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Abstract. Bifurcation of transversal homoclinics is studied for a pair of ordinary
differential equations with periodic perturbations when the first unperturbed equa-
tion has a manifold of homoclinic solutions and the second unperturbed equation is
vanishing. Such ordinary differential equations often arise in perturbed autonomous
Hamiltonian systems.

1. Introduction

Let us consider the system of ordinary differential equations given by

(1.1)
ẋ = f(x, y) + εh(x, y, t, ε),

ẏ = ε
(

Ay + g(y) + p(x, y, t, ε) + εq(y, t, ε)
)

,

where x ∈ R
n, y ∈ R

m, ε 6= 0 is sufficiently small, A is an m ×m matrix, and all
mappings are smooth, 1-periodic in the time variable t ∈ R and such that

(i) f(0, ·) = 0, g(0) = 0, gy(0) = 0, p(0, ·, ·, ·) = 0. Here gy means the derivative
of g with respect to y. Similar notations are used below .

(ii) The eigenvalues of A and fx(0, ·) lie off the imaginary axis .

(iii) There exists a smooth mapping γ(θ, y, t) 6= 0, where θ ∈ R
d−1, d ≥ 1 and y

is small, such that

γ̇(θ, y, t) = f(γ(θ, y, t), y), γ(θ, y, t) = O
(

e−c1|t|)

γy(θ, y, t) = O
(

e−c1|t|), γyy(θ, y, t) = O
(

e−c1|t|)

for a constant c1 > 0, and uniformly for θ, y. Moreover, we suppose

d = dimW s(y) ∩W u(y) = dimTγ(θ,y,t)W
s(y) ∩ Tγ(θ,y,t)W

u(y) .
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HereW s(u)(y) is the stable (unstable) manifold to x = 0 of ẋ = f(x, y), respectively,
and TzW

s(u)(y) is the tangent bundle of W s(u)(y) at z ∈ W s(u)(y), respectively.
Consequently, assumption (iii) means that equation ẋ = f(x, y) has a nondegen-

erate homoclinic manifold [5,7,10]

Wh(y) = W s(y) ∩W u(y) =
{

γ(θ, y, t) | θ ∈ R
d−1, t ∈ R

}

.

We suppose that W h(y) are compact. We are interested in homoclinic solutions of
(1.1) near the family Wh(y). Moreover, we search for transversal such solutions to
show chaos for (1.1) [2,5,10].

Systems like (1.1) are investigated in [3], where the existence of chaos is proved,
but the situation of this note is not included in [3]. Usually such systems occur in
perturbed Hamiltonian systems [7,10], but in this note, equation ẋ = f(x, y) has
not to be necessary Hamiltonian in x uniformly for y small. For proving our results,
we follow [3]. Related results are studied also in the papers [1,8,11,12].

2. Transversal Homoclinics

We take in (1.1) the following change of variables

x(t) = γ(θ, εy(t), t) + εz(t) ,

y ↔ εy, t↔ t+ α ,

then by (iii) we get

(2.1)

ż = fx(γ(θ, 0, t), 0)z + h(γ(θ, 0, t), 0, t+ α, 0)

− γy(θ, 0, t)p(γ(θ, 0, t), 0, t+ α, 0) +O(ε),

ẏ = ε
(

(

A+ py(γ(θ, 0, t), 0, t+ α, 0)
)

y + pε(γ(θ, 0, t), 0, t+ α, 0)

+ q(0, t+ α, 0) + px(γ(θ, 0, t), 0, t+ α, 0)z +O
(

e−c1|t|) +O(ε)
)

+ p(γ(θ, 0, t), 0, t+ α, 0) .

Now we consider the variational equation given by

(2.2) u̇ = fx(γ(θ, 0, t), 0)u .

According to (iii), we note that the system
{ ∂

∂θi

γ(θ, 0, t)
}d−1

i=1
∪ γ̇(θ, 0, t)

is a family of bounded solutions of (2.2), where θ =
(

θ1, θ2, · · · , θd−1

)

. We can
assume that these vectors are linearly independent. Then this family represents
a basis of bounded solutions of (2.2). Let Uθ(t) denote a fundamental solution of

(2.2) with uθj(t) the jth column of Uθ(t) and define U⊥
θ (t) =

(

Uθ(t)
−1

)∗
, where ∗ is

a transposition with respect to a scalar product 〈·, ·〉 on R
n. We can suppose that

uθj(t) and u⊥θj+d(t), j = 1, 2, · · · , d form bases of the bounded solutions of (2.2)
and of the adjoint equation

