
Electronic Journal of Qualitative Theory of Differential Equations
2015, No. 31, 1–15; http://www.math.u-szeged.hu/ejqtde/

Periodic solutions for an impulsive
semi-ratio-dependent predator–prey model with

patches and time delays

Ruixi LiangB

Department of Mathematics and Statistics, Central South University
Changsha, 410073 Hunan, P.R. China

Received 30 January 2015, appeared 27 May 2015

Communicated by Leonid Berezansky
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1 Introduction

In recent years, with the application of the theory of differential equations in mathematical
ecology, a lot of mathematical models have been proposed in the study of population dy-
namics [2–4, 6, 8–11, 15–23]. One of the famous models for the dynamics of populations is the
so-called semi-ratio-dependent predator-prey system with functional response [4, 7, 9, 15, 17],
for example

x′ = x(a− bx)− g(x)y,

y′ = y
(

d− f
y
x

)
,

(1.1)

where x and y stand for the population of the prey and predator, respectively, g(x) is the
predator functional response to prey.

In equation (1.1), it has been assumed that the prey grows logistically with growth rate a
and carrying capacity a/b in the absence of predation. The predator consumes the prey ac-
cording to the functional response g(x) and grows logistically with growth rate d and carrying
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capacity x(t)/ f proportional to the population size of prey. The parameter f is a measure of
the food quality that the prey provides for conversion into predator birth.

The form of the predator equation in (1.1) was first proposed by Leslie [9]. The functional
response g(x) in (1.1) can be classified into five types, including the Leslie–Gower model, the
Holling–Tanner model, the Holling type III model, the Ivlev’s functional response and so on.
For more detail see reference [18].

We note that any biological or environmental parameters are naturally subject to fluctua-
tion in time. Cushing [2] pointed out that it is necessary and important to consider models
with periodic ecological parameters or perturbations which may be naturally exposed (for
example, those due to seasonal effects of weather, food supply, mating habits, hunting or
harvesting seasons, etc.). Thus, the assumption of periodicity of the parameters is a way of in-
corporating the periodicity of the environment. On the other hand, dispersal between patches
often occurs in natural ecological environments, and more realistic models should include the
dispersal process [8, 20, 21].

We consider the following systems

x′1(t) = x1(t)(r1(t)− a1(t)x1(t))− x3(t)g(t, x1(t− τ1)) + D1(t)(x2(t)− x1(t)),

x′2(t) = x2(t)(r2(t)− a2(t)x2(t)) + D2(t)(x1(t)− x2(t)),

x′3(t) = x3(t)
(

r3(t)− a3(t)
x3(t− τ2)

x1(t− τ2)

)
,

(1.2)

with initial conditions

xi(θ) = φi(θ), θ ∈ [−τ, 0],

φi(0) > 0, φi ∈ C([−τ, 0), R+), i = 1, 2, 3,

where xi(t) represents the prey population in the i-th patch (i = 1, 2), and x3(t) represents the
predator population. Di(t) denotes the dispersal rate of the prey in the i-th patch (i = 1, 2).
τ = max{τ1, τ2}.

However, there are numerous examples of evolutionary systems which at certain instants
in time are subject to rapid changes. In the simulations of such processes it is frequently
convenient and valid to neglect the durations of rapid changes and to assume that the changes
can be represented by state jumps. Appropriate mathematical models for processes of the
type described above are so-called systems with impulsive effects, see [1]. One note that the
research on theory and applications of impulsive differential equations have been many nice
works [3, 6, 10, 12–14, 22, 23]. Because harvest of many a populations are not continuous, the
harvest is an annual harvest pulse. To describe a system more accurately, we should consider
to use the impulsive differential equation. If we consider the regularly harvest, then (1.2) is
revised as the following form:

x′1(t) = x1(t)(r1(t)− a1(t)x1(t))− x3(t)g(t, x1(t− τ1)) + D1(t)(x2(t)− x1(t)),

x′2(t) = x2(t)(r2(t)− a2(t)x2(t)) + D2(t)(x1(t)− x2(t)),

x′3(t) = x3(t)
(

r3(t)− a3(t)
x3(t− τ2)

x1(t− τ2)

)
,

∆xi(tk) = bikxi(tk), i = 1, 2, 3, k = 1, 2, · · · ,

(1.3)

where bikxi(tk) (i = 1, 2, 3) represents the population xi(t) at tk regular harvest pulse. Through
this paper, for system (1.3) the following conditions are assumed.
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(C1) ri(t), ai(t) (i = 1, 2, 3), D1(t) and D2(t) are positive continuous ω-periodic functions; τ1

and τ2 are positive constants.

