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Abstract. In this paper, we study a class of Lasota–Wazewska model with distributed

delays, new criteria for the existence and global asymptotic stability of positive pseudo
almost periodic solutions are established by using the fixed point method and the prop-
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punov function. Finally, we present an example with simulations to support the the-

oretical results. The obtained results are essentially new and they extend previously

known results.
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1 Introduction

To describe the survival of red blood cells in an animal, Ważewska-Czyżewska and Lasota in

[20] proposed the following autonomous nonlinear delay differential equation as their appro-

priate model:

x′(t) = −ax(t) + be−cx(t−τ), t ≥ 0, (1.1)

where x(t) denotes the number of red blood cells at time t, a > 0 is the probability of death

of a red blood cell, b and c are positive constants related to the production of red blood

cells per unit time, and τ is the time required to produce a red blood cell. As a classical

model of population dynamics, model (1.1) and its modifications have received great attention

from both theoretical and mathematical biologists, and have been well studied. In particular,

qualitative analysis such as periodicity, almost periodicity and stability of solutions of nonau-

tonomous Lasota–Wazewska models have been studied extensively by many authors, we refer

to [5, 7, 9, 11, 13, 15–19] and the references therein.

BCorresponding author. Email: zhiwenlong2012@126.com

http://www.math.u-szeged.hu/ejqtde/


2 Z. Long

Since the nature is full of all kinds of tiny perturbations, either the periodicity assumption

or the almost periodicity assumption is just approximation of some degree of the natural

perturbations [21, 25]. A well-known extension of almost periodicity is the pseudo almost

periodicity, which was introduced by C. Zhang in [24, 25] and has been widely applied in

the theory of ODEs and PDEs, see [2–4, 10, 14] and the references therein. In addition, it

is well-known that time delays often occur in realistic biological systems, which can make

the dynamic behaviors of the biological model become more complex, and may destabilize

the stable equilibria and admit almost periodic oscillation, pseudo almost periodic motion,

bifurcation and chaos, compared with the effects of discrete delays, distributed delays are

more general and difficult to handle. Therefore, it is important and interesting to study the

almost periodic dynamic behaviors of the Lasota–Wazewska model with distributed delays.

Motivated by the above discussions, in this paper, we will consider the following Lasota–

Wazewska model with pseudo almost periodic coefficients and distributed delays:

x′(t) = −a(t)x(t) +
n

∑
j=1

bj(t)
∫ ∞

0
Kj(s)e

−cj(t)x(t−s) ds, t ≥ 0, (1.2)

where Kj(·) : [0, ∞) → [0, ∞), j = 1, 2, . . . , n, is the probability kernel of the distributed delays,

the other variables and parameters have the same biological meanings as those in (1.1) with

the difference that they are now time-dependent.

The main purpose of this paper is employing fixed point method and the properties of

pseudo almost periodic functions, together with constructing a suitable Lyapunov functional,

to establish some sufficient conditions for the existence and global asymptotic stability of a

pseudo almost periodic solution for model (1.2). The results obtained in the present paper are

completely new and they extend previously known results in the literature.

The structure of this paper is as follows. In Section 2, we give some preliminaries related

to our main results. In Section 3, we present the main results on the dynamic behaviors for

model (1.2). Section 4 gives an example with simulations to demonstrate the effectiveness of

the theoretical results.

Notations: Let BC(R, R) denote the set of bounded continuous functions from R to R,

‖ · ‖ denote the supremum norm ‖g‖ := supt∈R
|g(t)|, obviously, (BC(R, R), ‖ · ‖) is a Banach

space. We generally denote BC∗ = BC((−∞, 0], R), BC∗
+ = BC((−∞, 0], R+) and R+ = [0, ∞),

and define xt ∈ BC∗ as xt(θ) = x(t + θ), θ ∈ (−∞, 0].

Finally, given a function g ∈ BC(R, R), let g+ and g− be defined as

g+ = sup
t∈R

g(t), g− = inf
t∈R

g(t).

