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Abstract. We study the existence of multiple positive solutions of the Neumann prob-
lem

−u′′(x) = λ f (u(x)), x ∈ (0, 1),

u′(0) = 0 = u′(1),

where λ is a positive parameter, f ∈ C([0, ∞), R) and for some β > 0 such that f (0) = 0,
f (s) > 0 for s ∈ (β, ∞), f (s) < 0 for s ∈ (0, β), and θ (> β) is the unique positive zero
of F(s) =

∫ s
0 f (t) dt. In particular, we prove that there exist at least 2n + 1 positive

solutions for λ ∈
( n2π2

f ′(β)
, ∞
)
, where n ∈ N. The proof of our main result is based upon

the bifurcation and continuation methods.
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1 Introduction

In this paper, we are concerned with the existence of multiple positive solutions to the
Neumann problem

−u′′(x) = λ f (u(x)), x ∈ (0, 1),

u′(0) = 0 = u′(1),
(1.1)

where λ is a positive parameter, f ∈ C([0, ∞), R) and for some β > 0 such that f (0) = 0,
f (s) > 0 for s ∈ (β,+∞), f (s) < 0 for s ∈ (0, β), and θ (> β) is the unique positive zero of
F(s) =

∫ s
0 f (t) dt.

The Neumann problems have played a significant role in mathematical physics (for ex-
ample, equilibrium problems concerning beams, columns, or strings and so on), and hence
have attracted the attention of many researchers over the last two decades, see [3, 9, 11] and
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the references therein. The existence and multiplicity of positive solutions for the Neumann
boundary value problems were investigated in connection with various configurations of f
by the fixed point theorems in [3, 11] and by a detailed analysis of time-map associated with
(1.1) in [9]. In [8], Maya and Shivaji obtained multiple positive solutions for a class of semi-
linear elliptic boundary value problems by using sub-super solutions arguments when f ∈ C1

satisfies the following conditions:

(f1) f (0) = 0;

(f2) f ′(0) < 0;

(f3) there exists β > 0 such that f (u) < 0 for u ∈ (0, β) and f (u) > 0 for u > β;

(f4) f is eventually increasing and lim
u→∞

f (u)
u = 0.

Recently, Ma [5] studied the global behavior of the components of nodal solutions of
asymptotically linear eigenvalue problems by using global bifurcation techniques. For the
other results related to the existence of nodal solutions, see [6, 7] and the references therein.

Motivated by the above papers, in this paper, we investigate the existence of multiple
positive solutions of (1.1) by applying the bifurcation and continuation methods. In fact, we
will transform the Neumann problem into the Dirichlet problem by virtue of the continuation
methods, and then we are concerned with determining values of λ, for which there exist
nodal solutions of the Dirichlet boundary value problem by means of bifurcation techniques.
Consequently, we give the existence results of positive solutions of the problem (1.1), under
the following assumptions.

(H1) f ∈ C([0, ∞), R) and for some β > 0 such that f (0) = 0, f (s) > 0 for s ∈ (β,+∞), f (s) <
0 for s ∈ (0, β), and there exists θ (> β) a (unique) positive zero of F(s) =

∫ s
0 f (t) dt.

(H2) f ′(β) = lim
s→0+

f (s+β)
s > 0.

(H3) f satisfies the Lipschitz condition in [0, β].

We will establish the following theorem.

Theorem 1.1. Let (H1)–(H3) hold and n ∈ N. Then there exist at least 2n + 1 positive solutions of
(1.1) for λ ∈

( n2π2

f ′(β)
, ∞
)
.

Now to illustrate Theorem 1.1, let us consider the simple example f (s) = s2(s − 1) for
s ≥ 0. Hence β = 1 and f ′(β) = 1. Thus, given n ∈ N, problem (1.1) has at least 2n + 1
positive solutions for all λ ∈ (n2π2, ∞).

Remark 1.2. Compared with the configurations of f in [8, 9], we only demand f ∈ C[0, ∞), so
that the quadrature technique does not apply to (1.1). Even if f ∈ C1 satisfies (H1), it seems
rather difficult to make a detailed analysis of the so-called time map to trace down the positive
solution of (1.1).