(C2) g(t, x) is a continuous ω-periodic function with respect to the first variable and is differ-
entiable with respect to the second variable, and g(t; 0) = 0, g(t, x) > 0 for any t ∈ R,
x > 0.

(C3) There exists a positive constant c0 such that g(t, x) ≤ c0 for any t ∈ R, x > 0.

(C4) −1 < bik ≤ 0, i = 1, 2, 3 for all k ∈ N and there exists a positive integer q such that
tk+q = tk + ω, bi(k+q) = bik, i = 1, 2, 3 and tk − τ1, tk − τ2 6= tm.

In the following, we shall use the notations.

f̄ =
1
ω

∫ ω

0
f (s) ds, f L = min

t∈[0,ω]
f (t), f M = max

t∈[0,ω]
f (t).

Without loss of generality, we shall assume tk 6= 0, ω and [0, ω] ∩ {tk} = {t1, t2, . . . , tq}.
The existence of positive periodic solution of (1.2) is investigated in [4], and the following

result is obtained.

Theorem 1.1. In addition to (C1)–(C3), assume further that the following hold:

(H2) ri(t)− Di(t) > 0, i = 1, 2,

(H3) aL
3 (r1 − D1)− c0r3 > 0.

Then system (1.2) has at least one positive ω-periodic solution with strictly positive components.

The proof in [4] shows that Theorem 1.1 has room for improvement.
The organization of this paper is as follows. In the next section, we establish some simple

criteria for the existence of a positive periodic solution of system (1.3). We also note that our
results improve Theorem A as bik ≡ 0, because our results do not need the condition (H2).
Finally, we give some applications to show our results.

2 Existence of periodic solution

In this section, by using continuation theorem which was proposed in [5] by Gaines and
Mawhin, we will establish the existence conditions of at least one positive periodic solution of
system (1.3). To do so, we need to make some preparations.

Let X, Z be real Banach spaces, L : Dom L ⊂ X → Z be a Fredholm mapping of index zero
(index L = dim Ker L− codim Im L), and let P : X → X, Q : Z → Z be continuous projectors
such that Im P = Ker L, Ker Q = Im L and X = Ker L⊕ Ker P, Z = Im L⊕ Im Q. Denote by
LP the restriction of L to Dom L ∩Ker P, KP : Im L → Ker P ∩Dom L the inverse (to LP), and
J : Im Q→ Ker L an isomorphism of Im Q onto Ker L.

For convenience, we first introduce Mawhin’s continuation theorem [5] as follows.

Lemma 2.1. Let Ω ⊂ X be an open bounded set. Let L be a Fredholm mapping of index zero and N be
L-compact on Ω̄. Assume

(a) Lx 6= λNx for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL,
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(b) for each x ∈ Ker L ∩ ∂Ω, QNx 6= 0,

(c) deg{JQN, Ω ∩Ker L, 0} 6= 0.

Then Lx = Nx has at least one solution in Ω̄ ∩Dom L.

To prove the main conclusion by means of the continuation theorem, we need to introduce
some functional spaces.

Let PC(R, R3) = {x : R → R3 | x is continuous at t 6= tk, x(t+k ), x(t−k ) exist and x(t−k ) =
x(tk), k = 1, 2, . . . , }, let X = {(u1(t), u2(t), u3(t))T ∈ PC(R, R3) : ui(t+ω) = ui(t), i = 1, 2, 3}
with the norm

‖(u1(t), u2(t), u3(t))‖T =
3

∑
i=1

sup
t∈[0,ω]

|ui(t)|,

and

Y = X×R3q with the norm ‖u‖Y = ‖x‖+ ‖y‖, for u ∈ Y, x ∈ X, y ∈ R3q,

where | · | denotes the Euclidean norm. Then X and Y are Banach spaces.