2 Preliminaries

According to the biological interpretation of model (1.2), only positive solutions are meaning-

ful and therefore admissible. Consequently, the following initial conditions are given by

xt0 = ϕ, ϕ ∈ BC∗
+ and ϕ(0) > 0. (2.1)

Denote xt(t0, ϕ)(x(t; t0, ϕ)) for a solution of the admissible initial value problem (1.2) and (2.1)

with xt0(t0, ϕ) = ϕ ∈ BC∗
+ and t0 ∈ R. Moreover, let [t0, η(ϕ)) be the maximal right-interval

of existence of xt(t0, ϕ).

Let us recall some definitions and notations about almost periodicity and pseudo almost

periodicity. For more details, we refer the reader to [6, 22].
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Definition 2.1 (see [6]). Let f (t) ∈ BC(R, R). The function f (t) is said to be almost periodic

on R if, for any ε > 0, the set T( f , ε) =
{

ς :
∣

∣ f (t + ς) − f (t)
∣

∣ < ε, for all t ∈ R
}

is relatively

dense, i.e., for any ε > 0, it is possible to find a real number l = l(ε) > 0, for any interval with

length l(ε), there exists a number ς = ς(ε) in this interval such that
∣

∣ f (t + ς)− f (t)
∣

∣ < ε, for

all t ∈ R. We denote by AP(R, R) the set of all such functions.

In this paper, we denote

PAP0(R, R) =

{

f (t) ∈ BC(R, R) : lim
T→∞

1

2T

∫ T

−T
| f (t)| dt = 0

}

.

Definition 2.2 (see [22]). A function f (t) ∈ BC(R, R) is called pseudo almost periodic if it can

be expressed as

f (t) = f1(t) + f2(t),

where f1(t) ∈ AP(R, R) and f2(t) ∈ PAP0(R, R). The collection of such functions will be

denoted by PAP(R, R).

Remark 2.3. The functions f1 and f2 in Definition 2.2 are, respectively, called the almost

periodic component and the ergodic perturbation of the pseudo almost periodic function f .

Moreover, the decomposition given in Definition 2.2 is unique.

Remark 2.4. Notice that (PAP(R, R), ‖ · ‖) is a Banach space and AP(R, R) is a proper sub-

space of PAP(R, R), for example, let f (t) = cos
√

3t + sin πt + 1
1+t2 , one can easily see that

f (t) ∈ PAP(R, R), however, f (t) /∈ AP(R, R).

Lemma 2.5 (see [4,22]). If f (t) ∈ PAP(R, R), h(t) ∈ PAP(R, R), then f (t)× h(t) ∈ PAP(R, R).

Definition 2.6 (see [6, 23]). Let x ∈ R and Q(t) be a continuous function defined on R. The

linear equation

x′(t) = Q(t)x(t) (2.2)

is said to admit an exponential dichotomy on R if there exist positive constants ki, αi, i = 1, 2,

projection P and the fundamental solution X(t) of (2.2) satisfying

|X(t)PX−1(s)| ≤ k1e−α1(t−s), for t ≥ s,

|X(t)(1 − P)X−1(s)| ≤ k2e−α2(s−t), for t ≤ s.

Lemma 2.7 (see [23]). Assume that Q(t) is an almost periodic function and g(t) ∈ PAP(R, R). If

the linear equation (2.2) admits an exponential dichotomy, then pseudo almost periodic equation

x′(t) = Q(t)x(t) + g(t)

has a unique pseudo almost periodic solution x(t), and

x(t) =
∫ t

−∞
X(t)PX−1(s)g(s) ds −

∫ ∞

t
X(t)(1 − P)X−1(s)g(s) ds.

Lemma 2.8 (see [6]). Let δ(t) be an almost periodic function on R and

M[δ] = lim
t→∞

1

T

∫ t+T

t
δ(s) ds > 0.

Then the linear equation

x′(t) = −δ(t)x(t)

admits an exponential dichotomy on R.
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The following lemma is from [1] and will be employed in establishing the asymptotic

stability of model (1.2).

Lemma 2.9. Let l be a real number and f be a non-negative function defined on [l, ∞) such that f is

integrable on [l, ∞) and is uniformly continuous on [l, ∞). Then limt→∞ f (t) = 0.