Remark 1.3. Maya and Shivaji [8] obtained multiple positive solutions for a class of semilinear
elliptic boundary value problems when f satisfies (f1)–(f4). Notice that f ∈ C1 implies that f
is Lipschitz continuous in [0, β], and so (H3) is satisfied. It is worth to be pointed out that in
Theorem 1.1 neither f ∈ C1, nor a growth condition at infinity is required.

The paper is organized as follows. In Section 2 we introduce some notations and auxiliary
results and in Section 3 we prove our main result.
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2 Some notations and auxiliary results

Let Y = C[0, 2] and E = {w ∈ C1[0, 2] | w(0) = w(2) = 0} with the norms ‖w‖∞ =

maxt∈[0,2] |w(t)| and ‖w‖ = max{‖w‖∞, ‖w′‖∞} respectively.
The following results are somewhat scattered in Miciano and Shivaji [9].

Lemma 2.1 ([9, Lemma 2.1]). If u(x) is a solution of (1.1), then u(1− x) is also a solution of (1.1).

Lemma 2.2 ([9, Lemma 2.2]). If u(x) is any solution of (1.1), then u(x) is symmetric with respect to
any point x0 ∈ [0, 1] such that u′(x0) = 0, i.e. u(x0− z) = u(x0 + z) for all z ∈ [0, min{x0, 1− x0}].

Remark 2.3. Any zero of f is a solution of (1.1).

Remark 2.4. Let u(x) be a positive solution of (1.1) such that u(0) = α, u(1) = γ, 0 ≤ α <

β < γ, and u′′ > 0 on (0, t0) and u′′ < 0 on (t0, 1), where t0 ∈ (0, 1) satisfying u(t0) = β.
To study positive solution u(x) of (1.1) which has n − 1 interior critical points at k/n,
(k = 1, 2, . . . , n− 1), it suffices by Lemma 2.2, to study solution vn(x) = u(nx) for x ∈ [0, 1/n].
Thus we only need to study the form of positive solution u.

3 Proof of the main result

Proof of Theorem 1.1. We first prove the case n = 1. It is divided into three steps.

Step 1. Let v(x) = u(x)− β. Then the problem (1.1) becomes to

−v′′(x) = λ f
(
v(x) + β

)
, x ∈ (0, 1),

v′(0) = 0 = v′(1).
(3.1)

It is easy to see that the solution u > 0 of (1.1) is equivalent to the solution v of (3.1) with
v > −β.

To study solutions of (3.1), we consider the auxiliary problem

−w′′(x) = λ f
(
w(x) + β

)
, x ∈ (−t0, 2− t0),

w(−t0) = 0 = w(2− t0),
(3.2)

where

w(x) =


v(−x), x ∈ [−t0, 0),

v(x), x ∈ [0, 1],

v(2− x), x ∈ (1, 2− t0].

(3.3)

Since (3.2) is an autonomous equation, we may consider the Dirichlet problem

−w′′(x) = λ f
(
w(x) + β

)
, x ∈ (0, 2),

w(0) = 0 = w(2).
(3.4)

Note that any solution w(x) of (3.4) is symmetric with respect to any point x0 ∈ (0, 2) such
that w′(x0) = 0. In order to find a positive solution of (1.1), it is enough to find such solution
of (3.4), which have exactly one simple zero in (0, 2) and is negative near x = 0.
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Step 2. Let g(w) = f (w + β). Then g satisfies

(H1)’ g ∈ C
(
[−β, ∞), R

)
, g(−β) = 0, g(w) > 0 for w ∈ (0,+∞), g(w) < 0 for w ∈ (−β, 0)

and there exists θ − β(> 0) a (unique) positive zero of G(s) =
∫ s
−β g(t) dt;

(H2)’ f ′(β) = lim
|s|→0

g(s)
s > 0;

(H3)’ g satisfies the Lipschitz condition in [−β, 0].

According to [1], we extend the function g to a continuous function g̃ defined on R in
such a way that g̃(s) > 0 for all s < −β. In the sequel of the proof we shall replace g with g̃,
however, for the sake of simplicity, the modified function g̃ will still be denoted by g.

For λ > 0, we claim w ≥ −β, where w is a solution of the problem

−w′′(x) = λg(w(x)), x ∈ (0, 2),

w(0) = 0 = w(2).
(3.5)

Suppose that there exists some x0 ∈ (0, 2) such that minx∈[0,2] w(x) = w(x0) < −β. This
implies w′′(x0) ≥ 0. On the other hand, −w′′(x0) = λg(w(x0)) > 0. This is a contradiction.
Hence, w ≥ −β.