Theorem 2.2. In addition to (C1)–(C4), assume further that the following hold:

(C5) r3ω + ∑
q
k=1 ln(1 + b3k) > 0,

(C6) aL
3 (r1 − D1)ω + aL

3 ∑
q
i=1 ln(1 + b1k) > c0r3ω.

Then system (1.3) has at least one positive ω-periodic solution.

Proof. Let
u1(t) = ln[x1(t)], u2(t) = ln[x2(t)], u3(t) = ln[x3(t)], (2.1)

then system (1.3) can be translated to

u′1(t) = r1(t)− D1(t)− a1(t)eu1(t) − g(t, eu1(t−τ1))eu3(t)−u1(t) + D1(t)eu2(t)−u1(t),

u′2(t) = r2(t)− D2(t)− a2(t)eu2(t) + D2(t)eu1(t)−u2(t),

u′3(t) = r3(t)− a3(t)eu3(t−τ2)−u1(t−τ2),

∆ui(tk) = ln(1 + bik), i = 1, 2, 3, k = 1, 2, . . .

(2.2)

It is easy to see that if system (2.2) has one ω-periodic solution (u∗1(t), u∗2(t), u∗3(t))
T, then

(x∗1(t), x∗2(t), y∗(t))T = (exp[u∗1(t)], exp[u∗2(t)], exp[u∗3(t)])
T is a positive ω-periodic solution of

(1.3). Therefore, to complete the proof, we need only to prove that (2.2) has one ω-periodic
solution.

Let L : Dom L ⊂ X → Y, u→ (u′, ∆u(t1), . . . , ∆u(tq)),

Nu =

 u′1(t) = r1(t)− D1(t)− a1(t)eu1(t) − g(t, eu1(t−τ1))eu3(t)−u1(t) + D1(t)eu2(t)−u1(t)

u′2(t) = r2(t)− D2(t)− a2(t)eu2(t) + D2(t)eu1(t)−u2(t),
u′3(t) = r3(t)− a3(t)eu3(t−τ2)−u1(t−τ2)

 ,

 ln(1 + b11)

ln(1 + b21)

ln(1 + b31)

 ,

 ln(1 + b12)

ln(1 + b22)

ln(1 + b32)

 , · · · ,

 ln(1 + b1q)

ln(1 + b2q)

ln(1 + b3q)

 .
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Evidently

Ker L = {u : u(t) = c ∈ R3, t ∈ [0, ω]},

Im L =

{
z = ( f , a1, . . . , aq) ∈ Y :

∫ ω

0
f (s) ds +

q

∑
k=1

ak = 0

}
,

and
dim Ker L = 3 = codim Im L.

So Im L is closed in Y, L is a Fredholm mapping of index zero. Define

Px =
1
ω

∫ ω

0
x(t)dt,

Qz = Q( f , a1, a2, . . . , aq) =

(
1
ω

[∫ ω

0
f (s) ds +

q

∑
k=1

ak

]
, 0, . . . , 0

)
.

It is easy to show that P and Q are continuous projectors satisfying

Im P = Ker L, Im L = Ker Q = Im(I −Q).

Furthermore, through an easy computation, we can find that the inverse KP : Im L→ Ker P ∩
Dom L has the form

KP(z) =
∫ t

0
f (s) ds + ∑

tk<t
ak −

1
ω

∫ ω

0

∫ t

0
f (s) ds dt−

q

∑
k=1

ak.

Thus

QNu =





1
ω

∫ ω

0

[
r1(t)− D1(t)− a1(t)eu1(t) − g(t, eu1(t−τ1))eu3(t)−u1(t)

+D1(t)eu2(t)−u1(t)
]

dt +
1
ω

q

∑
k=1

ln(1 + b1k),

1
ω

∫ ω

0

[
r2(t)− D2(t)− a2(t)eu2(t) + D2(t)eu1(t)−u2(t)

]
dt

+
1
ω

q

∑
k=1

ln(1 + b2k),

1
ω

∫ ω

0

[
r3(t)− a3(t)eu3(t−τ2)−u1(t−τ2)

]
dt +

1
ω

q

∑
k=1

ln(1 + b3k),


, 0, . . . , 0


,

and

KP(I −Q)Nu

=



∫ t

0

[
r1(s)− D1(s)− a1(s)eu1(s) − g(t, eu1(s−τ1))eu3(s)−u1(s)

