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1 Introduction

The purpose of this article is to establish the existence of mild solutions for a class

of impulsive abstract neutral functional differential equations with state-dependent delay

described by the form

d

dt
[x(t) +G(t, xt)] = Ax(t) + F (t, xρ(t,xt)), t ∈ I = [0, a], (1.1)

x0 = ϕ ∈ B, (1.2)

∆x(ti) = Ii(xti), i = 1, 2, ..., n, (1.3)

whereA is the infinitesimal generator of a compact C0-semigroup of bounded linear operators

(T (t))t≥0 on a Banach space X; the function xs : (−∞, 0] → X, xs(θ) = x(s + θ), belongs

to some abstract phase space B described axiomatically; 0 < t1.... < tn < a are prefixed

numbers; F,G : I × B → X, ρ : I × B → (−∞, a], Ii : B × X → X, i = 1, 2, ..., n, are

appropriate functions and ∆ξ(t) represents the jump of the function ξ at t, which is defined

by ∆ξ(t) = ξ(t+) − ξ(t−).

Many evolution processes are characterized by the fact that at certain moments of time

they experience a change of state abruptly. These processes are subject to short-term per-

turbations whose duration is negligible in comparison with the duration of the process.
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Consequently, it is natural to assume that these perturbations act instantaneously, that is,

in the form of impulses. It is known, for example, that many biological phenomena involving

thresholds, bursting rhythm models in medicine and biology, optimal control models in eco-

nomics, pharmacokinetics and frequency modulated systems, do exhibit impulsive effects.

Thus impulsive differential equations, that is, differential equations involving impulse ef-

fects, appear as a natural description of observed evolution phenomena of several real world

problems. For more details on this theory and its applications we refer the monographs

of Bainov and Simeonov [3], Lakshmikantham et al. [16] and Samoilenko and Perestyuk

[19], where numerous properties of their solutions are studied and detailed bibliographies

are given.

Functional differential equations with state-dependent delay appear frequently in appli-

cations as model of equations and for this reason the study of this type of equations has re-

ceived great attention in the last few years, see for instance [1, 4, 5, 8, 9, 10, 12, 13, 14, 20, 21]

and the references therein. The literature related to impulsive partial functional differen-

tial equations with state-dependent delay is limited, to our knowledge, to the recent works

[2, 11]. The study of impulsive partial neutral functional differential equations with state-

dependent delay described in the general abstract form (1.1)-(1.3) is an untreated topic in

the literature, and this fact, is the main motivation of our paper.

2 Preliminaries

Throughout this article, A : D(A) ⊂ X → X is the infinitesimal generator of a compact

C0-semigroup of linear operators (T (t))t≥0 on a Banach spaceX and M̃ is a positive constant

such that ‖ T (t) ‖≤ M̃ for every t ∈ I. For background information related to semigroup

theory, we refer the reader to Pazy [18].

To consider the impulsive condition (1.3), it is convenient to introduce some additional

concepts and notations. We say that a function u : [σ, τ ] → X is a normalized piecewise

continuous function on [σ, τ ] if u is piecewise continuous and left continuous on (σ, τ ]. We

denote by PC([σ, τ ];X) the space formed by the normalized piecewise continuous functions

from [σ, τ ] into X. In particular, we introduce the space PC formed by all functions u :

[0, a] → X such that u is continuous at t 6= ti, u(t
−
i ) = u(ti) and u(t+i ) exists, for all

i = 1, · · · , n. In this paper we always assume that PC is endowed with the norm ‖ u ‖PC=

sups∈I ‖ u(s) ‖. It is clear that (PC, ‖ · ‖PC) is a Banach space.

To simplify the notations, we put t0 = 0, tn+1 = a and for u ∈ PC we denote by

ũi ∈ C([ti, ti+1];X), i = 0, 1, · · · , n, the function given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],

u(t+i ), for t = ti.

Moreover, for B ⊆ PC we denote by B̃i, i = 0, 1, · · · , n, the set B̃i = {ũi : u ∈ B}.

