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Abstract. We estimate the distance between adjacent zeros of all solutions of the first
order differential equation

x′(t) +
∫ t

h(t)
x(s)dsR(t, s) = 0.

This form makes it possible to study equations with both discrete and continuous dis-
tributions of the delays. The obtained results are new and improve several known
estimations. Some illustrative examples are given to show the advantages of our results
over the known ones.
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1 Introduction

In this work, we focus on an important topic of oscillation theory, namely the estimation of
the distance between adjacent zeros of all solutions of a first order differential equation of the
form

x′(t) +
∫ t

h(t)
x(s)dsR(t, s) = 0, t ≥ t0, (1.1)

where h(t) is an increasing continuous function on [t0, ∞) such that h(t) < t, limt→∞ h(t) = ∞,
and the function R(t, s) is continuous with respect to t and nondecreasing with respect to
s ∈ [h(t), t] for all t ≥ t0.

By a solution of Eq. (1.1), we mean a continuous function x(t) on [h(t0), ∞) that satisfies
(1.1) for all t ≥ t0. A solution is called oscillatory if it has arbitrarily large zeros; otherwise it
is called nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.
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Equation (1.1) can be reduced to many forms. For example, it becomes

x′(t) +
m

∑
k=1

[pk(t)x(hk(t))] +
∫ t

h(t)
ϕ(t, s)x(s)ds = 0, t ≥ t0, (1.2)

when

R(t, s) =
m

∑
k=1

[
pk(t)χ(hk(t),∞)(s)

]
+
∫ s

t0

ϕ(t, ζ)dζ,

where the kernel ϕ(t, s) is a nonnegative continuous function on [t0, ∞)× [h(t0), ∞), pk(t) ∈
C ([t0, ∞), [0, ∞)) , k = 1, 2, . . . , m and {hk(t)}m

k=1 is a family of continuous functions on [t0, ∞)

such that h1 ≡ h and h(t) ≤ hk(t) < t for t ≥ t0, k = 2, 3, . . . , m.
The oscillatory properties of several particular cases of Eq. (1.1) have attracted a great

deal of attention during the last decades, see [1, 9–11]. Most efforts were directed to study
the existence or nonexistence of arbitrarily large zeros. However, only a few authors were
interested in investigating the location of zeros of Eq. (1.1) or any of its prototypes. For
example, [2–4, 8, 16, 18, 21] obtained many interesting results for the equation

x′(t) + p(t)x(t− τ) = 0, τ > 0, t ≥ t0, (1.3)

where p(t) ∈ C([t0, ∞), [0, ∞)).
In [17,19,20], the authors estimated the distance between adjacent zeros of all solutions of

the variable delay equation

x′(t) + p(t)x(h(t)) = 0, t ≥ t0. (1.4)

The distribution of zeros of equations with distributed delays appeared in McCalla [13]
for the first order initial value problem

x′(t) =
N

∑
k=0

Ak x(t + θk) +
∫ c

0
A(θ) x(t− θ)dθ, t > 0,

x(t) = φ(t), −c ≤ t ≤ 0,

where Ak, θk are constants, c > 0, −c = θN < · · · < θ1 < θ0 = 0, φ ∈ Lr(−c, 0) for r ≥ 1, and
A ∈ Lq(−c, 0) where q = r

r−1 .
Barr [2] obtained the lowest upper bound estimate for Eq. (1.3) which equals 3τ when

P(t) =
∫ t

t−τ p(s)ds > 1 for all t > t0 + τ. This estimate was further improved by [8, Corol-
lary 3.2]. Also, estimates less than 3τ can be derived from [13,18] but with different restrictions
on the coefficient p(t).

In this work, by improving and extending certain techniques from [2,8,20] to Eq. (1.1), we
obtain new results which improve the 3τ-estimate when P(t) > 1 for all t > t0 + τ. Also, we
relax the restriction lim inft→∞

∫ t
h(t) p(s)ds > 1

e which is commonly used in the literature, see
[15–21]. Moreover, some examples are given to illustrate the importance of our results.

2 Main results

In the sequel, we assume the existence of an increasing function g(t) such that h(t) ≤ g(t) < t
for all t ≥ t1 and some t1 ≥ t0. Also, we define a function η ∈ C([t1, ∞), [0, ∞)) and a
sequence of functions {αn}, respectively, by η(t) = R(t, g(t))− R(t, h(t)) and

α0(t) = t and αn(t) = g−n(t), for all n = 1, 2, . . . .
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Lemma 2.1. Assume that T1 ≥ t1. If x(t) is a positive solution of Eq. (1.1) on [T1, T2], then

x′(t) + η(t)x(g(t)) ≤ 0, for all t ∈ [h−2(T1), T2], T2 ≥ h−2(T1). (2.1)

Proof. Since x(t) > 0 on [T1, T2], then Eq. (1.1) implies that x′(t) ≤ 0 for all t ∈ [h−1(T1), T2].
Thus ∫ t

h(t)
x(s)dsR(t, s) ≥

∫ g(t)

h(t)
x(s)dsR(t, s) ≥ η(t)x(g(t)),

for all t ∈ [h−2(T1), T2]. Combining this inequality with Eq. (1.1), we obtain (2.1).