(2.3) u̇ = −fx(γ(θ, 0, t), 0)∗u ,

respectively, where u⊥θj(t) is the jth column of U⊥
θ (t). Moreover, we can assume

the smoothness of Uθ(t) on both θ and t. We note that U⊥
θ (t) is a fundamental

solution of (2.3).
Now by following [3], we get the following result.
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Theorem 2.1. Let us define a mapping

M : R
d−1 × R → R

d, M = (M1,M2, · · · ,Md) ,

by

Ml(θ, α) =

∞
∫

−∞

〈

u⊥θl+d(t), h(γ(θ, 0, t), 0, t+ α, 0)
〉

dt(2.4)

−
∞
∫

−∞

〈

u⊥θl+d(t), γy(θ, 0, t)p(γ(θ, 0, t), 0, t+ α, 0)
〉

dt .

If there is a simple root (θ0, α0) of M(θ, α) = 0, i.e. M(θ0, α0) = 0 and the matrix
M(θ,α)(θ0, α0) is nonsingular, then (1.1) has for any ε 6= 0 sufficiently small a
transversal homoclinic solution near γ(θ0, 0, · + α0) × 0.

Proof. Since the proof is very similar as of Theorem 2.10 of [3], so we only sketch
it here. Let us define the following Banach spaces

Z =
{

z ∈ C(R,Rn)
∣

∣ |z| = sup
t

|z(t)| <∞
}

,

Yθ =
{

h ∈ Z
∣

∣

∞
∫

−∞

〈h(t), u⊥θi+d(t)〉 dt = 0 for any i = 1, 2, . . . , d
}

,

X =
{

v ∈ C(R,Rm)
∣

∣ |v| = sup
t

|v(t)| <∞
}

.

We need the following two results.

Claim 1. ([3]) The nonhomogeneous equation

ż = fx(γ(θ, 0, t), 0)z + h(t), h ∈ Z

has a solution z ∈ Z if and only if h ∈ Yθ. The solution is unique if it satisfies
∞
∫

−∞
〈z(t), uθi(t)〉 dt = 0 for any i = 1, 2, . . . , d. This solution is smooth in θ and h.

Claim 2. ([3]) For ε 6= 0 sufficiently small, the nonhomogeneous equation

ẏ = ε
(

(

A+ py(γ(θ, 0, t), 0, t+ α, 0)
)

y + w
)

, w ∈ X

has a unique solution in X which we denote t→ y(t, α, θ, ε). This solution satisfies

|y| ≤ c2|w| for a constant c2 > 0, and
∣

∣

∣

∂y
∂α

∣

∣

∣
= O(ε|w|). If in addition

∞
∫

−∞
|w(s)| ds <

∞ then |y| ≤ c3|ε|
∞
∫

−∞
|w(s)| ds for a constant c3 > 0.

Now by using the standard way of Lyapunov-Schmidt like in [3], we can solve
(2.1) to get the statement of the theorem. �
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We note that usually we start with a system of the form

ẋ = f1(x, y) + εh1(x, y, t, ε) ,(2.5)

ẏ = εg1(x, y, t, ε) .

Then we suppose that f1(x, y) = 0 has a smooth solution x = ψ(y) and by changing
the variables, we can suppose that f1(0, y) = 0. Then we consider the equation

ẏ = εg1(0, y, t, ε) and we take its averaged equation ẏ = ε
1
∫

0

g1(0, y, t, 0) dt (see [9]).

Let y = 0 be a hyperbolic root of
1
∫

0

g1(0, y, t, 0) dt = 0, i.e.
1
∫

0

g1(0, 0, t, 0) dt = 0 and

the matrix
1
∫

0

g1y(0, 0, t, 0) dt has no eigenvalues on the imaginary axis. By taking

in (2.5) the usual averaging change of variables of the form y ↔ y+ εH(y, t), where
H is smooth and 1-periodic in t, we arrive at the system like (1.1). So let us take
y(t) = v(t) + εH(v(t), t) in (1.1). Then we get

ẋ = f(x, v) + ε
(

fy(x, v)H(v, t) + h(x, v, t, 0)
)

+O(ε2)

= f1(x, v) + εh1(x, v, t, ε) ,(2.6)

v̇ = ε
(

I + εHv(v, t)
)−1

(

Av + g(v + εH(v, t)) −Ht(v, t)

+ εAH(v, t) + p(x, v + εH(v, t), t, ε) + εq(v + εH(v, t), t, ε)
)

= εg1(x, v, t, ε) .