To obtain our main results, throughout this paper, we also need the following assumptions

for model (1.2):

(A1) a(t) ∈ AP(R, (0, ∞)), and bj(t), cj(t) ∈ PAP(R, (0, ∞)), where j = 1, 2, . . . , n.

(A2) Kj(s) : [0, ∞) → [0, ∞) is a piecewise continuous function such that

∫ ∞

0
Kj(s) ds < ∞, j = 1, 2, . . . , n.

(A3)

a− > 0,
n

∑
j=1

b+j

∫ ∞

0
Kj(s) ds > 0.

3 Main results

In this section, the main results of this paper are stated as follows. For convenience, we divide

this part into two subsections.

3.1 Existence of pseudo almost periodic solution

Lemma 3.1. Suppose assumptions (A1)–(A3) hold, and BC0 =
{

ϕ | ϕ ∈ BC∗, S2 < ϕ(t) < S1,

for all t ∈ (−∞, 0]
}

. Then, for any ϕ ∈ BC0, all solutions x(t; t0, ϕ) of model (1.2) in any strip

Ω1 =
{

(t, x) : t ∈ R, x ∈ (R2, R1)
}

,

which properly contains the strip

Ω2 =
{

(t, x) : t ∈ R, x ∈ [S2, S1]
}

,

where

S1 =

n

∑
j=1

b+j
∫ ∞

0 Kj(s) ds

a−
, S2 =

n

∑
j=1

b−j e
−c+j S1

∫ ∞

0 Kj(s) ds

a+
,

and

R2 =

n

∑
j=1

b−j e
−c+j R1

∫ ∞

0 Kj(s) ds

a+
.

Proof. Clearly, R2 < S2, S1 < R1. We first prove that x(t; t0, ϕ) of model (1.2) satisfies

R2 < x(t; t0, ϕ) < R1, for all t ∈ [t0, η(ϕ)). (3.1)

For the sake of convenience, we denote x(t) = x(t; t0, ϕ). Let [t0, T) ⊆ [t0, η(ϕ)) be an interval

such that

x(t) > 0, for all t ∈ [t0, T),
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we first claim that

0 < x(t) < R1, for all t ∈ [t0, T). (3.2)

In fact, if (3.2) does not hold, there exists t1 ∈ (t0, T) such that

x(t1) = R1 and 0 < x(t) < R1, for all t ∈ (−∞, t1). (3.3)

It follows from (1.2) and (3.3) that

0 ≤ x′(t1)

= − a(t1)x(t1) +
n

∑
j=1

bj(t1)
∫ ∞

0
Kj(s)e

−cj(t1)x(t1−s) ds

≤ − a−x(t1) +
n

∑
j=1

b+j

∫ ∞

0
Kj(s) ds

= − a−R1 +
n

∑
j=1

b+j

∫ ∞

0
Kj(s) ds

< − a−S1 +
n

∑
j=1

b+j

∫ ∞

0
Kj(s) ds

= 0,

which is a contradiction and implies that (3.2) holds.

We next show that

x(t) > R2, for all t ∈ [t0, η(ϕ)). (3.4)

Otherwise, there exists t2 ∈ (t0, η(ϕ)) such that

x(t2) = R2 and x(t) > R2, for all t ∈ (−∞, t2). (3.5)

In view of (1.2), (3.2) and (3.5), direct calculation produces

0 ≥ x′(t2)

= − a(t2)x(t2) +
n

∑
j=1

bj(t2)
∫ ∞

0
Kj(s)e

−cj(t2)x(t2−s) ds

> − a+x(t2) +
n

∑
j=1

b−j e
−c+j R1

∫ ∞

0
Kj(s) ds

= − a+R2 +
n

∑
j=1

b−j e
−c+j R1

∫ ∞

0
Kj(s) ds

= 0,

which is a contradiction and hence (3.4) holds. According to (3.2) and (3.4), one easily see that

(3.1) is true, which implies that x(t) is bounded. Therefore, we know from the continuation

theorem in [8, Theorem 3.2 on page 46] that the existence interval of each solution for model

(1.2) can be extended to [t0, ∞).

