, s, x) ≡ 0 and G(t, s, x) ≡ 0, Eq.(1) has a T -periodic solution π(t), which

satisfies (1) on R+.

Next, it is clear that (ii) and (iii) imply (iii) and (v) respectively. Moreover, from

Theorem 2, (v) yields (i).

Finally, since it is trivial that (ii) implies (iv), we prove that (iv) yields (ii). Let ψ(t)

be a T -periodic solution of Eq.(1) with some q(t), F (t, s, x) and G(t, s, x) which satisfies

(1) on R+, and let

r(t) :=
∫ t

0
F (t, s, ψ(s))ds+

∫

∞

t
G(t, s, ψ(s))ds, t ∈ R+.

Then, clearly r(t) is continuous and r(t) → 0 as t → ∞. Thus it is easy to see that for

q(t)+ r(t), F (t, s, x) ≡ 0 and G(t, s, x) ≡ 0, Eq.(1) has a T -periodic solution ψ(t) which

satisfies (1) on R+.

In [4, Burton-Furumochi], we discussed a relation between the equation

x(t) = a(t) +
∫ t

0
P (t, s)x(s)ds+

∫ t

0
F (t, s, x(s))ds

+
∫

∞

t
Q(t, s)x(s)ds+

∫

∞

t
G(t, s, x(s))ds, t ∈ R+ (50)

and the linear equation

x(t) = p(t) +
∫ t

−∞

P (t, s)x(s)ds+
∫

∞

t
Q(t, s)x(s)ds, t ∈ R, (51)

where a, p, F and G satisfy (3)-(7) with PJ = J |P (t, s)| and QJ = J |Q(t, s)|, and where

P : ∆− → Rn×n and Q : ∆+ → Rn×n are continuous functions such that P (t+T, s+T ) =

P (t, s), Q(t + T, s + T ) = Q(t, s),
∫ t−τ
−∞

|P (t, s)|ds +
∫

∞

t+τ |Q(t, s)|ds → 0 uniformly for

t ∈ R as τ → ∞, and |P | := sup{|Px| : |x| = 1}. Concerning Equations (50) and (51),

we state a theorem. For the proof, see Lemma 4 and Theorem 10 in [4].

Theorem 6 Under the above assumptions for Equations (50) and (51), the following

hold.

(i) If Eq.(50) has an R+-bounded solution with an initial time in R+, then Eq.(51)

has an R-bounded solution which satisfies (51) on R.

(ii) If Eq.(51) has an R-bounded solution which satisfies (51) on R, then Eq.(51)

has a T -periodic solution.
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Now we have our final theorem concerning relations between Equations (50) and (51).

Theorem 7 Under the above assumptions for Equations (50) and (51), the following

eight conditions are equivalent:

(i) Eq.(51) has a T -periodic solution.

(ii) For some q(t), F (t, s, x) ≡ 0 and G(t, s, x) ≡ 0, Eq.(50) has a T -periodic

solution which satisfies (50) on R+.

(iii) For some q(t), F (t, s, x) ≡ 0 and G(t, s, x) ≡ 0, Eq.(50) has an asymptotically

T -periodic solution with an initial time in R+.

(iv) For some q(t), F (t, s, x) ≡ 0 and G(t, s, x) ≡ 0, Eq.(50) has an R+-bounded

solution with an initial time in R+.

(v) For some q(t), F (t, s, x) and G(t, s, x), Eq.(50) has a T -periodic solution which

satisfies (50) on R+.

(vi) For some q(t), F (t, s, x) and G(t, s, x), Eq.(50) has an asymptotically T -

periodic solution with an initial time in R+.

(vii) For some q(t), F (t, s, x) and G(t, s, x), Eq.(50) has an R+-bounded solution

with an initial time in R+.

(viii) Eq.(51) has an R-bounded solution which satisfies (51) on R.

Proof The equivalence among (i)-(iii), (v) and (vi) is a direct consequence of Theorem

4. From this and the trivial implication from (iii) to (iv), it is clear that (i) and (iv)

imply (iv) and (vii) respectively. Next, from Theorem 5(i), (vii) yields (viii). Finally,

from Theorem 5(ii), (viii) implies (i), which completes the proof.
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