For convenience, we define a sequence {qn(t)}n≥0 as follows:

q0(t) = η(t), t ≥ t1,

qn(t) = qn−1(t)e
∫ t

g(t) qn−1(s)ds ∫ t
g(t) qn−1(s)ds, t ≥ αn(t1), n = 1, 2, . . . .

(2.2)

Lemma 2.2. Let x(t) be a positive solution of Eq. (1.1) on [T1, T2] where T1 ≥ t1, T2 ≥ αn+1(h−2(T1))

and n ∈ N. Then ∫ t

g(t)
qn(s)ds < 1, for all t ∈ [αn+1(h−2(T1)), T2]. (2.3)

Proof. Since x(t) > 0 on [T1, T2], then Lemma 2.1 yields

x′(t) + q0(t)x(g(t)) ≤ 0, t ∈ [h−2(T1), T2]. (2.4)

From Eq. (1.1), we have x′(t) ≤ 0 on [h−1(T1), T2]. So x(g(t)) ≥ x(t) on [h−2(T1), T2] and

x′(t) + q0(t)x(t) ≤ 0, t ∈ [h−2(T1), T2]. (2.5)

Integrating (2.4) from g(t) to t,

x(t)− x(g(t)) +
∫ t

g(t)
q0(s)x(g(s))ds ≤ 0, t ∈ [α1(h−2(T1)), T2].

Multiplying both sides of this inequality by q0(t) and using (2.4), we obtain

x′(t) + q0(t)x(t) + q0(t)
∫ t

g(t)
q0(s)x(g(s))ds ≤ 0, t ∈ [α1(h−2(T1)), T2]. (2.6)

The substitution y1(t) = e
∫ t

t1
q0(s)dsx(t), t ≥ t1, yields, y1(t) > 0 on [T1, T2] and reduces (2.6) to

the form

y′1(t) + e
∫ t

t1
q0(s)dsq0(t)

∫ t

g(t)
q0(s)x(g(s))ds ≤ 0, t ∈ [α1(h−2(T1)), T2],

which, due to the nonincreasing nature of x(t) on [h−1(T1), T2], implies that

y′1(t) + e
∫ t

g(t) q0(s)dsy1(g(t))q0(t)
∫ t

g(t)
q0(s)ds ≤ 0, t ∈ [α1(h−2(T1)), T2].

That is,
y′1(t) + q1(t)y1(g(t)) ≤ 0, t ∈ [α1(h−2(T1)), T2]. (2.7)

Since y′1(t) = e
∫ t

t1
q0(s)ds

[x′(t) + q0(t)x(t)] ≤ 0 on [h−2(T1)), T2] by (2.5), then y1(t) is nonin-
creasing on [h−2(T1)), T2].
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Now, consider that yn(t) = e
∫ t

αn−1(t1)
qn−1(s)ds yn−1(t), t ≥ αn−1(t1) for n ∈ {2, 3, . . . } where

y1(t) is defined as before. Then a simple induction leads to

y′n(t) + qn(t)yn(g(t)) ≤ 0, t ∈ [αn(h−2(T1)), T2],

where y′n(t) ≤ 0 and yn(t) > 0, for all t ∈ [αn−1(h−2(T1)), T2]. Integrating this inequality from
g(t) to t,

yn(t)− yn(g(t)) +
∫ t

g(t)
qn(s)yn(g(s))ds ≤ 0, t ∈ [αn+1(h−2(T1)), T2],

which implies that

yn(t) +
[∫ t

g(t)
qn(s)ds− 1

]
yn(g(t)) ≤ 0, t ∈ [αn+1(h−2(T1)), T2].

This proves the validity of (2.3).

Next, we make use of a sequence {bn(t)}n≥0 defined as follows:

b0(t) = η(t), t ≥ t1,

bn(t) = bn−1(t)
∫ t

g(t)
bn−1(s)e

∫ t
g(s) bn−1(u)duds, t ≥ α2n(t1), n = 1, 2, . . . .

(2.8)

Lemma 2.3. If x(t) is a positive solution of Eq. (1.1) on [T1, T2] where T1 ≥ t1, T2 ≥ α2n+1(h−2(T1))

and n ∈ N, then∫ t

g(t)
b1(s)e

∫ g(t)
g(s) q1(u)duds < 1, for all t ∈ [α3(h−2(T1)), T2] if n = 1,∫ t

g(t)
bn(s)ds < 1, for all t ∈ [α2n+1(h−2(T1)), T2] if n > 1,

(2.9)

where q1(t) is defined by (2.2).