Lemma 2.1 A set B ⊆ PC is relatively compact in PC if, and only if, the set B̃i is relatively

compact in C([ti, ti+1];X), for every i = 0, 1, · · · , n.
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In this work we will employ an axiomatic definition for the phase space B which is similar

to those introduced in [15]. Specifically, B will be a linear space of functions mapping (−∞, 0]

into X endowed with a seminorm ‖ · ‖B, and satisfies the following axioms:

(A) If x : (−∞, σ + b] → X, b > 0, is such that x|[σ,σ+b] ∈ PC([σ, σ + b] : X) and xσ ∈ B,

then for every t ∈ [σ, σ + b] the following conditions hold:

(i) xt is in B,

(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,

(iii) ‖ xt ‖B≤ K(t− σ) sup{‖ x(s) ‖: σ ≤ s ≤ t} +M(t− σ) ‖ xσ ‖B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is locally

bounded, and H,K,M are independent of x(·).

(B) The space B is complete.

Example 2.1 The phase spaces PCh(X), PC0
g (X).

As usual, we say that ϕ : (−∞, 0] → X is normalized piecewise continuous, if ϕ is left

continuous and the restriction of ϕ to any interval [−r, 0] is piecewise continuous.

Let g : (−∞, 0] → [1,∞) be a continuous, nonincreasing function with g(0) = 1, which

satisfies the conditions (g-1), (g-2) of [15]. This means that limθ→−∞ g(θ) = ∞ and that the

function G(t) := sup−∞<θ≤−t
g(t+θ)
g(θ) is locally bounded for t ≥ 0. Next, we modify slightly

the definition of the spaces Cg, C
0
g in [15]. We denote by PCg(X) the space formed by the

normalized piecewise continuous functions ϕ such that ϕ
g is bounded on (−∞, 0] and by

PC0
g (X) the subspace of PCg(X) formed by the functions ϕ such that ϕ(θ)

g(θ) → 0 as θ → −∞.

It is easy to see that PCg(X) and PC0
g (X) endowed with the norm ‖ ϕ ‖B:= supθ≤0

‖ϕ(θ)‖
g(θ) ,

are phase spaces in the sense considered in this work. Moreover, in these cases K(s) ≡ 1 for

s ≥ 0.

Example 2.2 The phase space PCr × L2(g ,X).

Let 1 ≤ p < ∞, 0 ≤ r < ∞ and g(·) be a nonnegative Borel measurable function on

(−∞, r) which satisfies the conditions (g-5)-(g-6) in the terminology of [15]. Briefly, this

means that g(·) is locally integrable on (−∞,−r) and that there exists a nonnegative and

locally bounded function G on (−∞, 0] such that g(ξ + θ) ≤ G(ξ)g(θ) for all ξ ≤ 0 and

θ ∈ (−∞,−r) \Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure 0.

Let B := PCr × Lp(g;X), r ≥ 0, p > 1, be the space formed of all classes of functions

ϕ : (−∞, 0] → X such that ϕ |[−r,0] ∈ PC([−r, 0],X), ϕ(·) is Lebesgue-measurable on

(−∞,−r] and g‖ϕ‖p is Lebesgue integrable on (−∞,−r]. The seminorm in ‖ · ‖B is defined

by

‖ ϕ ‖B:= sup
θ∈[−r,0]

‖ ϕ(θ) ‖ +

(∫ −r

−∞
g(θ) ‖ ϕ(θ) ‖p dθ

)1/p

.

Proceeding as in the proof of [15, Theorem 1.3.8] it follows that B is a phase space which

satisfies the axioms (A) and (B). Moreover, for r = 0 and p = 2 this space coincides with

C0 × L2(g, X), H = 1; M(t) = G(−t) 1

2 and K(t) = 1 +
(∫ 0

−t g(τ)dτ
) 1

2

, for t ≥ 0.
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Remark 2.1 In retarded functional differential equations without impulses, the axioms of

the abstract phase space B include the continuity of the function t → xt, see [15, 7] for

details. Due to the impulsive effect, this property is not satisfied in impulsive delay systems

and, for this reason, has been unconsidered in our description of B.