The unperturbed equation of (2.6) has the same form as for (1.1). For the mapping
M = (M1,M2, · · · ,Md) of (2.4) in terms of (2.6), we have

Ml(θ, α) = −
∞
∫

−∞

〈

u⊥θl+d(t), fy(γ(θ, 0, t), 0)H(0, t+ α) + γy(θ, 0, t)Ht(0, t+ α)
〉

dt

+

∞
∫

−∞

〈

u⊥θl+d(t), h1(γ(θ, 0, t), 0, t+ α, 0) − γy(θ, 0, t)g1(γ(θ, 0, t), 0, t+ α, 0)
〉

dt .

Assumption (iii) for ω(t) = γy(θ, 0, t)H(0, t+ α) gives

ω̇(t) = fx(γ(θ, 0, t), 0)ω(t)(2.7)

+ fy(γ(θ, 0, t), 0)H(0, t+ α) + γy(θ, 0, t)Ht(0, t+ α) .

Since ω ∈ Z, equation (2.7) and Claim 1 imply

fy(γ(θ, 0, t), 0)H(0, t+ α) + γy(θ, 0, t)Ht(0, t+ α) ∈ Yθ .

Hence we get

Ml(θ, α) =

∞
∫

−∞

〈

u⊥θl+d(t), h1(γ(θ, 0, t), 0, t+ α, 0)
〉

dt(2.8)

−
∞
∫

−∞

〈

u⊥θl+d(t), γy(θ, 0, t)g1(γ(θ, 0, t), 0, t+ α, 0)
〉

dt .
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When f1(0, ·) = 0 in (2.5), then (2.8) expresses the mapping M in terms of (2.5)
without using its averaged form (1.1).

Generally, when f1(ψ(y), y) = 0 and γ(θ, y, t) are homoclinics to the hyperbolic
fixed points x = ψ(y) of ẋ = f1(x, y), and y = y0 is a hyperbolic root of the equation
1
∫

0

g1(ψ(y), y, t) dt = 0, then the mapping M = (M1,M2, · · · ,Md) has the form

Ml(θ, α) =

∞
∫

−∞

〈

u⊥θl+d(t), h1(γ(θ, y0, t), y0, t+ α, 0)
〉

dt(2.9)

−
∞
∫

−∞

〈

u⊥θl+d(t), γy(θ, y0, t)g1(γ(θ, y0, t), y0, t+ α, 0)
〉

dt ,

where (2.2) has to be replaced by

u̇ = fx(γ(θ, y0, t), y0)u .

3. An Example

Let us consider the system

z̈ = z − (v2 + v̇2)z(z2 + w2 + u) + εδv̇ ,

ẅ = w − (v2 + v̇2)w(z2 + w2 + u) ,(3.1)

u̇ = (1 + v2 + v̇2)u+ εw2 ,

v̈ + v = ε
(

(1 − v2)v̇ + w
)

,

where δ is a constant and ε is a small parameter. By taking the polar coordinates

v = y sinφ, v̇ = y cosφ ,

(3.1) possesses the form

x′1 = x2/g2(y, φ, x, ε) ,

x′2 =
(

x1 − y2x1(x
2
1 + x2

3 + x5) + εδy cosφ
)

/g2(y, φ, x, ε) ,

x′3 = x4/g2(y, φ, x, ε) ,(3.2)

x′4 =
(

x3 − y2x3(x
2
1 + x2

3 + x5)
)

/g2(y, φ, x, ε) ,

x′5 =
(

(1 + y2)x5 + εx2
3

)

/g2(y, φ, x, ε) ,

y′ = ε
(

(1 − y2 sin2 φ)y cos2 φ+ x3 cosφ
)

/g2(y, φ, x, ε) ,

where ′ = d
dφ

, x = (x1, x2, x3, x4, x5) and

g2(y, φ, x, ε) = 1 − ε
(

(1 − y2 sin2 φ) cosφ sinφ+
x3

y
sinφ

)

.
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Of course, we suppose that y 6= 0. The unperturbed equation of (3.2) has the form

x′1 = x2 ,

x′2 = x1 − y2x1(x
2
1 + x2

3 + x5) ,

x′3 = x4 ,(3.3)

x′4 = x3 − y2x3(x
2
1 + x2

3 + x5) ,

x′5 = (1 + y2)x5 .

By putting r(t) = sech t, for (3.3) we have [5,6]

γ(θ, y, t) =

√
2

y

(

sin θr(t), sin θṙ(t), cos θr(t), cos θṙ(t), 0
)

,

u⊥θ3(y, t) =
(

− sin θr̈(t), sin θṙ(t),− cos θr̈(t), cos θṙ(t), 0
)

,(3.4)

u⊥θ4(y, t) =
(

− cos θṙ(t), cos θr(t), sin θṙ(t),− sin θr(t), 0
)

.