Lemma 3.2. Suppose assumptions (A1)–(A3) are satisfied. Define the nonlinear operator Γ as follows,

for each φ ∈ PAP(R, R), (Γφ)(t) := xφ(t), where

xφ(t) =
∫ t

−∞
e−

∫ t
v a(u) duF(v) dv,
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in which

F(v) =
n

∑
j=1

bj(v)
∫ ∞

0
Kj(s)e

−cj(v)φ(v−s) ds,

then Γ maps PAP(R, R) into itself.

Proof. Firstly, we claim that F(s) ∈ PAP(R, R). In fact, let φ ∈ PAP(R, R) and e−v is a

uniformly continuous function for v ≥ 0, we know from Lemma 3.1 and [22, Corollary 5.4 on

page 58] that gφ(v) , e−cj(v+s)φ(v) ∈ PAP(R, R), and therefore, gφ can be expressed as

gφ(v) = g1
φ(v) + g2

φ(v),

where g1
φ(v) ∈ AP(R, R) and g2

φ(v) ∈ PAP0(R, R). We know from the almost periodicity of

g1
φ(v) that for any ε > 0, there exists a number l(ε) such that in any interval [α, α + l(ε)] one

can find a number ς, with the property that

sup
v∈R

∣

∣

∣
g1

φ(v + ς)− g1
φ(v)

∣

∣

∣
<

ε
∫ ∞

0 Kj(s) ds
,

and

lim
T→∞

1

2T

∫ T

−T

∣

∣

∣
g2

φ(v)
∣

∣

∣
dv = 0.

Then, we have
∣

∣

∣

∣

∫ ∞

0
Kj(s)g1

φ(v + ς − s) ds −
∫ ∞

0
Kj(s)g1

φ(v − s) ds

∣

∣

∣

∣

≤
∫ ∞

0
Kj(s)

∣

∣g1
φ(v + ς − s)− g1

φ(v − s)
∣

∣ ds

< ε, for all v ∈ R,

which implies that
∫ ∞

0
Kj(s)g1

φ(v − s) ds ∈ AP(R, R). (3.6)

On the other hand, one sees that

lim
T→∞

1

2T

∫ T

−T

∣

∣

∣

∣

∫ ∞

0
Kj(s)g2

φ(v − s) ds

∣

∣

∣

∣

dv ≤ lim
T→∞

1

2T

∫ T

−T

∫ ∞

0
Kj(s)

∣

∣g2
φ(v − s)

∣

∣ ds dv

= lim
T→∞

1

2T

∫ ∞

0

∫ T

−T
Kj(s)

∣

∣g2
φ(v − s)

∣

∣ dv ds

= lim
T→∞

1

2T

∫ ∞

0

∫ T−s

−T−s
Kj(s)

∣

∣g2
φ(u)

∣

∣ du ds

≤ lim
T→∞

1

2T

∫ ∞

0

∫ T+s

−T−s
Kj(s)

∣

∣g2
φ(u)

∣

∣ du ds

= lim
T→∞

∫ ∞

0
Kj(s)

T + s

T

1

2(T + s)

∫ T+s

−T−s

∣

∣g2
φ(u)

∣

∣ du ds

= 0,

which means that
∫ ∞

0
Kj(s)g2

φ(v − s) ds ∈ PAP0(R, R). (3.7)

Combining (3.6) and (3.7), we derive that
∫ ∞

0
Kj(s)e

−cj(v)φ(v−s) ds =
∫ ∞

0
Kj(s)g1

φ(v − s) ds +
∫ ∞

0
Kj(s)g2

φ(v − s) ds ∈ PAP(R, R).

Then, by a standard argument as Lemma 3.2 in [4], we can prove that Γ maps PAP(R, R) into

itself.
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Our first main result can be stated as follows.

Theorem 3.3. In addition to (A1)–(A3), suppose further that

r =

n

∑
j=1

b+j c+j
∫ ∞

0 Kj(s) ds

a−
< 1. (3.8)

Then the model (1.2) admits a unique pseudo almost periodic solution in the region

B =
{

x | x ∈ PAP(R, R), S2 ≤ x(t) ≤ S1, t ∈ R
}

.