Remark 2.2 Let ϕ ∈ B and t ≤ 0. The notation ϕt represents the function defined by

ϕt(θ) = ϕ(t + θ). Consequently, if the function x(·) in axiom (A) is such that x0 = ϕ,

then xt = ϕt. We observe that ϕt is well defined for t < 0 since the domain of ϕ is

(−∞, 0]. We also note that in general ϕt /∈ B; consider, for example, functions of the type

xµ(t) = (t − µ)−αX(µ,0], µ > 0, where X(µ,0] is the characteristic function of (µ, 0], µ < −r
and αp ∈ (0, 1), in the space PCr × Lp(g;X).

Additional terminologies and notations used in this paper are standard in functional

analysis. In particular, for Banach spaces (Z, ‖ · ‖Z), (W, ‖ · ‖W ), the notation L(Z,W )

stands for the Banach space of bounded linear operators from Z into W and we abbreviate

to L(Z) whenever Z = W . Moreover, Br(x,Z) denotes the closed ball with center at x and

radius r > 0 in Z, and for a bounded function ξ : I → Z and 0 ≤ t ≤ a we employ the

notation ‖ξ‖Z,t for

‖ξ(θ)‖Z,t = sup{‖ξ(s)‖Z : s ∈ [0, t]}. (2.4)

We will simply write ‖ξ‖t when no confusion arises. In particular, if M(·),K(·) are the

functions in axiom (A), then Ma = supt∈I M(t) and Ka = supt∈I K(t).

This paper has four sections. In Section 3 we establish the existence of mild solutions

for system (1.1)-(1.3). Section 4 is reserved for examples.

To conclude the current section, we recall the following well-known result.

Theorem 2.1 [6, Theorem 6.5.4]. (Leray-Schauder Alternative) Let D be a closed

convex subset of a Banach space Z and assume that 0 ∈ D. Let Γ : D → D be a completely

continuous map. Then, either the set {z ∈ D : z = λΓ(z), 0 < λ < 1} is unbounded or the

map Γ has a fixed point in D.

3 Existence Results

In this section we discuss the existence of mild solutions for the abstract system (1.1)-

(1.3). To prove our results we always assume that ϕ ∈ B and that ρ : I × B → (−∞, a]

is a continuous function and (Y, ‖ · ‖Y ) is a Banach space continuously included in X.

Additionally, we introduce the following conditions.

H1 For every y ∈ Y , the function t → T (t)y is continuous from [0,∞) into Y . Moreover,

T (t)(Y ) ⊂ D(A) for every t > 0 and there exists a positive function γ ∈ L1([0, a])

such that ‖AT (t)‖L(Y ;X) ≤ γ(t), for every t ∈ I.

H2 Let R(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ I × B, ρ(s, ψ) ≤ 0}. The function t → ϕt is well

defined from R(ρ−) into B and there exists a continuous and bounded function Jϕ :

R(ρ−) → R such that ‖ ϕt ‖B≤ Jϕ(t) ‖ ϕ ‖B for every t ∈ R(ρ−).
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H3 The function F : I × B → X satisfies the following conditions:

(i) Let x : (−∞, a] → X be such that x0 = ϕ and x|I ∈ PC. The function t →
F (t, xρ(t,xt)) is measurable on I and the function t → F (s, xt) is continuous on

R(ρ−) ∪ I for every s ∈ I.

(ii) For each t ∈ I, the function F (t, ·) : B → X is continuous.

(iii) There exists an integrable function m : I → [0,∞) and a continuous nondecreas-

ing function W : [0,∞) → (0,∞) such that

‖ F (t, ψ) ‖ ≤ m(t)W (‖ ψ ‖B), (t, ψ) ∈ I ×B.

H4 The function G is Y - valued, G : I × B → Y is continuous and there exist a positive

constants c1, c2 such that ‖G(t, ψ)‖Y ≤ c1‖ψ‖B + c2, ∀ (t, ψ) ∈ I × B.

H5 The function G is Y - valued, G : I × B → Y is continuous and there exists LG > 0

such that

‖G(t, ψ1) −G(t, ψ2)‖Y ≤ LG‖ψ1 − ψ2‖B, (t, ψi) ∈ I × B, i = 1, 2.

H6 The maps Ii are completely continuous and there are positive constants cji , j = 1, 2,

such that ‖Ii(ψ)‖ ≤ c1i ‖ψ‖B + c2i , i = 1, 2, ..., n, for every ψ ∈ B.

