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1 Introduction and statement of the main results

The study of the periodic solutions and of the limit cycles of real polynomial differential equa-
tions in the plane R2 is one of the main problems of the qualitative theory of the differential
systems in dimension two during the last century and the present one, see for instance the
16th Hilbert problem [6, 8, 10].

Let P and Q be two polynomials in the variables x and y with real coefficients, then we
say that

X = X (x, y) = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
(1.1)

is a polynomial vector field of degree n or simply a vector field of degree n if the maximum of the
degrees of the polynomials P and Q is n. The differential polynomial system

dx
dt

= ẋ = P(x, y),
dy
dt

= ẏ = Q(x, y), (1.2)

associated to the polynomial vector field X of degree n is called a polynomial differential system
of degree n.
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A limit cycle of a differential system (1.2) is a periodic orbit isolated in the set of all periodic
orbits of system (1.2).

Polynomial vector fields of degree 2 have been investigated intensively, and more than one
thousand papers have been published about them (see for instance [13–15]), but in general
the problem of counting their limit cycles and finding their maximum number remains open.
There are some results for polynomial vector fields of degree 3 but not too much.

In this paper we study the existence or non-existence of periodic orbits for real polyno-
mial vector fields of degree n having n real invariant straight lines taking into account their
multiplicities.

We recall the definition of an invariant straight line and also of the multiplicity of an
invariant straight line.

Let f = ax + by + c = 0 be a straight line of R2. The straight line f = 0 is invariant for the
polynomial differential system (1.2) (i.e. it is formed by solutions of system (1.2)) if for some
polynomial K ∈ R[x, y] we have

X f = P(x, y)
∂ f
∂x

+ Q(x, y)
∂ f
∂y

= K f . (1.3)

The polynomial K is called the cofactor of the invariant straight line f = 0.
For the polynomial differential system (1.2) we define the polynomial

R(x, y) = det

 1 x y
0 P Q
0 PPx + QPy PQx + QQy

 .

We say that the invariant straight line f = 0 has multiplicity k for the polynomial differential
system (1.2) if the polynomial f k divides the polynomial R(x, y) and the polynomial f k+1

does not divide the polynomial R(x, y). Roughly speaking if an invariant straight line L
has multiplicity k for a given polynomial differential system, this means that it is possible
to perturb such polynomial differential system in such a way that they appear k different
invariant straight lines bifurcating from L. For more details on the multiplicity see [3].

For polynomial differential systems of degree 2 the following result is known.

Theorem 1.1. For a polynomial differential system (1.2) of degree 2 having two real invariant straight
lines taking into account their multiplicities the following statements hold.

(a) Assume that the two invariant straight lines are real and intersect in a point. Then system (1.2)
has no limit cycles. It can have periodic solutions.

(b) Assume that the two invariant straight lines are real and parallel. Then system (1.2) has no
periodic solutions.

(c) Assume that the system has a unique invariant straight line of multiplicity 2. Then system (1.2)
has no periodic solutions.

Since statement (a) of Theorem 1.1 is due to Bautin [2] and its proof is short, and statements
(b) and (c) are very easy to prove we shall provide in Section 2 a proof of all statements of
Theorem 1.1. In fact we cannot find in the literature the proofs of statements (b) and (c) of
Theorem 1.1.

Of course the results of Theorem 1.1 for polynomial differential systems (1.2) of degree 2
can be extended to polynomial differential systems (1.2) of degree 1, i.e. to linear differential
systems in R2. More precisely, we have the following well known result.
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Theorem 1.2. A polynomial differential system (1.2) of degree 1 having one real invariant straight line
has no periodic solutions.

It is well known that the unique linear differential systems in R2 having periodic solutions
are the ones having a center, and those have no invariant straight lines. Hence Theorem 1.2 is
proved.

In short, Theorems 1.1 and 1.2 characterize the existence or non-existence of periodic so-
lutions and limit cycles for the polynomial differential systems (1.2) of degree n having n real
invariant straight lines taking into account their multiplicities when n = 1, 2. From these two
theorems if follows immediately the next result.

Corollary 1.3. The polynomial differential systems (1.2) of degree n having n real invariant straight
lines taking into account their multiplicities when n = 1, 2 have no limit cycles.