+D1(s)eu2(s)−u1(s)
]

ds + ∑
t>tk

ln(1 + b1k)∫ t

0

[
r2(s)− D2(s)− a2(s)eu2(s) + D2(s)eu1(s)−u2(s)

]
ds + ∑

t>tk

ln(1 + b2k)∫ t

0

[
r3(s)− a3(s)eu3(s−τ2)−u1(s−τ2)

]
ds + ∑

t>tk

ln(1 + b3k)
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−



1
ω

∫ ω

0

∫ t

0

[
r1(s)− D1(s)− a1(s)eu1(s) − g(t, eu1(s−τ1))eu3(s)−u1(s)

+D1(s)eu2(s)−u1(s)
]

ds +
q

∑
k=1

ln(1 + b1k)

1
ω

∫ ω

0

∫ t

0

[
r2(s)− D2(s)− a2(s)eu2(s) + D2(s)eu1(s)−u2(s)+

]
ds +

q

∑
k=1

ln(1 + b2k)

1
ω

∫ ω

0

∫ t

0

[
r3(s)− a3(s)eu3(s−τ2)−u1(s−τ2)

]
ds +

q

∑
k=1

ln(1 + b3k)



−



(
t
ω
− 1

2

) ∫ t

0

[
r1(s)− D1(s)− a1(s)eu1(s) − g(t, eu1(s−τ1))eu3(s)−u1(s)

+D1(s)eu2(s)−u1(s)
]

ds +
q

∑
k=1

ln(1 + b1k)(
t
ω
− 1

2

) ∫ t

0

[
r2(s)− D2(s)− a2(s)eu2(s) + D2(s)eu1(s)−u2(s)+

]
ds +

q

∑
k=1

ln(1 + b2k)(
t
ω
− 1

2

) ∫ t

0

[
r3(s)− a3(s)eu3(s−τ2)−u1(s−τ2)

]
ds +

q

∑
k=1

ln(1 + b3k)


.

Clearly, QN and KP(I − Q)N are continuous. Using Lemma 2.4 in [1], it is not difficult to
show that QN(Ω̄), Kp(I − Q)N(Ω̄) are relatively compact for any open bounded set Ω ⊂ X.
Hence N is L-compact on Ω̄ for any open bounded set Ω ⊂ X.

Now we reach the position to search for an appropriate open, bounded subset Ω for the
application of the continuation theorem. Corresponding to equation Lu = λNu, λ ∈ (0, 1),
we have

u′1(t) = λ
[
r1(t)− D1(t)− a1(t)eu1(t) − g(t, eu1(t−τ1))eu3(t)−u1(t) + D1(t)eu2(t)−u1(t)

]
,

u′2(t) = λ
[
r2(t)− D2(t)− a2(t)eu2(t) + D2(t)eu1(t)−u2(t)

]
,

u′3(t) = λ
[
r3(t)− a3(t)eu3(t−τ2)−u1(t−τ2)

]
,

∆ui(tk) = λ ln(1 + bik), i = 1, 2, 3, k = 1, 2, . . .

(2.3)

Since ui(t)(i = 1, 2, 3) are ω-periodic functions, we need only to prove the result in the interval
[0, ω]. Integrating (2.3) over the interval [0, ω] leads to∫ ω

0
a1(t)eu1(t) dt +

∫ ω

0
g(t, eu1(t−τ1))eu3(t)−u1(t) dt

=
∫ ω

0
(r1(t)− D1(t)) dt +

∫ ω

0
D1(t)eu2(t)−u1(t) dt +

q

∑
k=1

ln(1 + b1k),
(2.4)

∫ ω

0
a2(t)eu2(t) dt =

∫ ω

0
(r2(t)− D2(t)) dt +

∫ ω

0
D2(t)eu1(t)−u2(t) dt +

q

∑
k=1

ln(1 + b2k), (2.5)

and ∫ ω

0
a3(t)eu3(t−τ2)−u1(t−τ2) dt =

∫ ω

0
r3(t) dt +

q

∑
k=1

ln(1 + b3k). (2.6)

Noting that ∫ ω

0
eu3(t−τ2)−u1(t−τ2) dt =

∫ ω

0
eu3(t)−u1(t) dt,
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and −1 < b3k ≤ 0, we derive from (2.6) that

aL
3

∫ ω

0
eu3(t)−u1(t) dt = aL

3

∫ ω

0
eu3(t−τ2)−u1(t−τ2) dt ≤ r3ω,

which implies ∫ ω

0
eu3(t)−u1(t) dt ≤ r3ω

aL
3

.