H7 The functions Ii : R × B → X are continuous and there are positive constants Li, i =

1, 2, ..., n, such that

‖Ii(ψ1) − Ii(ψ2)‖ ≤ Li‖ψ1 − ψ2‖B, ψj ∈ B, j = 1, 2, i = 1, 2, ..., n.

H8 Let S(a) = {x : (−∞, a] → X : x0 = 0;x|I ∈ PC} endowed with the norm of uniform

convergence on I and y : (−∞, a] → X be the function defined by y0 = ϕ on (−∞, 0]

and y(t) = T (t)ϕ(0) on I. Then, for every bounded set Q ⊂ S(a), the set of functions

{t → G(t, xt + yt) : x ∈ Q} is equicontinuous on I.

Remark 3.3 The condition (H2) is frequently satisfied by functions that are continu-

ous and bounded. In fact, assume that the space of continuous and bounded functions

Cb((−∞, 0],X) is continuously included in B. Then, there exists L > 0 such that

‖ ψt ‖B≤ L
supθ≤0 ‖ ψ(θ) ‖

‖ ψ ‖B
‖ ψ ‖B, t ≤ 0, ψ 6= 0, ψ ∈ Cb((−∞, 0] : X).

It is easy to see that the space Cb((−∞, 0],X) is continuously included in PCg(X) and

PC0
g (X). Moreover, if g(·) verifies (g-5)-(g-6) in [15] and g(·) is integrable on (−∞,−r], then

the space Cb((−∞, 0],X) is also continuously included in PCr×Lp(g;X). For complementary

details related this matter, see Proposition 7.1.1 and Theorems 1.3.2 and 1.3.8 in [15].

Motivated by general semigroup theory, we adopt the following concept of mild solution.
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Definition 3.1 A function x : (−∞, a] → X is called a mild solution of the abstract Cauchy

problem (1.1)-(1.3) if x0 = ϕ; xρ(s,xs) ∈ B for every s ∈ I; the function t→ AT (t−s)G(s, xs)

is integrable on [0, t), for every t ∈ [0, a]; and

x(t) = T (t)[ϕ(0) +G(0, ϕ)] −G(t, xt) −
∫ t

0
AT (t− s)G(s, xs)ds +

∫ t

0
T (t− s)F (s, xρ(s,xs))ds

+
∑

0<ti<t

T (t− ti)Ii(xti), t ∈ I.

Remark 3.4. Let x(·) be a function as in axiom (A). Let us mention that the conditions

(H1), (H4), (H5) are linked to the integrability of the function s → AT (t − s)G(s, xs). In

general, except for the trivial case in which A is a bounded linear operator, the operator

function t→ AT (t) is not integrable over I. However, if condition (H1) holds and G satisfies

either assumption (H4) or (H5), then it follows from Bochner’s criterion and the estimate

‖AT (t− s)G(s, xs)‖ ≤ ‖AT (t− s)‖L(Y ;X)‖G(s, xs)‖Y

≤ γ(t− s) sup
s∈I

‖G(s, xs)‖Y ,

that s→ AT (t− s)G(s, xs) is integrable over [0, t), for every t ∈ I.

In the next Lemma, Ma,Ka are defined using the notation introduced in (2.4).

Lemma 3.1 [13, Lemma 2.1] Let x : (−∞, a] → X be a function such that x0 = ϕ and

x|I ∈ PC. Then

‖ xs ‖B≤ (Ma + Jϕ
0 ) ‖ ϕ ‖B +Ka sup{ ‖ x(θ) ‖; θ ∈ [0, max{0, s}] }, s ∈ R(ρ−) ∪ I,

where Jϕ
0 = supt∈R(ρ−) J

ϕ(t).

Theorem 3.1 Let conditions (H1) − (H3), (H5) and (H7) be hold. If

Ka

[
LG

(
1 +

∫ a

0
γ(s)ds

)
+ M̃ lim inf

ξ→∞+

W (ξ)

ξ

∫ a

0
m(s)ds+ M̃

n∑

i=1

Li

]
< 1, (3.1)

then there exists a mild solution of (1.1)-(1.3).