Proof. Since x(t) > 0 on [T1, T2], Lemma 2.1 implies

x′(t) + b0(t)x(g(t)) ≤ 0, t ∈ [h−2(T1), T2]. (2.10)

It is convenient (due to (2.9)) to complete the proof for the cases n = 1 and n > 1 separately.
First, when n = 1, we have x′(t) ≤ 0 for all t ∈ [h−1(T1), T2]. Therefore, (2.10) yields

x′(t) + b0(t)x(t) ≤ 0, t ∈ [h−2(T1), T2].

So, using similar reasoning as in the proof of Lemma 2.2, it is easy to obtain

z′1(t) + b0(t)
∫ t

g(t)
b0(s)z1(g(s))e

∫ t
g(s) b0(u)duds ≤ 0, t ∈ [α1(h−2(T1)), T2],

where z1(t) = e
∫ t

t1
b0(s)dsx(t), t ≥ t1. Since z1(t) is nonincreasing on [h−2(T1), T2], we obtain

the inequalities
z′1(t) + b1(t)z1(g(t)) ≤ 0, t ∈ [α2(h−2(T1)), T2], (2.11)

and
z′1(t) + b1(t)z1(t) ≤ 0, t ∈ [α2(h−2(T1)), T2]. (2.12)
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Inequality (2.11) leads to

z1(t)− z1(g(t)) +
∫ t

g(t)
b1(s)z1(g(s))ds ≤ 0, t ∈ [α3(h−2(T1)), T2]. (2.13)

Note that z1(t) is the same as y1(t) of the proof of Lemma 2.2. Therefore, z1 is a solution of
(2.7) and hence,

− z′1(u)
z1(u)

≥ q1(u)
z1(g(u))

z1(u)
, u ∈ [α1(h−2(T1)), T2]. (2.14)

Assume that g(t) ≤ s ≤ t for t ∈ [α3(h−2(T1)), T2] and integrate (2.14) from g(s) to g(t), we
obtain

z1(g(s)) ≥ z1(g(t))e
∫ g(t)

g(s)
z1(g(u))

z1(u)
q1(u)du, t ∈ [α3(h−2(T1)), T2].

Since z1(t) is nonincreasing on [h−2(T1), T2], the above inequality yields

z1(g(s)) ≥ z1(g(t))e
∫ g(t)

g(s) q1(u)du, t ∈ [α3(h−2(T1)), T2] and s ∈ [g(t), t].

Substituting into (2.13) and rearranging,

z1(t) +
[∫ t

g(t)
b1(s)e

∫ g(t)
g(s) q1(u)duds− 1

]
z1(g(t)) ≤ 0, t ∈ [α3(h−2(T1)), T2].

Thus (2.9) holds when n = 1 due to the positivity of z1(t) and z1(g(t)) on [α3(h−2(T1)), T2].
For the case when n > 1, multiplying (2.13) by b1(t) and using (2.11), we obtain

z′2(t) + b1(t)
∫ t

g(t)
b1(s)z2(g(s))e

∫ t
g(s) b1(u)duds ≤ 0, t ∈ [α3(h−2(T1)), T2],

where z2(t) = e
∫ t

α2(t1)
b1(s)dsz1(t), t ≥ α2(t1). But (2.12) leads to z′2(t) ≤ 0 on [α2(h−2(T1)), T2].

Hence,
z′2(t) + b2(t)z2(g(t)) ≤ 0, t ∈ [α4(h−2(T1)), T2].

So, using induction, we can show

z′n(t) + bn(t)zn(g(t)) ≤ 0, t ∈ [α2n(h−2(T1)), T2], (2.15)

where zn(t) = e
∫ t

α2n−2(t1)
bn−1(s)dszn−1(t), t ≥ α2n−2(t1) and z′n(t) ≤ 0, on [α2n−2(h−2(T1)), T2].

Now, integrating (2.15) from g(t) to t and using the nonincreasing nature of zn(t) on
[α2n−2(h−2(T1)), T2], it follows that

zn(t) +
[∫ t

g(t)
bn(s)ds− 1

]
zn(g(t)) ≤ 0, t ∈ [α2n+1(h−2(T1)), T2].

This completes the proof since zn(t) and zn(g(t)) are positive on [α2n+1(h−2(T1)), T2].