This together with the first equation of (2.3), (2.4), (C2) and (C3), yields∫ ω

0
|u′1(t)| dt <

∫ ω

0

(
r1(t) + D1(t) + a1(t)eu1(t) + g(t, eu1(t−τ1))eu3(t)−u1(t)

+ D1(t)eu2(t)−u1(t)
)

dt

= 2
∫ ω

0
a1(t)eu1(t) dt + 2

∫ ω

0
g(t, eu1(t−τ1))eu3(t)−u1(t) dt

+ 2
∫ ω

0
D1(t)dt−

q

∑
k=1

ln(1 + b1k)

≤ 2
∫ ω

0
a1(t)eu1(t) dt + 2c0

∫ ω

0
eu3(t)−u1(t) dt + 2D1ω−

q

∑
k=1

ln(1 + b1k)

≤ 2
∫ ω

0
a1(t)eu1(t) dt +

2c0r3ω

aL
3

+ 2D1ω−
q

∑
k=1

ln(1 + b1k).

(2.7)

From (2.3), (2.5) and (2.6), we also have∫ ω

0
|u′2(t)| dt <

∫ ω

0

(
r2(t) + D2(t) + a2(t)eu2(t) + D2(t)eu1(t)−u2(t)

)
dt

= 2
∫ ω

0
a2(t)eu2(t) dt + 2

∫ ω

0
D2(t) dt−

q

∑
k=1

ln(1 + b2k),
(2.8)

∫ ω

0
|u′3(t)| dt <

∫ ω

0

(
r3(t) + a3(t)eu3(t−τ2)−u1(t−τ2)

)
dt

= 2r3ω +
q

∑
k=1

ln(1 + b3k) ≤ 2r3ω.
(2.9)

Multiplying the first equation of (2.3) by eu1(t) and integrating over [0, ω], we obtain

−
p

∑
k=1

b1keu1(tk) +
∫ ω

0
a1(t)e2u1(t) dt

=
∫ ω

0
(r1(t)− D1(t))eu1(t) dt +

∫ ω

0
D1(t)eu2(t) dt−

∫ ω

0
g(t, eu1(t−τ1)eu3(t)) dt

<
∫ ω

0
(r1(t)− D1(t))eu1(t) dt +

∫ ω

0
D1(t)eu2(t) dt

Since −1 < b1k ≤ 0, so we have∫ ω

0
a1(t)e2u1(t) dt ≤ (r1 − D1)

M
∫ ω

0
eu1(t) dt + DM

1

∫ ω

0
eu2(t) dt,
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which yields

aL
1

∫ ω

0
e2u1(t) dt ≤ (r1 − D1)

M
∫ ω

0
eu1(t) dt + DM

1

∫ ω

0
eu2(t) dt. (2.10)

Similarly, multiplying the second equation in (2.3) by eu2(t) and integrating over [0, ω] gives

−
p

∑
k=1

b2keu1(tk) +
∫ ω

0
a2(t)e2u2(t) dt =

∫ ω

0
(r2(t)− D2(t))eu2(t) dt +

∫ ω

0
D2(t)eu1(t) dt,

which implies

aL
2

∫ ω

0
e2u2(t) dt < (r2 − D2)

M
∫ ω

0
eu2(t) dt + DM

2

∫ ω

0
eu1(t) dt. (2.11)

By using the inequalities(∫ ω

0
eui(t) dt

)2

≤ ω
∫ ω

0
e2ui(t) dt, i = 1, 2,

it follows from (2.10) and (2.11) that

aL
1

(∫ ω

0
eu1(t) dt

)2

< ω(r1 − D1)
M
∫ ω

0
eu1(t) dt + DM

1 ω
∫ ω

0
eu2(t) dt, (2.12)

aL
2

(∫ ω

0
eu2(t) dt

)2

< ω(r2 − D2)
M
∫ ω

0
eu2(t) dt + DM

2 ω
∫ ω

0
eu1(t) dt. (2.13)