Define L : D(L) ⊂ E→ Y by setting

Lw := −w′′, w ∈ D(L)

with
D(L) = {w ∈ C2[0, 2] | w(0) = w(2) = 0}.

Then L−1 : Y → E is completely continuous. Let ζ ∈ C(R, R) be such that

g(w) = f ′(β)w + ζ(w).

Clearly, lim|w|→0
ζ(w)

w = 0. Let us consider

Lw− λ f ′(β)w = λζ(w) (3.6)

as a bifurcation problem from the trivial solution w = 0. Note that (3.6) is equivalent to (3.5).
By the Krasnoselskii–Rabinowitz bifurcation theorem (see [2, Theorem 22.8]), the following

result holds.

Lemma 3.1. λk is a bifurcation point of (3.6) and the associated bifurcation branch Ck in R× E whose
closure contains (λk, 0) is either unbounded or contains a pair (λj, 0) and j 6= k, where λk =

k2π2

4 f ′(β)
is

the kth eigenvalue of

−ϕ′′(x) = λ f ′(β)ϕ, x ∈ (0, 2),

ϕ(0) = 0 = ϕ(2).

Let E = R× E under the product topology. Let S+
k denote the set of functions in E which

have exactly k− 1 simple zeros in (0, 2) and are positive near t = 0, and set S−k = −S+
k , and

Sk = S+
k ∪ S−k . They are disjoint and open in E. Finally, let Φ±k = R× S±k and Φk = R× Sk.

Let ζ̃(w) = max0≤|s|≤w |ζ(s)|, then ζ̃ is nondecreasing with respect to w and

lim
w→0+

ζ̃(w)

w
= 0. (3.7)
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Further it follows from (3.7) that

ζ(w)

‖w‖ ≤
ζ̃(|w|)
‖w‖ ≤

ζ̃(‖w‖∞)

‖w‖ ≤ ζ̃(‖w‖)
‖w‖ → 0, as ‖w‖ → 0. (3.8)

Lemma 3.2. The last alternative of Lemma 3.1 is impossible if Ck ⊂ Φk ∪ {(λk, 0)}.

Proof. Suppose on the contrary, if there exists (λm, wm) → (λj, 0) when m → +∞ with
(λm, wm) ∈ Ck, wm 6≡ 0 and j 6= k. Let ym := wm

‖wm‖ , then ym should be a solution of the
problem

ym = L−1
(

λm f ′(β)ym +
λmζ(wm)

‖wm‖

)
. (3.9)

By (3.8), (3.9) and the compactness of L−1, we obtain that for some convenient subsequence
ym → y0 6= 0 as m→ +∞. Now y0 verifies the equation

−y′′0 = λj f ′(β)y0

and ‖y0‖ = 1. Hence y0 ∈ Sj which is an open set in E, and as a consequence for some m
large enough, ym ∈ Sj, and this is a contradiction.

Lemma 3.3. From each (λk, 0) it bifurcates an unbounded continuum Ck of solutions to problems (3.6)
with exactly k− 1 simple zeros.

Proof. Taking into account Lemma 3.1 and Lemma 3.2, we only need to prove that Ck ⊂
Φk ∪ {(λk, 0)}.

Suppose Ck 6⊂ Φk ∪ {(λk, 0)}. Then there exists (λ, w) ∈ Ck ∩ (R× ∂Sk) such that (λ, w) 6=
(λk, 0), w 6∈ Sk, and (λn, wn) → (λ, w) with (λn, wn) ∈ Ck ∩ (R× Sk). Since w ∈ ∂Sk, w ≡ 0.
Let un := wn

‖wn‖ , then un should be a solution of the problem

un = L−1
(

λn f ′(β)un +
λnζ(wn)

‖wn‖

)
. (3.10)

By (3.8), (3.10) and the compactness of L−1 we obtain that for some convenient subsequence
un → u0 6= 0 as n→ +∞. Now u0 verifies the equation

−u′′0 = λ f ′(β)u0

and ‖u0‖ = 1. Hence λ = λj, for some j 6= k. Therefore, (λn, wn) → (λj, 0) with (λn, wn) ∈
Ck ∩ (R× Sk). This contradicts Lemma 3.2.