Following [15, 19], we define a sequence {vn(ρ)}, for 0 < ρ < 1, as follows:

v0(ρ) = 1, v1(ρ) =
1

1− ρ
, vn(ρ) =

vn−2(ρ)

vn−2(ρ) + 1− eρvn−2(ρ)
, n = 2, 3, . . . . (2.16)

The following result is an extension of [19, Lemma 2.1] to Eq. (1.1).
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Lemma 2.4. Assume that ∫ t

g(t)
η(s)ds ≥ ρ, for all t ≥ α1(t1), (2.17)

where 0 < ρ < 1. If x(t) is a positive solution of Eq. (1.1) on [T1, T2] where T1 ≥ t1, T2 ≥
αn(h−2(T1)), and n is a nonnegative integer, then there exists a sequence {vn(ρ)} defined by (2.16)
such that

x(g(t))
x(t)

≥ vn(ρ) > 0, for all t ∈ [αn(h−2(T1)), T2]. (2.18)

Proof. Since x(t) is a positive solution of Eq. (1.1) on [T1, T2], x′(t) ≤ 0 for all t ∈ [h−1(T1), T2]

which means that

x(g(t))
x(t)

≥ 1 = v0(ρ), t ∈ [α1(h−1(T1)), T2] ⊆ [h−2(T1), T2]. (2.19)

Also, Lemma 2.1 leads to

x′(t) + η(t)x(g(t)) ≤ 0, t ∈ [h−2(T1), T2]. (2.20)

Integrating (2.20) from g(t) to t,

x(t)− x(g(t)) +
∫ t

g(t)
η(s)x(g(s))ds ≤ 0, t ∈ [α1(h−2(T1)), T2]. (2.21)

The nondecreasing nature of x(t) on [h−1(T1), T2] implies that

x(g(t)) ≥ x(t) +
∫ t

g(t)
η(s)x(g(s))ds ≥ x(t) + ρx(g(t)), t ∈ [α1(h−2(T1)), T2].

Therefore
x(g(t))

x(t)
≥ 1

1− ρ
= v1(ρ) > 0, t ∈ [α1(h−2(T1)), T2].

On the other hand, dividing (2.20) by x(t) and integrating from g(s) to g(t) where g(t) ≤ s ≤ t,
we find ∫ g(t)

g(s)

x′(u)
x(u)

du ≤ −
∫ g(t)

g(s)
η(u)

x(g(u))
x(u)

du,

hence

ln
x(g(s))
x(g(t))

≥
∫ g(t)

g(s)
η(u)

x(g(u))
x(u)

du, t ∈ [α2(h−2(T1)), T2].

That is,
x(g(s))
x(g(t))

≥ e
∫ g(t)

g(s) η(u) x(g(u))
x(u) du, t ∈ [α2(h−2(T1)), T2],

which, according to (2.19), implies that

x(g(s))
x(g(t))

≥ ev0(ρ)
∫ g(t)

g(s) η(u)du, (2.22)
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where g(t) ≤ s ≤ t and t ∈ [α2(h−2(T1)), T2]. Combining (2.22) with (2.21),

x(g(t))− x(t) ≥ x(g(t))
∫ t

g(t)
η(s)

x(g(s))
x(g(t))

ds

≥ x(g(t))
∫ t

g(t)
η(s)ev0(ρ)

∫ g(t)
g(s) η(u)duds

= x(g(t))
∫ t

g(t)
η(s)ev0(ρ)

(∫ s
g(s) η(u)du−

∫ s
g(t) η(u)du

)
ds

≥ x(g(t))eρv0(ρ)
∫ t

g(t)
η(s)e−v0(ρ)

∫ s
g(t) η(u)duds

=
x(g(t))eρv0(ρ)

[
1− e−v0(ρ)

∫ t
g(t) η(u)du

]
v0(ρ)

≥
x(g(t))

(
eρv0(ρ) − 1

)
v0(ρ)

,

for all t ∈ [α2(h−2(T1)), T2]. Thus

x(g(t))
x(t)

≥ v0(ρ)

v0(ρ) + 1− eρv0(ρ)
= v2(ρ) > 0, t ∈ [α2(h−2(T1)), T2].

Repeating this argument n times, we obtain

x(g(t))
x(t)

≥ vn(ρ) > 0, t ∈ [αn(h−2(T1)), T2].

The proof is complete.

In the sequel, we employ a sequence {cn(s)}n≥1 defined as follows:

c1(s) = η(s),

cn(s) = c1(gn−1(s))γn−2(s)
∫ s

g(t)
cn−1(u)du, t ≥ αn(t1), n = 2, 3, . . . ,

where g(t) ≤ s ≤ t for t ≥ t1, gi stands for the ith composition of g and γn(s) = ∏n
i=0 g′(gi(s))

for n = 0, 1, . . . .

Lemma 2.5. If x(t) is a positive solution of Eq. (1.1) on [T1, T2], where T1 ≥ t1, T2 ≥ αn(h−2(T1))

and n ∈ N, then there exists a sequence {vn(ρ)} defined by (2.16) such that

n

∑
r=1

r

∏
i=2

vn−(i−1)(ρ)
∫ t

g(t)
cr(s)ds < 1, for all t ∈ [αn(h−2(T1)), T2], (2.23)

where ∏1
i=2 vn−(i−1)(ρ) = 1, ρ is defined by (2.17) and g(t) is continuously differentiable on [t1, ∞)

when n > 1.