We shall see that Corollary 1.3 cannot be extended to n > 2, because polynomial differen-
tial systems of degree 3 having 3 invariant straight lines taking into account their multiplicities
can have limit cycles for some configurations of their invariant straight lines.

Before characterizing for n = 3 the existence or non-existence of periodic solutions and
limit cycles for the polynomial differential systems of degree 3 having 3 invariant straight
lines taking into account their multiplicities according with the different configurations of
their three invariant straight lines we present a general result for degree n.

Theorem 1.4. A polynomial differential system (1.2) of degree n > 2 having n real parallel invariant
straight lines taking into account their multiplicities has no periodic solutions.

Theorem 1.4 is proved in Section 3.

Theorem 1.5. For a polynomial differential system (1.2) of degree 3 having 3 real invariant straight
lines taking into account their multiplicities the following statements hold.

(a) If these 3 invariant straight lines taking into account their multiplicities are parallel, system (1.2)
has no periodic solutions.

(b) We assume that the system has 3 different invariant straight lines, two of them are parallel and
intersects the third one, then the cubic polynomial differential system (1.2) can have limit cycles.

(c) We assume that the system has only 2 different invariant straight lines which are not parallel.
Then the cubic polynomial differential system (1.2) can have limit cycles.

(d) We assume that the system has 3 different invariant straight lines intersect at a unique point.
Then the cubic polynomial differential system (1.2) can have limit cycles.

(e) We assume that the system has 3 different invariant straight lines intersect in three different
points. Then the cubic polynomial differential system (1.2) can have limit cycles.

Theorem 1.5 is proved in Section 4.
We must mention that Kooij in [9] studied the existence and non-existence of periodic or-

bits and limit cycles of the cubic polynomial differential systems with 4 real invariant straight
lines, while in Theorem 1.5 for the same cubic polynomial differential systems but with only 3
real invariant straight lines taking into account their multiplicities we study the existence and
non-existence of periodic orbits and limit cycles. We shall use some of the ideas of Kooij for
proving Theorem 1.5.
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2 Proof of Theorem 1.1

In this section we shall prove Theorem 1.1. We shall need the next three well known results.

Theorem 2.1. Let R be a simply connected region of R2, and assume that the differential system (1.2)
is C1 in R, i.e. P, Q : R→ R are C1 maps. Then any periodic orbit of system (1.2) in R must surround
an equilibrium point of this system.

For a proof of Theorem 2.1 see for instance Theorem 1.31 of [5].
Let U be a dense open subset of R2. Then a first integral H : U → R for system (1.2) is a

non-locally constant function which is constant on the orbits of the system contained in U. In
other words, if X given in (1.1) is the vector field associated to system (1.2), then H is a first
integral if and only if XH = 0 in U.

Theorem 2.2 (Dulac’s theorem). Assume that there exists a C1 function D(x, y) in a simply con-
nected region R of R2 such that for the differential system (1.2) either ∂(DP)/∂x + ∂(DQ)/∂y ≥ 0, or
∂(DP)/∂x + ∂(DQ)/∂y ≤ 0, and at most this previous expression is zero in a zero measure Lebesgue
set. Then the differential system (1.2) has no periodic orbits in R.

For a proof of Dulac’s theorem see for instance Theorem 7.12 of [5].
Finally we summarize for the differential systems defined in an open subset of R2 some

basic results characterizing the Hopf bifurcation. These results will be used for proving some
statements of Theorem 1.5. For more details on the results presented on the Hopf bifurcation
for differential systems in the plane see Marsden and McCracken [11].

For u ∈ R2 consider a family of autonomous systems of ordinary differential equations
depending on a parameter µ

du
dt

= F(u, µ), (2.1)

where F : R2 × R → R2 is C∞ and µ is the bifurcation parameter. Suppose that a(µ) is a
equilibrium point of the differential system (2.1) for every µ in a neighborhood U of µ = 0,
i.e. F(a(µ), µ) = 0 if µ ∈ U. Assume that DF|(a(µ),µ) has eigenvalues of the form α(µ)± iβ(µ).