Proof: Consider the space Y = {u ∈ PC : u(0) = ϕ(0)} endowed with the norm ‖u‖a =

sups∈I ‖u(s)‖, and define the operator Γ : Y → Y by

Γx(t) = T (t)[ϕ(0) +G(0, ϕ)] −G(t, x̄t) −
∫ t

0
AT (t− s)G(s, x̄s)ds

+

∫ t

0
T (t− s)F (s, x̄ρ(s,x̄s))ds +

∑

0<ti<t

T (t− ti)Ii(x̄ti), t ∈ I,

where x̄ : (−∞, a] → X is such that x̄0 = ϕ and x̄ = x on I. From our assumptions it is

easy to see that Γx ∈ PC.
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We claim that there exists r > 0 such that Γ(Br(0, Y )) ⊂ Br(0, Y ). If we assume this

property is false, then for every r >‖ ϕ ‖ there exist xr ∈ Br(0, Y ) and tr ∈ I such that

r <‖ Γxr(tr) ‖. Then, by using Lemma 3.1 we find that

r <‖ Γxr(tr) ‖
≤ M̃H ‖ ϕ ‖B + ‖ T (tr)G(0, ϕ) −G(tr, ϕ) ‖ + ‖ G(tr, (xr)tr) −G(tr, ϕ) ‖

+ M̃

∫ tr

0
m(s)W (‖ xr

ρ(s,(xr)s) ‖B)ds +

∫ tr

0
‖AT (tr − s)‖L(Y ;X)‖G(s, (xr)s) −G(s, ϕ)‖ds

+

∫ tr

0
‖AT (tr − s)‖L(Y ;X)‖G(s, ϕ)‖ds + M̃

n∑

i=1

(Li ‖ xti ‖B + ‖ Ii(0) ‖)

≤ M̃H ‖ ϕ ‖B + ‖ T (tr)G(0, ϕ) −G(tr, ϕ) ‖ +LG(Kar + (Ma + 1)‖ϕ‖)

+LG(Kar + (Ma + 1)‖ϕ‖)
∫ a

0
γ(s)ds+ ‖G(s, ϕ)‖a

∫ a

0
γ(s)ds

+ M̃W ((Ma + Jϕ
0 ) ‖ ϕ ‖B +Kar)

∫ tr

0
m(s)ds

+ M̃
n∑

i=1

(Li(Kar +Ma‖ϕ‖)+ ‖ Ii(0) ‖) ,

and hence

1 ≤ Ka

[
LG

(
1 +

∫ a

0
γ(s)ds

)
+ M̃ lim inf

ξ→∞

W (ξ)

ξ

∫ a

0
m(s)ds+ M̃

n∑

i=1

Li

]
,

which is contrary to our assumption.

Let r > 0 be such that Γ(Br(0, Y )) ⊂ Br(0, Y ). Next, we will prove that Γ is a condensing

map on Br(0, Y ). Consider the decomposition Γ = Γ1 + Γ2 where

Γ1x(t) = T (t)[ϕ(0) +G(0, ϕ)] −G(t, x̄t) −
∫ t

0
AT (t− s)G(s, x̄s)ds

+
∑

0<ti<t

T (t− ti)Ii(x̄ti), t ∈ I,

Γ2x(t) =

∫ t

0
T (t− s)F (s, x̄ρ(s,x̄s))ds, t ∈ I.

Proceeding as in the proof of [11, Theorem 3.1] we can conclude that Γ is continuous and

that Γ2 is completely continuous. Moreover, from the estimate

‖Γ1u− Γ1v‖PC ≤ Ka

[
LG

(
1 +

∫ a

0
γ(s)ds

)
+ M̃

n∑

i=1

Li

]
‖u− v‖PC , u, v ∈ Br(0, Y ),

it follows that Γ1 is a contraction on Br(0, Y ).