Proof. For any φ ∈ PAP(R, R), we introduce the following auxiliary equation

x′(t) = −a(t)x(t) +
n

∑
j=1

bj(t)
∫ ∞

0
Kj(s)e

−cj(t)φ(t−s) ds.

Notice that M[a] > 0, we know from Lemma 2.8 that the linear equation

x′(t) = −a(t)x(t)

admits an exponential dichotomy on R. Therefore, by Lemmas 2.5 and 2.7, we know that

model (1.2) has exactly one solution expressed by

xφ(t) =
∫ t

−∞
e−

∫ t
v a(u) du

[ n

∑
j=1

bj(v)
∫ ∞

0
Kj(s)e

−cj(v)φ(v−s) ds

]

dv, (3.9)

one can observe from Lemma 3.2 that xφ(t) ∈ PAP(R, R).

Set

B :=
{

x | x ∈ PAP(R, R), S2 ≤ x(t) ≤ S1, t ∈ R
}

,

obviously, B is a closed subset of PAP(R, R).

Define an operator Γ on B by

(Γφ)(t) =
∫ t

−∞
e−

∫ t
v a(u) du

[ n

∑
j=1

bj(v)
∫ ∞

0
Kj(s)e

−cj(v)φ(v−s) ds

]

dv. (3.10)

Obviously, to show that model (1.2) has a unique pseudo almost periodic solution, it suffices

to prove that Γ has a fixed point in B.

Let us first prove that the operator Γ is a self-mapping from B to B. In fact, for any φ ∈ B,

we have

(Γφ)(t) ≤
∫ t

−∞
e−

∫ t
v a(u)du

[ n

∑
j=1

b+j

∫ ∞

0
Kj(s) ds

]

dv

≤
∫ t

−∞
e−a−(t−v)

[ n

∑
j=1

b+j

∫ ∞

0
Kj(s) ds

]

dv

=

n

∑
j=1

b+j
∫ ∞

0 Kj(s) ds

a−

= S1, for all t ∈ R.

(3.11)
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On the other hand, we have

(Γφ)(t) ≥
∫ t

−∞
e−

∫ t
v a(u)du

[ n

∑
j=1

b−j

∫ ∞

0
Kj(s)e

−c+j S1 ds

]

dv

≥
∫ t

−∞
e−a+(t−v)

[ n

∑
j=1

b−j e
−c+j S1

∫ ∞

0
Kj(s) ds

]

dv

=

n

∑
j=1

b−j e
−c+j S1

∫ ∞

0 Kj(s) ds

a+

= S2, for all t ∈ R.

which, together with (3.11), means that the mapping Γ is a self-mapping form B to B.

Next, we show that the mapping Γ is a contraction mapping on B. For any φ, φ∗ ∈ B, one

has

‖(Γφ)(t)− (Γφ∗)(t)‖
= sup

t∈R

|(Γφ)(t)− (Γφ∗)(t)|

= sup
t∈R

∣

∣

∣

∣

∫ t

−∞
e−

∫ t
v a(u) du

n

∑
j=1

bj(v)
∫ ∞

0
Kj(s)

[

e−cj(v)φ(v−s)− e−cj(v)φ
∗(v−s)

]

ds dv

∣

∣

∣

∣

.

(3.12)

Since

|e−x − e−y| = e−(x+θ(y−x))|x − y|
< |x − y|, where x, y ∈ (0,+∞), 0 < θ < 1.

(3.13)

It follows from (3.12) and (3.13) that

‖(Γφ)(t)− (Γφ∗)(t)‖ ≤ sup
t∈R

∫ t

−∞
e−

∫ t
v a(u) du

n

∑
j=1

bj(v)
∫ ∞

0
Kj(s)

∣

∣e−cj(v)φ(v−s)− e−cj(v)φ
∗(v−s)

∣

∣ ds dv

≤ sup
t∈R

∫ t

−∞
e−a−(t−v)

n

∑
j=1

b+j c+j

∫ ∞

0
Kj(s) ds dv‖φ − φ∗‖

=

n

∑
j=1

b+j c+j
∫ ∞

0
Kj(s) ds

a−
‖φ − φ∗‖. (3.14)

Note that

r =

n

∑
j=1

b+j c+j
∫ ∞

0 Kj(s)ds

a−
< 1,

(3.14) shows that Γ is a contraction mapping. Therefore, by virtue of the Banach fixed point

theorem, Γ has a unique fixed point which corresponds to the solution of model (1.2) in

B ⊂ PAP(R, R). This completes the proof of Theorem 3.3.