Proof. As in the proof of Lemma 2.3, we distinguish between two cases: n = 1 and n > 1.
First, we assume that n = 1. A direct application of Lemma 2.1 yields

x′(t) + c1(t)x(g(t)) ≤ 0, t ∈ [h−2(T1), T2]. (2.24)
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Integrating the above inequality from g(t) to t, we get

x(t)− x(g(t)) +
∫ t

g(t)
c1(s)x(g(s))ds ≤ 0, t ∈ [α1(h−2(T1)), T2], (2.25)

which gives

x(t) +
[∫ t

g(t)
c1(s)ds− 1

]
x(g(t)) ≤ 0, t ∈ [α1(h−2(T1)), T2].

Due to the positivity of x(t) and x(g(t)) on [α1(h−2(T1)), T2], we obtain
∫ t

g(t) c1(s)ds < 1.
Hence, the proof of this case is complete.

Now, assume that n > 1. Using integration by parts and (2.24), we have∫ t

g(t)
c1(s)x(g(s))ds =

∫ t

g(t)
x(g(s))d

(∫ s

g(t)
c1(u)du

)
≥
(∫ t

g(t)
c1(s)ds

)
x(g(t)) +

∫ t

g(t)
x(g2(s))c1(g(s))g′(s)

∫ s

g(t)
c1(u)du ds

=

(∫ t

g(t)
c1(s)ds

)
x(g(t)) +

∫ t

g(t)
c2(s)x(g2(s))ds, t ∈ [α2(h−2(T1)), T2].

Again, applying integration by parts to the integral
∫ t

g(t) c2(s)x(g2(s))ds, making use of (2.24)
and substituting into the above inequality, we arrive at the inequality∫ t

g(t)
c1(s)x(g(s))ds ≥

(∫ t

g(t)
c1(s)ds

)
x(g(t)) +

(∫ t

g(t)
c2(s)ds

)
x(g2(t))

+
∫ t

g(t)
x(g3(s))c1(g2(s))g′(g(s))g′(s)

∫ s

g(t)
c2(u)du ds

=

(∫ t

g(t)
c1(s)ds

)
x(g(t)) +

(∫ t

g(t)
c2(s)ds

)
x(g2(t))

+
∫ t

g(t)
c3(s)x(g3(s))ds,

for all t ∈ [α3(h−2(T1)), T2]. Repeating this process, it follows that∫ t

g(t)
c1(s)x(g(s))ds ≥

(∫ t

g(t)
c1(s)ds

)
x(g(t)) +

(∫ t

g(t)
c2(s)ds

)
x(g2(t))

+

(∫ t

g(t)
c3(s)ds

)
x(g3(t)) + · · ·+

∫ t

g(t)
cn(s)x(gn(s))ds,

(2.26)

for all t ∈ [αn(h−2(T1)), T2]. From Eq. (1.1), we infer that x′(t) ≤ 0 for all t ∈ [h−1(T1), T2].
Assume that s ∈ [g(t), t] for all t ∈ [αn(h−2(T1)), T2], then gn(s) ∈ [g(h−2(T1)), T2] ⊆
[h−1(T1), T2] and hence x(gn(s)) ≥ x(gn(t)). Thus∫ t

g(t)
cn(s)x(gn(s))ds ≥ x(gn(t))

∫ t

g(t)
cn(s)ds, t ∈ [αn(h−2(T1)), T2].

Combining this inequality with (2.26), it follows that∫ t

g(t)
c1(s)x(g(s))ds ≥

n

∑
r=1

(∫ t

g(t)
cr(s)ds

)
x(gr(t)), t ∈ [αn(h−2(T1)), T2]. (2.27)
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It is clear, for t ∈ [αn(h−2(T1)), T2], that x(t) > 0 and

gi−1(t) ∈ [αn−i+1(h−2(T1)), T2], i = 2, 3, . . . , n.

Therefore, (2.18) implies that

x(gi(t))
x(gi−1(t))

≥ vn−(i−1)(ρ), i = 2, 3, . . . , n.

Thus,

x(gr(t)) =
( r

∏
i=2

x(gi(t))
x(gi−1(t))

)
x(g(t)) ≥

( r

∏
i=2

vn−(i−1)(ρ)

)
x(g(t)), r = 1, 2, . . . , n.

Consequently, (2.27) leads to,∫ t

g(t)
c1(s)x(g(s))ds ≥

( n

∑
r=1

( r

∏
i=2

vn−(i−1)(ρ)

) ∫ t

g(t)
cr(s)ds

)
x(g(t)),

for all t ∈ [αn(h−2(T1)), T2]. So (2.25) yields

x(t) +

[
n

∑
r=1

r

∏
i=2

vn−(i−1)(ρ)
∫ t

g(t)
cr(s)ds− 1

]
x(g(t)) ≤ 0,

for all t ∈ [αn(h−2(T1)), T2]. This inequality leads to (2.23) due to the positivity of x(t) on
[T1, T2].