These remarks prove that Γ is a condensing operator from Br(0, Y ) into Br(0, Y ). Now,

the existence of a mild solution is a consequence of [17, Theorem 4.3.2]. The proof is

complete.
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Theorem 3.2 Assume that conditions (H1) − (H4), (H6) and (H8) are satisfied. Further,

assume that ρ(t, ψ) ≤ t for every (t, ψ) ∈ I × B and that G : I × B → X is completely

continuous. If µ =
[
1 − c1Ka(1 +

∫ a
0 γ(s)ds) − M̃Ka

∑n
i=1 c

1
i

]
> 0 and

M̃Ka

µ

∫ a

0
m(s)ds <

∫ ∞

D

ds

W (s)
,

where D = (Ma+Jϕ
0 +M̃HKa)‖ϕ‖B+KaC

µ and C = M̃‖G(0, ϕ)‖+M̃∑n
i=1 c

2
i +(M̃

∑n
i=1 c

1
i +

c1)(Ma + Jϕ
0 + M̃HKa)‖ϕ‖B + c1(Ma + Jϕ

0 + M̃HKa)‖ϕ‖B
∫ a
0 γ(s)ds + c2(1 +

∫ a
0 γ(s)ds),

then there exists a mild solution of (1.1)-(1.3).

Proof: On the space BPC = {u : (−∞, a] → X,u0 = 0, u|I ∈ PC} endowed with the norm

‖ · ‖PC , we define the operator Γ : BPC → BPC by (Γu)0 = 0 and

Γx(t) = T (t)G(0, ϕ) −G(t, x̄t) −
∫ t

0
AT (t− s)G(s, x̄s)ds

+

∫ t

0
T (t− s)F (s, x̄ρ(s,x̄s))ds +

∑

0<ti<t

T (t− ti)Ii(x̄ti), t ∈ I,

where x̄ = x + y on (−∞, a] and y(·) is the function introduced in (H8). In order to

use Theorem 2.1, we establish a priori estimates for the solutions of the integral equation

z = λΓz, λ ∈ (0, 1). By using Lemma 3.1, the notation αλ(s) = supθ∈[0,s] ‖xλ(θ)‖, and the

fact that ρ(s, (xλ)s) ≤ s, for each s ∈ I, we find that

‖xλ(t)‖ ≤ ‖T (t)G(0, ϕ)‖ + c1‖(xλ)t‖B + c2 +

∫ t

0
γ(t− s)(c1‖(xλ)s‖B + c2)ds

+ M̃

∫ t

0
m(s)W (‖(xλ)s‖)ds + M̃

∑

0<ti≤t

c1i [‖(xλ)ti‖B] + M̃

n∑

i=1

c2i

≤ M̃‖G(0, ϕ)‖ + c1‖ϕ‖B[Ma + Jϕ
0 +KaM̃H + (Ma + Jϕ

0 +KaM̃H)

∫ a

0
γ(s)ds]

+ c2(1 +

∫ a

0
γ(s)ds) + c1Kaα

λ(t)(1 +

∫ a

0
γ(s)ds)

+ M̃

∫ t

0
m(s)W ((Ma + Jϕ

0 +KaM̃H)‖ϕ‖B +Kaα
λ(s))ds + M̃

n∑

i=1

c2i

+ M̃
∑

0<ti≤t

c1i ((Ma + Jϕ
0 +KaM̃H)‖ϕ‖B +Kaα

λ(t)).

Consequently,

αλ(t) ≤ C

µ
+
M̃

µ

∫ t

0
m(s)W ((Ma + Jϕ

0 +KaM̃H)‖ϕ‖B +Kaα
λ(s))ds,

where

C = M̃‖G(0, ϕ)‖ + M̃
n∑

i=1

c2i + (M̃
n∑

i=1

c1i + c1)(Ma + Jϕ
0 + M̃HKa)‖ϕ‖B

+ c1(Ma + Jϕ
0 + M̃HKa)‖ϕ‖B

∫ a

0
γ(s)ds+ c2(1 +

∫ a

0
γ(s)ds).
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If ζλ(t) = (Ma + Jϕ
0 + M̃HKa)‖ϕ‖B +Kaα

λ(t),

ζλ(t) ≤ (Ma + Jϕ
0 + M̃HKa)‖ϕ‖B +Ka

[C
µ

+
M̃

µ

∫ t

0
m(s)W (ζλ(s))ds

]

≤ (Ma + Jϕ
0 + M̃HKa)‖ϕ‖B +

KaC

µ
+
KaM̃

µ

∫ t

0
m(s)W (ζλ(s))ds

Denoting by βλ(t) the right-hand side of the last inequality, it follows that,

β′λ(t) ≤ KaM̃

µ
m(t)W (βλ(t))

and hence

∫ βλ(t)

βλ(0)=D

ds

W (s)
≤ M̃Ka

µ

∫ a

0
m(s)ds <

∫ ∞

D

ds

W (s)
, t ∈ I

where D = (Ma +Jϕ
0 + M̃HKa)‖ϕ‖B + KaC

µ , which implies that the set of functions {βλ(·) :

λ ∈ (0, 1)} is bounded in C(I;R). Thus, {xλ(·) : λ ∈ (0, 1)} is bounded on BPC.