If
∫ ω

0 eu2(t) dt ≤
∫ ω

0 eu1(t) dt, then we derive from (2.12) that

aL
1

(∫ ω

0
eu1(t) dt

)2

< ω(r1 − D1)
M
∫ ω

0
eu1(t) dt + DM

1 ω
∫ ω

0
eu1(t) dt,

which implies

∫ ω

0
eu2(t) dt ≤

∫ ω

0
eu1(t) dt <

ω(r1 − D1)
M + ωDM

1

aL
1

. (2.14)

If
∫ ω

0 eu1(t) dt ≤
∫ ω

0 eu2(t) dt, then we can conclude

∫ ω

0
eu1(t) dt ≤

∫ ω

0
eu2(t) dt <

ω(r2 − D2)M + ωDM
2

aL
2

. (2.15)

Set

A = max

{
(r1 − D1)

M + DM
1

aL
1

,
(r2 − D2)M + DM

2

aL
2

}
. (2.16)

Then it follows from (2.14)–(2.16) that∫ ω

0
eui(t) dt < ωA, i = 1, 2. (2.17)

This, together with (2.7) and (2.8), yields
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∫ ω

0
|u′1(t)| dt ≤ 2ω

(
aM

1 A +
c0r3

aL
3

)
+ 2ωD1 −

q

∑
k=1

ln(1 + b1k) =: c1,

∫ ω

0
|u′2(t)| dt ≤ 2ωaM

2 A + 2ωD2 −
q

∑
k=1

ln(1 + b2k) =: c2.

(2.18)

Since u(t) ∈ X, there exist ξi, ηi ∈ [0, ω] (i = 1, 2, 3) such that

ui(ξi) = min
t∈[0,ω]

ui(t), ui(ηi) = max
t∈[0,ω]

ui(t), i = 1, 2, 3. (2.19)

From (2.17) and (2.19), we see that

ui(ξi) < ln A, i = 1, 2. (2.20)

Thus, from (2.18) and (2.20) we have

u1(t) =


u1(ξ1) +

∫ t

ξ1

u′1(s) ds + ∑
ξ1<tk<t

ln(1 + b1k), t ∈ (ξ1, ω]

u1(ξ1) +
∫ t

ξ1

u′1(s) ds− ∑
t≤tk≤ξ−1

ln(1 + b1k), t ∈ [0, ξ1]

≤ u1(ξ1) +
∫ ω

0
|u′1(t)| dt−

q

∑
k=1

ln(1 + b1k)

< ln A + c1 −
q

∑
k=1

ln(1 + b1k),

(2.21)

u2(t) ≤ u2(ξ2) +
∫ ω

0
|u′2(t)| dt−

q

∑
k=1

ln(1 + b2k)

< ln A + c2 −
q

∑
k=1

ln(1 + b2k).

(2.22)

It follows from (2.4) that

(r1 − D1)ω <
∫ ω

0
a1(t)eu1(t) dt +

∫ ω

0
g(t, eu1(t−τ1))eu3(t)−u1(t)dt−

q

∑
k=1

ln(1 + b1k)

≤
∫ ω

0
a1(t)eu1(t) dt + c0

∫ ω

0
eu3(t)−u1(t) dt−

q

∑
k=1

ln(1 + b1k)

≤
∫ ω

0
a1(t)eu1(t) dt +

c0r3ω

aL
3
−

q

∑
k=1

ln(1 + b1k)

This, together with (2.19), deduces

eu1(η1)a1ω ≥
∫ ω

0
a1(t)eu1(t) dt ≥ (r1 − D1)ω−

c0r3ω

aL
3

+
q

∑
k=1

ln(1 + b1k),

which implies

u1(η1) ≥ ln

(
(r1 − D1)ω− (c0r3/aL

3 )ω + ∑
q
k=1 ln(1 + b1k)

a1ω

)
=: d1.
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This, together with (2.18), leads to

u1(t) ≥ u1(η1)−
∫ ω

0
|u′1(t)| dt +

q

∑
k=1

ln(1 + b1k)

> d1 − c1 +
q

∑
k=1

ln(1 + b1k).