Now, we come into our main results. They are the contrapositive of the previous lemmas
and hence will be given without proofs. Next, Da stands for the upper bound between adjacent
zeros of all solutions of Eq. (1.1) on [a, ∞).

Theorem 2.6. If there exists n ∈ N such that∫ t

g(t)
qn(s)ds ≥ 1, for all t ≥ αn+1(h−2(t1)), (2.28)

then Eq. (1.1) is oscillatory and Dt1 ≤ sup{αn+1(h−2(t))− t : t ≥ t1}.

Theorem 2.7. If there exists n ∈ N such that∫ t

g(t)
b1(s)e

∫ g(t)
g(s) q1(u)duds ≥ 1, for all t ≥ α3(h−2(t1)), if n = 1,∫ t

g(t)
bn(s)ds ≥ 1, for all t ≥ α2n+1(h−2(t1)), if n > 1,

(2.29)

where q1(t) is defined by (2.2), then Eq. (1.1) is oscillatory and Dt1≤sup{α2n+1(h−2(t))− t : t ≥ t1}.

Remark 2.8. There are major differences between Theorems 2.6 and 2.7. Indeed, (2.29) is
stronger than (2.28), while Theorem 2.6 provides smaller estimates than Theorem 2.7.

Theorem 2.9. If there exists n ∈ N such that vi(ρ) > 0 for all i = 1, 2, . . . , n− 1 and
n

∑
r=1

r

∏
i=2

vn−(i−1)(ρ)
∫ t

g(t)
cr(s)ds ≥ 1, for all t ≥ αn(h−2(t1)), (2.30)

where ∏1
i=2 vn−(i−1)(ρ) = 1, ρ is defined by (2.17) and g(t) is continuously differentiable on [t1, ∞)

when n > 1, then Eq.(1.1) is oscillatory and Dt1 ≤ sup{αn(h−2(t))− t : t ≥ t1}.
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Generally, vn(ρ) could be negative or undefined for some values of ρ and n. For example
v2(ρ) < 0 for ρ > ln 2, while it is undefined at ρ = ln 2. For such values of ρ and n, Lemma 2.4
implies that x(t) cannot be positive on [T1, T2], T1 ≥ t1, T2 ≥ αn(h−2(T1)). So, taking the
linearity of Eq. (1.1) into consideration, we conclude that x(t) has at least one zero on [T1, T2].
This leads to the following result.

Theorem 2.10. If there exists n ∈ N such that

n = min
i≥1
{i : vi(ρ) < 0 or vi(ρ) is undefined},

where ρ is defined by (2.17), then Eq. (1.1) is oscillatory and Dt1 ≤ sup{αn(h−2(t))− t : t ≥ t1}.

Example 2.11. Consider the first order integro-differential equation

x′(t) +
∫ t

t−τ
x(s)d(k2s) = 0, t ≥ 0,

where 1.532 ≤ kτ < π
2 . This equation has the form of Eq. (1.1) with R(t, s) = k2s and

h(t) = t− τ. Let g(t) = t− δτ, δ = 0.48. Then η(t) = R(t, g(t))− R(t, h(t)) = k2τ(1− δ) and∫ t

t−δτ
η(s)ds = k2τ2δ(1− δ) = ρ.

Calculating (2.30) when n = 2, it follows that

2

∑
r=1

r

∏
i=2

v2−(i−1)(ρ)
∫ t

t−δτ
cr(s)ds = ρ +

ρ2

2(1− ρ)
> 1.

Therefore, Theorem 2.9 implies that D0 ≤ 2τ + 2δτ = 2.96τ. It is worth noting that all results
in [2, 4, 8, 15–21] cannot be applied in this case. The only known result for us that can be used
to estimate D0 is [13, Theorem 1] which gives the estimation D0 < 3τ.

Notice that, the form of Eq. (1.1) produces Eq. (1.4) when R(t, s) = p(t)χ(h(t), ∞)(s). In
this case, if we assume that h = g then η(t) ≡ 0 and hence our preceding results fail to apply.
Fortunately, the techniques used to prove all above results can be applied verbatim to Eq. (1.2).
The following result corresponds to Lemma 2.1.

Lemma 2.12. Assume that T1 ≥ t1 and hk(t) ≤ g(t), t ≥ t1, k = 2, 3, . . . , m. If Eq. (1.2) has a
positive solution x(t) on [T1, T2], T2 ≥ h−2(T1), then x(t) is also a solution of the inequality

x′(t) + Q(t)x(g(t)) ≤ 0, for all t ∈ [h−2(T1), T2],

where Q(t) = ∑m
k=1 [pk(t)] +

∫ g(t)
h(t) ϕ(t, s)ds.

Now using Lemma 2.12 instead of Lemma 2.1 in the proofs of Theorems 2.6, 2.7 and 2.9,
we obtain the next theorems for Eq. (1.2).