3.2 Asymptotic stability of pseudo almost periodic solution

In the following, we give the analysis of global asymptotic stability of model (1.2).

Theorem 3.4. If all the assumptions in Theorem 3.3 are satisfied, then, all solutions of model (1.2) in

the region B converge to its unique pseudo almost periodic solution.
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Proof. Let x(t) be any solution of model (1.2) and x∗(t) be a pseudo almost periodic solution

of model (1.2), consider a Lyapunov function defined by

V(t) =|x(t)− x∗(t)|+
∫ ∞

0
Kj(s)

{

∫ t

t−s

n

∑
j=1

bj(u + s)
∣

∣e−cj(u+s)x(u)− e−cj(u+s)x∗(u)
∣

∣ du

}

ds.

A direct calculation of the right derivative D+V(t) of V(t) along the solutions of model (1.2),

produces

D+V(t) = sgn{x(t)− x∗(t)}

×
{

− a(t)[x(t) − x∗(t)] +
n

∑
j=1

bj(t)
∫ ∞

0
Kj(s)

[

e−cj(t)x(t−s)− e−cj(t)x∗(t−s)
]

ds

}

+
∫ ∞

0
Kj(s)

n

∑
j=1

bj(t + s)
∣

∣e−cj(t+s)x(t)− e−cj(t+s)x∗(t)
∣

∣ ds

−
∫ ∞

0
Kj(s)

n

∑
j=1

bj(t)
∣

∣e−cj(t)x(t−s)− e−cj(t)x∗(t−s)
∣

∣ ds

≤ − a(t)|x(t) − x∗(t)|+
n

∑
j=1

bj(t)
∫ ∞

0
Kj(s)

∣

∣e−cj(t)x(t−s)− e−cj(t)x∗(t−s)
∣

∣ ds (3.15)

+
∫ ∞

0
Kj(s)

n

∑
j=1

bj(t + s)
∣

∣e−cj(t+s)x(t)− e−cj(t+s)x∗(t)
∣

∣ ds

−
∫ ∞

0
Kj(s)

n

∑
j=1

bj(t)
∣

∣e−cj(t)x(t−s)− e−cj(t)x∗(t−s)
∣

∣ ds

≤ − a−|x(t)− x∗(t)|+
n

∑
j=1

b+j c+j

∫ ∞

0
Kj(s) ds|x(t) − x∗(t)|

≤ −
(

a− −
n

∑
j=1

b+j c+j

∫ ∞

0
Kj(s) ds

)

|x(t)− x∗(t)| for t ≥ t0.

It follows from (3.8) and (3.15) that there exists a positive constant µ1 > 0 such that

D+V(t) ≤ −µ1|x(t)− x∗(t)|, t ≥ t0. (3.16)

Integrating on both sides of (3.16) from t0 to t yields

V(t) + µ1

∫ t

t0

|x(s)− x∗(s) |ds < V(t0) < ∞, t ≥ t0,

then
∫ t

t0

|x(s)− x∗(s)| ds < µ−1
1 V(t0) < ∞, t ≥ t0,

and hence |x(t)− x∗(t)| ∈ L1([t0, ∞)).

From Lemma 3.1, we can obtain that x(t), x∗(t) and their derivatives remain bounded on

[t0, ∞) (from the equation satisfied by them). Then it follows that |x(t) − x∗(t)| is uniformly

continuous on [t0, ∞). By Lemma 2.9, we conclude that

lim
t→∞

|x(t)− x∗(t)| = 0.