To prove that Γ is completely continuous, we introduce the decomposition Γ = Γ1 +Γ2 +

Γ3 where (Γix)0 = 0, i = 1, 2, 3. and

Γ1x(t) = T (t)G(0, ϕ) −G(t, x̄t) +

∫ t

0
T (t− s)F (s, x̄ρ(s,x̄s))ds, t ∈ I,

Γ2x(t) = −
∫ t

0
AT (t− s)G(s, x̄s)ds, t ∈ I,

Γ3x(t) =
∑

0<ti<t

T (t− ti)Ii(x̄ti), t ∈ I.

From the proof of [11, Theorem 3.1] and our assumptions on G we infer that Γ1 is completely

continuous and easily we can prove that Γ2 is continuous. It remains to show that Γ2 is

compact and that Γ3 is completely continuous. Now, by using the proof of [14, Theorem

3.2] together with the Arzela-Ascoli theorem we conclude that Γ2 is completely continuous.

Next, by using Lemma 2.1, the continuiuty of Γ3 can be proven using phase space axioms.

On the other hand for r > 0, t ∈ [ti, ti+1] ∩ (0, a], i ≥ 1, and u ∈ Br = Br(0,BPC), we find

that

Γ̃3u(t) ∈





i∑

j=1

T (t− tj)Ij(Br∗(0,X)), t ∈ (ti, ti+1),

i∑

j=0

T (ti+1 − tj)Ij(Br∗(0,X)), t = ti+1,

i−1∑

j=1

T (ti − tj)Ij(Br∗(0,X)) + Ii(Br∗(0,X)), t = ti,

where r∗ = (Ma + HM̃)‖ϕ‖B +Kar, which proves that [Γ̃3(Br)]i(t)] is relatively compact

in X, for every t ∈ [ti, ti+1], since the maps Ij are completely continuous. Moreover, using
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the compactness of the operators Ii and the strong continuity of (T (t))t≥0, we can prove

that [Γ̃3(Br)]i(t)] is equicontinuous at t, for every t ∈ [ti, ti+1]. Now, from Lemma 2.1, we

conclude that Γ3 is completely continuous.

These remarks, in conjunction with Theorem 2.1 show that Γ has a fixed point x ∈ BPC.

Clearly, the function u = x+ y is a mild solution of (1.1)-(1.3). The proof is now complete.

4 Example

In this section, we consider an applications of our abstract results. At first we introduce

the required technical framework. In the rest of this secion, X = L2([0, π]) and A be the

operator Au = u′′ with domain D(A) = {u ∈ X : u′′ ∈ X,u(0) = u(π) = 0}. It is well

known that A is the infinitesimal generator of an analytic semigroup on X. Furthermore,

A has a discrete spectrum with eigen values of the form −n2, n ∈ N , whose corresponding

(normalized) eigen functions are given by zn(ζ) =
√

2
π sin(nζ). In addition, the following

properties hold.

(a) {zn : n ∈ N} is an orthonormal basis of X;

(b) For u ∈ X,T (t)u =
∑∞

n=1 e
−n2t < u, zn > zn and Au = −∑∞

n=1 n
2 < u, zn > zn, for

u ∈ D(A);

(c) It is possible to define the fractional power (−A)α, α ∈ (0, 1), as a closed linear operator

over its domain D((−A)α). More precisely, the operator (−A)α : D((−A)α) ⊆ X → X

is given by (−A)αu =
∑∞

n=1 n
2α < u, zn > zn, for all u ∈ D(−A)α, where D(−A)α =

{u ∈ X :
∑∞

n=1 n
2α < u, zn > zn ∈ X};

(d) If Xα is the space D(−A)α endowed with the graph norm ‖ · ‖α, then Xα is a Banach

space. Moreover, for 0 < β ≤ α ≤ 1,Xα ⊂ Xβ; the inclusion Xα → Xβ is completely

continuous and there are constans Cα > 0 such that ‖T (t)‖L(Xα ;X) ≤ Cα

tα for t ≥ 0.