Theorem 2.13. Assume that hk(t) ≤ g(t), t ≥ t1, k = 2, 3, . . . , m. If there exists n ∈ N such
that condition (2.28) is satisfied, with q0(t) = ∑m

k=1 [pk(t)] +
∫ g(t)

h(t) ϕ(t, s)ds, t ≥ t1, then Eq. (1.2) is
oscillatory and Dt1 ≤ sup{αn+1(h−2(t))− t : t ≥ t1}.

Corollary 2.14. If there exists n ∈ N such that condition (2.28) is satisfied, with q0(t) = p(t), for
t ≥ t1, then Eq. (1.4) is oscillatory and Dt1 ≤ sup{αn+1(h−2(t))− t : t ≥ t1}.
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Corollary 2.15. Assume, in (2.2), that q0(t) = p(t) and g(t) = t− δτ on [t1, ∞), for some δ ∈ (0, 1].
If there exists n ∈ N such that∫ t

t−δτ
qn−1(s)e

∫ s
s−δτ qn−1(u)du

∫ s

s−δτ
qn−1(u)du ds ≥ 1,

for all t ≥ t1 + ((n + 1)δ + 2)τ, then Eq. (1.3) is oscillatory and Dt1 ≤ ((n + 1)δ + 2)τ.

Remark 2.16. It can be seen that Corollary 2.15 gives an estimate less than 3τ, when n = 1
and δ < 1

2 . We refer that all estimates in [2,16,20,21] are integer multiples of τ greater than or
equal 3τ.

Theorem 2.17. Assume that hk(t) ≤ g(t), t ≥ t1, k = 2, 3, . . . , m. If there exists n ∈ N such that
condition (2.29) is satisfied with b0(t) = ∑m

k=1 [pk(t)] +
∫ g(t)

h(t) ϕ(t, s)ds, t ≥ t1 and q1 is defined by
(2.2) with q0 = b0, then Eq. (1.2) is oscillatory and Dt1 ≤ sup{α2n+1(h−2(t))− t : t ≥ t1}.

Corollary 2.18. If there exists n ∈ N such that condition (2.29) is satisfied, with b0(t) = p(t), t ≥ t1

and q1 is defined by (2.2) with q0 = b0, then Eq. (1.4) is oscillatory and Dt1 ≤ sup{α2n+1(h−2(t))− t :
t ≥ t1}.

The following corollary improves [8, Theorem 2.3].

Corollary 2.19. Assume that b0(t) = q0(t) = p(t), g(t) = t− δτ on [t1, ∞), for some δ ∈ (0, 1]
and q1 is defined by (2.2). If there exists n ∈ N such that∫ t

t−δτ
b1(s)e

∫ t−δτ
s−δτ q1(u)duds ≥ 1, for all t ≥ t1 + (2 + 3δ)τ, if n = 1,∫ t

t−δτ
bn(s)ds ≥ 1, for all t ≥ t1 + (2 + (2n + 1)δ)τ, if n > 1,

then Eq. (1.3) is oscillatory and Dt1 ≤ ((2n + 1)δ + 2)τ.

Corollary 2.20. Assume that p(t) ≥ p, t ≥ t1. If there exists δ ∈ (0, 1] such that pτδ = β and

1
β

(
eβ − 1

)(
eβ2eβ − 1

)
≥ 1,

then Eq. (1.3) is oscillatory and Dt1 ≤ (3δ + 2)τ.

Proof. Since ∫ t

t−δτ
b1(s)e

∫ t−δτ
s−δτ q1(u)duds ≥

∫ t

t−δτ
epβeβ(t−s)p

∫ s

s−δτ
pe(s−u+δτ)pdu ds

=
(
e2β − eβ

) ∫ t

t−δτ
epβeβ(t−s)p ds

=
1

βeβ

(
e2β − eβ

)(
eβ2eβ − 1

)
=

1
β

(
eβ − 1

)(
eβ2eβ − 1

)
≥ 1.

Then Corollary 2.19 implies that Dt1 ≤ (3δ + 2)τ.

The proof of the following corollary is the same as [8, Corollary 2.4].
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Corollary 2.21. Assume that
∫ t

t−δτ bk(s)ds ≥ λ > 0, t ≥ t1 + (2 + (2k + 1)δ)τ, where δ ∈ (0, 1], k
is a nonnegative integer and bn(t) is defined by (2.8) with b0(t) = p(t) and g(t) = t− δτ on [t1, ∞).
Assume, further, that the sequence {λn}n≥0 is defined by

λn = λn−1(e2λn−1 − eλn−1), n ≥ 1, and λ0 = λ. (2.31)

If there exists a positive integer n0 such that λn0 ≥ 1, then Eq. (1.3) oscillates and

Dt1 ≤ ((2(n0 + k) + 1)δ + 2)τ.