The proof of Theorem 3.4 is complete.
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Remark 3.5. Very recently, J. Shao in [16] studied the following Lasota–Wazewska model with

an oscillating death rate

x′(t) = −a(t)x(t) +
n

∑
j=1

β j(t)e
−cj(t)x(t−τj(t)), (3.17)

where a : R → R is an almost periodic function which is controlled by a non-negative function,

bj, cj, τj : R → [0,+∞) are pseudo almost periodic functions, if there exist a bounded and

continuous function a∗ : R → [0, ∞) and constants Fi, FS, κ such that

Fie−
∫ t

s a∗(u) du ≤ e−
∫ t

s a(u) du ≤ FSe−
∫ t

s a∗(u) du, for all t, s ∈ R and t − s > 0, (3.18)

(

− a∗(t) + Fs
m

∑
j=1

bj(t)cj(t)e
−cj(t)κ

)+

< 0, (3.19)

the author proved that equation (3.17) has a pseudo almost periodic solution which is globally

exponentially stable.

One can find that the function of death rate a(t) in equation (3.17) is more general than

equation (1.2). However, if Kj(s) = δ(s − τj), where δ(s) denotes the Dirac-δ function, then

equation (1.2) becomes equation (3.17) with constant discrete delays, on the other hand, as

pointed out by L. Duan et al. in [5] and Y. Kuang in [12], it is more reasonable and realistic to

establish delay-dependent criteria ensuring the dynamics of a system because the delays have

important effect on a system, one can clearly see that the stability criteria established here are

delay-dependent and the method used here is different from [16]. This indicates that these

results are complementary to each other. Therefore, our results are new and complement the

existing ones. Moreover, it seems that condition (3.8) is easier to verify than (3.18)–(3.19).

4 An example

Here we give an example that illustrates the pseudo almost periodic behavior of the Lasota–

Wazewska model with distributed delay.

Example 4.1. Consider the following pseudo almost periodic differential equation with dis-

tributed delays:

x′(t) = −
(

9.5 +
1

2
sin

√
3t

)

x(t)

+

(

0.75 +
1

2
sin

√
2t +

1

2
| cos

√
5t|+ 1

4

1

1 + t2

)

∫ ∞

0
K1(s)e

(

0.6+0.4 sin
√

2t+ 1
1+t2

)

x(t−s)
ds

+

(

0.8 +
1

2
sin

√
3t +

1

2
| cos

√
2t|+ 1

5

1

1 + t2

)

∫ ∞

0
K2(s)e

(

1.2+0.3 cos
√

3t+ 1
2

1
1+t2

)

x(t−s)
ds,

(4.1)

where

K1(s) =

{

2s
3 , if 0 ≤ s ≤ 1,
2e
3es , if 1 < s < ∞,

K2(s) =

{

s
4 , if 0 ≤ s ≤ 2,
e2

2es , if 2 < s < ∞.

Choose S1 = 0.5, S2 = 0.02, one can easily realize that

b+1
∫ ∞

0 K1(s) ds + b+2
∫ ∞

0 K2(s) ds

a−
≈ 0.4444 < 0.5,
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b−1 e−c+1 R1
∫ ∞

0 K1(s) ds + b−2 e−c+2 R1
∫ ∞

0 K2(s) ds

a+
≈ 0.0202 > 0.02,

and

r =
b+1 c+1

∫ ∞

0 K1(s) ds + b+2 c+2
∫ ∞

0 K2(s) ds

a−
≈ 0.8889 < 1.

Therefore, by the consequence of Theorems 3.3–3.4, equation (4.1) has a unique positive

pseudo almost periodic solution x(t) which is globally asymptotically stable (see Figure 4.1).

0 5 10 15 20 25 30 35

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

t

x(
t)

Figure 4.1: Time-domain behavior of x(t) for model (4.1)

with initial value ϕ(s) = 0.35, s ∈ (−∞, 0].

Remark 4.2. In recent years, many in-depth research results of the Lasota–Wazewska model

mainly focused on the dynamics of the equilibrium point or periodic solution or almost pe-

riodic solution [5, 7, 9, 13, 15, 17, 19], in particular, one can easily see that the obtained results

extend the corresponding ones in [18]. To the best of our knowledge, on the other hand, fewer

authors have considered the existence and stability of pseudo almost periodic solutions to

model (1.2). Therefore, the main results in the present paper are essentially new and they

extend previously known results.
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