(2.23)

Let

R1 = max

{
| ln A|+ c1 −

q

∑
k=1

ln(1 + b1k), |d1|+ c1 −
q

∑
k=1

ln(1 + b1k)

}
,

it follows from (2.21) and (2.23) that

max
t∈[0,ω]

|u1(t)| < R1. (2.24)

From (2.5) we have

ā2eu2(η2) ≥ (r2 − D2) + D̄2eu1(ξ1)−u2(η2) +
q

∑
k=1

ln(1 + b2k)/ω

> (r2 − D2) + D̄2eu1(ξ1) · e−u2(η2) +
q

∑
k=1

ln(1 + b2k)/ω

≥ (r2 − D2) + D̄2e−R1 · e−u2(η2) +
q

∑
k=1

ln(1 + b2k)/ω,

which implies

eu2(η2) ≥ d +
√

d2 + 4ā2D̄2e−R1

2ā2
,

where d = (r2 − D2) + ∑
q
k=1 ln(1 + b2k)/ω, so

u2(η2) ≥ ln
d +

√
d2 + 4ā2D̄2e−R1

2ā2
=: d2. (2.25)

It follows from (2.18) and (2.25) leads to

u2(t) ≥ u2(η2)−
∫ ω

0
|u′2(t)| dt +

q

∑
k=1

ln(1 + b2k)

≥ d2 − c2 +
q

∑
k=1

ln(1 + b2k).

(2.26)

This, together with (2.22), leads to

max
t∈[0,ω]

|u2(t)| < max

{
| ln A|+ c2 −

q

∑
k=1

ln(1 + b2k), |d2|+ c2 −
q

∑
k=1

ln(1 + b2k)

}
=: R2.

From (2.6) and (2.19), we have

eu3(η3)−u1(ξ1)a3ω ≥
∫ ω

0
a3(t)eu3(t−τ2)−u1(t−τ2) dt = r3ω +

q

∑
k=1

ln(1 + b3k),
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eu3(ξ3)−u1(η1)a3ω ≤
∫ ω

0
a3(t)eu3(t−τ2)−u1(t−τ2) dt = r3ω +

q

∑
k=1

ln(1 + b3k) ≤ r3ω,

which imply

u3(η3) ≥ u1(ξ1) + ln

(
r3ω + ∑

q
k=1 ln(1 + b3k)

a3ω

)
,

and
u3(ξ3) ≤ u1(η1) + ln

( r3

a3

)
,

These together with (2.9) and (2.24), yield that

u3(t) ≤ u3(ξ3) +
∫ ω

0
|u′3(t)| dt−

q

∑
k=1

ln(1 + b3k)

< u1(η1) + ln
(

r3

a3

)
+ 2r3ω−

q

∑
k=1

ln(1 + b3k)

< R1 + ln
(

r3

a3

)
+ 2r3ω−

q

∑
k=1

ln(1 + b3k)

(2.27)

u3(t) ≥ u3(η3)−
∫ ω

0
|u′3(t)| dt +

q

∑
k=1

ln(1 + b3k)

≥ u1(ξ1) + ln

(
r3ω + ∑

q
k=1 ln(1 + b3k)

a3ω

)
− 2r3ω +

q

∑
k=1

ln(1 + b3k)

≥ −R1 + ln

(
r3ω + ∑

q
k=1 ln(1 + b3k)

a3ω

)
− 2r3ω +

q

∑
k=1

ln(1 + b3k).

(2.28)

This, together with (2.27), leads to

max
t∈[0,ω]

|u3(t)| < R3,

here

R3 = max

{∣∣∣∣ln r3

a3

∣∣∣∣ ,

∣∣∣∣∣ r3ω + ∑
q
k=1 ln(1 + b3k)

a3ω
ln

∣∣∣∣∣
}
+ R1 + 2r3ω−

q

∑
k=1

ln(1 + b3k).

Clearly, R1, R2 and R3 are independent of λ. Similarly to the proof of Theorem 2.1 of [4], we
can find a sufficiently large M > 0, denote the set

Ω =
{

u(t) = (u1(t), u2(t), u3(t))T ∈ X : ‖u‖ < M, u(t+k ) ∈ Ω, k = 1, 2, . . . , q
}

,

it follows that for each u ∈ Ker L ∩ ∂Ω, QNu 6= 0 and

deg{JQNu, Ω ∩Ker L, 0} = −1 6= 0.