Corollary 2.21 is reduced to [8, Corollary 2.4], when k = 0 and δ = 1. It is shown, in
[8], that the recurrence relation defined by (2.31) diverges to infinity when λ > ln 1+

√
5

2 and

converges to zero when λ < ln 1+
√

5
2 . Therefore, in the latter case, [8, Corollary 2.4] cannot be

applied. The following example shows that the conditions of Corollary 2.21 can be satisfied,
even if λ is so small that many other approaches fail to apply.

Example 2.22. Consider the first order delay differential equation

x′(t) +
(

1 + b cos(t)− 1
2

sin(t)
)

x
(

t− π

2

)
= 0, t ≥ 0,

which has the form (1.3) with p(t) = 1 + b cos(t)− 1
2 sin(t) and τ = π

2 such that b = 0.735.
Thus ∫ t

t− π
2

p(s)ds =
π

2
+ b(cos(t) + sin(t)) +

1
2
(cos(t)− sin(t)).

Then,

min
t≥ π

2

∫ t

t− π
2

p(s)ds =
π

2
− 4b2 + 1√

8b2 + 2
' 0.3136 <

1
e

.

This means that [8, Corollary 2.4], [15, Theorem 2], [17, Theorem 2.1], [19, Theorem 2.1],
[20, Theorems 1–2] and all results in [16, 18, 21] fail to apply. However,∫ t

t− π
2

b1(s)ds =
∫ t

t− π
2

p(s)
∫ s

s− π
2

p(u)e
∫ s

u− π
2

p(v)dv
du ds,

≥ e
∫ t

t− π
2

p(s)
∫ s

s− π
2

p(u)
∫ s

u− π
2

p(v)dv du ds > 0.23e ≈ 0.62521.

Thus λ0 ≈ 0.62521, and (2.31) implies that λ1 ≈ 1.0148. Now, applying Corollary 2.21 with
δ = k = n0 = 1, it follows that D0 ≤ 7τ.

Theorem 2.23. Assume that hk(t) ≤ g(t) < t, t ≥ t1, k = 2, 3, ..., m. If there exists n ∈ N such that
vi(ρ) > 0 for all i = 1, 2, ..., n− 1 and

n

∑
r=1

r

∏
i=2

vn−(i−1)(ρ)
∫ t

g(t)
cr(s)ds ≥ 1, for all t ≥ αn(h−2(t1)),

where c1(t) = ∑m
k=1 [pk(t)] +

∫ g(t)
h(t) ϕ(t, s)ds, t ≥ t1, g(t) is continuously differentiable on [t1, ∞)

when n > 1, ∏1
i=2 vn−(i−1)(ρ) = 1 and ρ is defined by (2.17) with η(t) is replaced by c1(t), then

Eq. (1.2) is oscillatory and Dt1 ≤ sup{αn(h−2(t))− t : t ≥ t1}.

The following two particular cases of Theorem 2.23 improve [8, Theorem 2.5] and
[20, Theorem 1], respectively.
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Corollary 2.24. Assume that c1(t) = p(t) and g(t) = t − δτ, δ ∈ (0, 1], t ≥ t1. If there exists
n ∈ N such that vi(ρ) > 0 for all i = 1, 2, . . . , n− 1 and

n

∑
r=1

r

∏
i=2

vn−(i−1)(ρ)
∫ t

t−δτ
cr(s)ds ≥ 1, for all t ≥ t1 + (nδ + 2)τ,

where ∏1
i=2 vn−(i−1)(ρ) = 1 and ρ satisfies (2.17) with η(t) is replaced by c1(t), then Eq. (1.3) is

oscillatory and Dt1 ≤ (nδ + 2)τ.

Corollary 2.25. If there exists n ∈ N such that vi(ρ) > 0 for all i = 1, 2, . . . , n− 1 and

n

∑
r=1

r

∏
i=2

vn−(i−1)(ρ)
∫ t

g(t)
cr(s)ds ≥ 1, for all t ≥ αn(h−2(t1)),

where c1(t) = p(t), t ≥ t1, g(t) is continuously differentiable function on [t1, ∞) when n > 1,
∏1

i=2 vn−(i−1)(ρ) = 1 and ρ is defined by (2.17) with η(t) is replaced by c1(t), then Eq. (1.4) is
oscillatory and Dt1 ≤ sup{αn(h−2(t))− t : t ≥ t1}.

Remark 2.26.

1- There are many alternatives to the sequence {vn(ρ)}n≥0 (see [7, 8]). We employed
{vn(ρ)}n≥0 since it gives a good lower bound of the quotient x(h(t))

x(t) . Theorems 2.9 and
2.23 can be improved if one uses a better sequence than {vn(ρ)}n≥0. A possible choice
of such sequence can be found in [12, 14].

2- Also, it is very interesting if one could adapt the approaches of [5, 6, 13] to study the
distribution of zeros of all solutions of Eq. (1.1), particularly if R(t, s) is not increasing
in s.
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