Now we consider the equation

y′ = ε
(1 − y2 sin2 φ)y cos2 φ

1 − ε(1 − y2 sin2 φ) cosφ sinφ

= ε
(

(1 − y2 sin2 φ)y cos2 φ+O(ε)
)

and its first-order averaging is given by

y′ = εy
(1

2
− y2

8

)

.

y0 = 2 is a simple root of 1
2 − y2

8 = 0. Hence we take y = 2 in the formulas (3.4).
In the notation of (2.5), we have

h1(x, 2, φ, 0)

=
(

x2, x1 − 4x1(x
2
1 + x2

3 + x5), x4, x3 − 4x1(x
2
1 + x2

3 + x5), 5x5

)

g3(x, φ)

+ 2δ
(

0, cosφ, 0, 0, 0
)

+
(

0, 0, 0, 0, x2
3

)

,

g3(x, φ) = (1 − 4 sin2 φ) sinφ cosφ+
x3

2
sinφ ,

g1(x, 2, φ, 0) = 2(1 − 4 sin2 φ) cos2 φ+ x3 cosφ .

We see that
γy(θ, 2, t) = −γ(θ, 2, t)/2 .

Since

h1(γ(θ, 2, t), 2, t+ α, 0) = γ̇(θ, 2, t)g3(γ(θ, 2, t), t+ α)

+ 2δ
(

0, cos(t+ α), 0, 0, 0
)

+
1

2

(

0, 0, 0, 0, cos2 θr(t)2
)

,

uθ2(t) = γ̇(θ, 2, t), 〈uθ2(t), u
⊥
θi+2(t)〉 = 0, i = 1, 2

〈γy(θ, 2, t), u⊥θ4(t)〉 = 0 ,
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the formula (2.9) has after several calculations [4] now the form

M1(θ, α) = 2δπ sech
π

2
sin θ sinα+

2π
√

2

3
cosechπ cos 2α

+
10π

√
2

3
cosech2π cos 4α+

5π

24
sech

π

2
cos θ cosα ,

M2(θ, α) = 2δπ sech
π

2
cos θ cosα .

For finding a simple root of M(θ, α) = 0, we suppose δ 6= 0 and take θ = −π/2
while α 6= ±π/2 must be a simple zero of the equation

(3.5) δ =
√

2
cosechπ cos 2α+ 5 cosech2π cos 4α

3 sech (π/2) sinα
= Ω(α) .

Function Ω(α) is odd and it is satisfying

Ω(α) = Ω(π − α), Ω(α) = −Ω(π + α), lim
α→0+

Ω(α) = +∞ .

Furthermore, Ω has on (0, π) only three critical points α1, α2 = π−α1, α3 = π/2 for
some α1 ' 1.378. Moreover, Ω attains on (0, π) its global minimum at α1, α2 and a
local maximum at α3. We note that Ω(α1) = Ω(α2). Consequently as Ω(π/2) < 0,
(3.5) has a simple zero for any δ.

Summarizing, by applying Theorem 2.1 and results of the papers [2,5], we arrive
at the following result.

Theorem 3.1. Let δ 6= 0 be fixed. Equation (3.1) has chaos for any ε 6= 0 suffi-
ciently small.

We note that for any compact interval [a1, a2] ⊂ R, 0 /∈ [a1, a2], there is an
ε0 > 0 such that (3.1) has chaos for any δ ∈ [a1, a2] and 0 < |ε| < ε0. On the
other hand, the function M2(θ, α) is vanishing for δ = 0, and we should derive
higher-degenerate Melnikov mapping to get a reasonable bifurcation result as δ is
crossing 0. We do not follow this line in this paper.

When w = u = 0 in (3.1), we get the simpler system

z̈ = z − (v2 + v̇2)z3 + εδv̇ ,(3.6)

v̈ + v = ε(1 − v2)v̇ .

Then (3.3) has the form

(3.7) x′1 = x2, x′2 = x1 − y2x3
1 .

(3.7) has a homoclinic γ(y, t) =
√

2
y

(

r(t), ṙ(t)
)

. So now we have d = 1 and u⊥2 (y, t) =
(

− r̈(t), ṙ(t)
)

. The Melnikov function has now the form

M(α) = 2δ

∞
∫

−∞

cos(t+ α)ṙ(t) dt = 2δπ sech
π

2
sinα .

We see that α0 = 0 is a simple root of M(α) = 0 for δ 6= 0. Consequently, (3.6) is
chaotic for δ 6= 0 fixed and ε 6= 0 sufficiently small. Hence (3.1) has, in addition to
Theorem 3.1, also “trivial” chaos of (3.6) with w = u = 0.
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