By now we have proved that Ω verifies all the requirements in Lemma 2.1. Hence (2.2) has at
least one ω-periodic solution. Accordingly, system (1.3) has at least one positive ω-periodic
solution. The proof is complete.

Remark 2.3. If bik ≡ 0, (i = 1, 2, 3), k = 1, 2 . . . , then (1.3) is translated to (1.2). In this case,
the condition (C6) is the same as (H3) of Theorem 1.1, but we see that (H2) is not needed here.
Hence our result improves and generalizes the corresponding result of [4].
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3 Applications

In this section, we will list some applications of our above results.

Example 3.1. Consider the following delayed Holling–Tanner predator–prey system with dif-
fusion and impulse

x′1(t) = x1(t)(r1(t)− a1(t)x1(t))−
c(t)x3(t)x1(t− τ1)

m(t) + x1(t− τ1)
+ D1(t)(x2(t)− x1(t)),

x′2(t) = x2(t)(r2(t)− a2(t)x2(t)) + D2(t)(x1(t)− x2(t)),

x′3(t) = x3(t)
(

r3(t)− a3(t)
x3(t− τ2)

x1(t− τ2)

)
,

∆xi(tk) = bikxi(tk), i = 1, 2, 3, k = 1, 2, . . . ,

(3.1)

where D1(t), D2(t), ri(t), ai(t) (i = 1, 2, 3), c(t) and m(t) are positive continuous ω-periodic
functions; τ1 and τ2 are positive constants, bik (i = 1, 2, 3, k = 1, 2, . . . , ) satisfy the condition
(C4). The system (3.1) without impulse has been considered in [17].

From Theorem 2.2 one obtains the following.

Theorem 3.2. Suppose that r3ω + ∑
q
k=1 ln(1 + b3k) > 0 and

aL
3 (r1 − D1)ω + aL

3

q

∑
i=1

ln(1 + b1k) > cMr3ω,

hold, then (3.1) has at least one ω-periodic solution with strictly positive components.

Example 3.3. Consider the following delayed semi-ratio-dependent predator–prey diffusion
system with Ivlev functional response and impulse:

x′1(t) = x1(t)(r1(t)− a1(t)x1(t))− c(t)x3(t)
(
1− e−m(t)x1(t−τ1)

)
+ D1(t)(x2(t)− x1(t)),

x′2(t) = x2(t)(r2(t)− a2(t)x2(t)) + D2(t)(x1(t)− x2(t)),

x′3(t) = x3(t)
(

r3(t)− a3(t)
x3(t− τ2)

x1(t− τ2)

)
,

∆xi(tk) = bikxi(tk), i = 1, 2, 3, k = 1, 2, . . . ,

(3.2)

where all functions are defined as above. The system (3.2) without impulse has been consid-
ered in [7].

From Theorem 2.2 one obatins the following.

Theorem 3.4. Suppose that r3ω + ∑
q
k=1 ln(1 + b3k) > 0 and

aL
3 (r1 − D1)ω + aL

3

q

∑
i=1

ln(1 + b1k) > cMr3ω,

hold, then (3.2) has at least one ω-periodic solution with strictly positive components.
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Example 3.5. Consider the following delayed semi-ratio-dependent predator–prey diffusion
system with Monod–Haldane functional response and impulse

x′1(t) = x1(t)(r1(t)− a1(t)x1(t))−
c(t)x3(t)x1(t− τ1)

m2(t) + x2
1(t− τ1)

+ D1(t)(x2(t)− x1(t)),

x′2(t) = x2(t)(r2(t)− a2(t)x2(t)) + D2(t)(x1(t)− x2(t)),

x′3(t) = x3(t)
(

r3(t)− a3(t)
x3(t− τ2)

x1(t− τ2)

)
,

∆xi(tk) = bikxi(tk), i = 1, 2, 3, k = 1, 2, . . . ,

(3.3)

where all functions are defined as above. The system (3.3) without impulse has been consid-
ered in [15].

From Theorem 2.2 we get the following.

Theorem 3.6. Suppose that r3ω + ∑
q
k=1 ln(1 + b3k) > 0 and

2aL
3 (r1 − D1)ω + 2aL

3

q

∑
i=1

ln(1 + b1k) >
( c

m

)M
r3ω,

hold, then (3.3) has at least one ω-periodic solution with strictly positive components.
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