By the definition of Cν
k in [4, 10], Cν

k is connected, where ν ∈ {+,−}, and Ck = C+k ∪ C
−
k .

According to the Dancer unilateral global bifurcation result [4, Theorem 2], the following
result holds.

Lemma 3.4. Either C+k and C−k are both unbounded, or else C+k ∩ C
−
k 6= {(λk, 0)}.

Connecting Lemma 3.3 with Lemma 3.4, we can easily deduce the following unilateral
global bifurcation results.

Lemma 3.5. Let ν ∈ {+,−}. Then Cν
k is unbounded in R× E and

Cν
k ⊂ {(λk, 0)} ∩ (R× Sν

k) or Cν
k ⊂ {(λk, 0)} ∩ (R× S−ν

k ). (3.11)
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Proof. By Lemma 3.3, we can get (3.11) easily. So we only need to prove that both C+k and C−k
are unbounded. Suppose on the contrary, without loss of generality, we may suppose that C−k
is bounded. By Lemma 3.4, we know that (C−k ∩ C

+
k ) \ {(λk, 0)} 6= ∅. Therefore, in view of

(3.11), there exists (λ∗, w∗) ∈ C−k ∩ C
+
k such that (λ∗, w∗) 6= (λk, 0) and w∗ ∈ S+

k ∩ S−k . This
contradicts the definitions of S+

k and S−k .

From (H1)’–(H3)’, by a proof similar to that of Theorem 2.1 of [5], for any (λ, w) ∈ C+k ∪C
−
k ,

w(x) > −β, x ∈ [0, 2].
If w ∈ C−2 , there exists 0 < x1 < x2 < 2 such that w′(x1) = w′(x2) = 0, minx∈[0,2] w(x) =

w(x1) > −β, maxx∈[0,2] w(x) = w(x2). Multiplying (3.5) by w′(x) and then integrating from x1

to x2, we have ∫ w(x2)

w(x1)
g(s) ds = 0.

It follows from (H1)′ and w(x1) > −β that −β < w(x) < θ − β.
From Lemma 3.5 and w ∈ C1[0, 2] is bounded, and so C−2 is unbounded in the direction

of λ.

Step 3. Let w ∈ C−2 , x0 ∈ (0, 2) such that w(x0) = 0. Since (3.5) is autonomous equation,
w(x) is symmetric about x0

2 and 2+x0
2 . Moreover, β > 0 is the unique positive zero of f and

u(t0) = β, which combine with (1.1), (3.1)–(3.3) and (3.5) imply that x0 = 2t0. So w ∈ C−2 ,
x ∈

( x0
2 , 2+x0

2

)
corresponds to u(t) > 0, t ∈ [0, 1], which is a positive solution of (1.1).

By Lemma 2.1, there exist at least three positive solution of (1.1) for λ ∈
(

π2

f ′(β)
, ∞
)
.

Next, we prove the case n > 1.
Consider positive solutions with n− 1 interior critical points. By Lemma 2.2, the analysis

of these types of solutions is achieved by studying nondecreasing positive solutions on the
interval [0, 1/n], i.e. it is enough to study the positive solutions of

−u′′(x) = λ f (u(x)), x ∈
(
0, 1

n

)
,

u′(0) = 0 = u′( 1
n ).

(3.12)

The change of variables

u(x) = ω(y), y = xn, 0 ≤ x ≤ 1
n

(3.13)

transforms (3.12) into

−ω′′(y) = λ̃ f (ω(y)), y ∈ (0, 1),

ω′(0) = 0 = ω′(1),
(3.14)

where λ̃ := λ/n2.
As (3.14) is of the same type as (1.1), by the analysis already done in the case n = 1, it

becomes apparent that (3.14) possesses a nondecreasing positive solution if λ̃ ∈
(

π2

f ′(β)
, ∞
)
.

In fact, u(1− x) is also a solution (see Lemma 2.1) with n− 1 critical interior points.
By Theorem 1.1 in case n = 1 and Lemma 2.1, for each m = 1, 2, . . . , n, we obtain two

solutions with m− 1 interior critical points. These solutions along with the solution u ≡ β,
which implies that the problem (1.1) has at least 2n + 1 positive solutions for λ ∈

( n2π2

f ′(β)
, ∞
)
.

This completes the proof of Theorem 1.1.
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