Consider the differential system

d

dt

[
u(t, ζ) +

∫ t

−∞

∫ π

0
b(t− s, η, ζ)u(s, η)dηds

]
=

∂2

∂ζ2
u(t, ζ)

+

∫ t

−∞
a(s− t)u(s− ρ1(t)ρ2(‖u(t)‖), ζ)ds, t ∈ I, ζ ∈ [0, π] (4.1)

u(t, 0) = u(t, π) = 0, t ∈ I (4.2)

u(τ, ζ) = ϕ(τ, ζ), τ ≤ 0, 0 ≤ ζ ≤ π (4.3)

∆u(tj, ζ) =

∫ tj

−∞
γj(s − tj)u(s, ζ)ds, j = 1, 2, . . . , n. (4.4)

where ϕ ∈ B = PC0 × L2(g,X) and 0 < t1 < t2 < · · · < tn < a are prefixed.

To treat this system, we will assume that g(·) satisfies the conditions (g − 5) − (g − 7)

in [15]. We know from Theorem 1.37 and 7.1.1 in [15] that Cb((−∞, 0];X) is continuously

EJQTDE, 2009 No. 26, p. 10



included in B. Additionally we assume that the functions ρi : [0,∞) → [0,∞), i = 1, 2. a :

R → R are continuous; LF =
(∫ 0

−∞
(a2(s))

g(s) ds
) 1

2

< ∞ and that the following conditinos

holds.

(a) The funtions γi : R → R, i = 1, 2, . . . , n, are continuous, bounded and for every

i = 1, 2, . . . , n, Li =
(∫ 0

−∞
(γi(s))2

g(s) ds
) 1

2

<∞.

(b) The functions b(s, η, ζ), ∂b(s,η,ζ)
∂ζ are measurable, b(s, η, π) = b(s, η, 0) = 0 and

Lg = max

{(∫ π
0

∫ 0
−∞

∫ π
0

1
g(s)

(
∂ib(s,η,ζ)

∂ζi

)2
dηdsdζ

) 1

2

: i = 0, 1

}
<∞.

Under these conditions, we can define the operators, ρ,G, F : I × B → X and Ii : B → X

by

ρ(t, ψ) = ρ1(t)ρ2(‖ψ(0)‖),

G(ψ)(ζ) =

∫ 0

−∞

∫ π

0
b(s, ν, ζ)ψ(s, ν)dνds,

F (ψ)(ζ) =

∫ 0

−∞
a(s)ψ(s, ζ)ds

Ii(ψ)(ζ) =

∫ ∞

−∞
γi(s)ψ(s, ζ)ds, i = 1, 2, . . . , n,

which permit to transform system (4.1)-(4.4) into the system (1.1)-(1.3). Moreover, the

maps, G,F, Ii, i = 1, 2, . . . , n are bounded linear operators with ‖G‖L(X) ≤ LG and ‖F‖L(X) ≤
LF and ‖Ii‖L(X) ≤ Li, for every j = 1, 2, . . . , n.

Moreover, a straightforward estimation invloving (a) enables us to prove that G is

D(−A)
1

2 -valued with ‖(−A)
1

2G‖ ≤ LG, which implies that G is completely continuous

from I × B into X since the inclusion i : X 1

2

→ X is completely continuous. Thus, the

assumptions (H1), (H4) and (H5) are hold with Y = X 1

2

.

From the Theorem 3.1 and Remark 3.3, we deduce the following propositions immediately.

Proposition 4.1 Assume that condition (H2) holds and that the functions ρ1, ρ2 are bounded.

If

Ka

(
LG + 2C1

√
a+ aLF +

n∑

i=1

Li

)
< 1,

there exists a mild solution of (4.1)-(4.4).

Proposition 4.2 Assume that ϕ ∈ Cb((−∞, 0);X). If

Ka

(
LG + 2C1

√
a+ aLF +

n∑

i=1

Li

)
< 1,

there exists a mild solution of (4.1)-(4.4).
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