Poincaré [12], Andronov and Witt [1] and Hopf [7] (a translation into English of Hopf’s
original paper can be found in Section 5 of [11]) shown that for µ sufficiently small, an one-
parameter family of periodic orbits of the differential system (2.1) arises at (u, µ) = (0, 0) if

(i) DF|(0,0) has eigenvalues ±iβ(0) 6= 0,

(ii) (dα/dµ)|µ=0 6= 0, and

(iii) we do not have a center at u = 0 for µ = 0.

We say that µ = 0 is the value of the Hopf bifurcation.

Proof of statement (a) of Theorem 1.1. After an affine change of variables we can assume that
the two invariant straight lines of statement (a) of Theorem 1.1 of the polynomial differential
system (1.2) of degree 2 are x = 0 and y = 0. Then, if K1 = K1(x, y) (respectively K2 = K2(x, y))
is the cofactor of x = 0 (respectively y = 0), from the definition of invariant straight line (1.3)
we have that P = xK1 (respectively Q = yK2), where K1 and K2 are polynomials of degree 1.
Therefore, it is sufficient to prove statement (a) of Theorem 1.1 for the following polynomial
differential system of degree 2

ẋ = P(x, y) = x(a1x + b1y + c1), ẏ = Q(x, y) = y(a2x + b2y + c2), (2.2)
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where a1, b1, c1, a2, b2, c2 ∈ R are arbitrary real numbers.
From Theorem 2.1 the unique equilibrium point of system (2.2) which can be surrounded

by periodic orbits is

p =

(
b2c1 − b1c2

a2b1 − a1b2
,

a1c2 − a2c1

a2b1 − a1b2

)
,

because the other equilibria are on the invariant straight lines x = 0 and y = 0. So in order
that periodic orbits exist for system (2.2) we need to have that a2b1 − a1b2 6= 0.

We consider the function D(x, y) = xlyk where

l =
2a1b2 − a2(b1 + b2)

a2b1 − a1b2
, k =

2a1b2 − (a1 + a2)b1

a2b1 − a1b2
,

defined in the open quadrant of R2 \ {xy = 0} containing the equilibrium point p. Then we
have

∂(DP)
∂x

+
∂(DQ)

∂y
=

(a1 − a2)b2c1 + a1(−b1 + b2)c2

a2b1 − a1b2
xlyk.

If (a1 − a2)b2c1 + a1(−b1 + b2)c2 6= 0, by Dulac’s theorem system (2.2) has no periodic orbits.
Assume that (a1 − a2)b2c1 + a1(−b1 + b2)c2 = 0. Then the differential system ẋ = DP,

ẏ = DQ is Hamiltonian, and

H = x
(a2−a1)b2
a1b2−a2b1 y

a1(b1−b2)
a1b2−a2b1 ((b1 − b2)c2 + (a1 − a2)b2x + (b1 − b2)b2y)

is a first integral of system (2.2), consequently this system cannot have limit cycles in the
quadrant containing the equilibrium point p.

In order to complete the proof of this statement we only need to show that under conve-
nient conditions system (2.2) has periodic solutions. Under the assumption (a1 − a2)b2c1 +

a1(−b1 + b2)c2 = 0, if

(a2b1 − a1b2)(−a2b2c2
1 + a2b1c1c2 + a1b2c1c2 − a1b1c2

2) < 0,

then the equilibrium point p has purely imaginary eigenvalues. Hence, since additionally the
system has the first integral H it follows that the singular point p is a center, consequently
under these assumptions system (2.2) has periodic orbits. This completes the proof statement
(a) of Theorem 1.1.

Proof of statement (b) of Theorem 1.1. Doing an affine change of variables we can suppose that
the two parallel invariant straight lines of statement (b) of Theorem 1.1 of the polynomial
differential system (1.2) of degree 2 are x − 1 = 0 and x + 1 = 0. Then, if K1 = K1(x, y)
(respectively K2 = K2(x, y)) is the cofactor of x − 1 = 0 (respectively x + 1 = 0), from the
definition of invariant straight line (1.3) we obtain that P = a(x − 1)(x + 1), where K1 =

a(x + 1) and K2 = a(x − 1). Therefore, it is sufficient to prove statement (b) of Theorem 1.1
for the following polynomial differential system of degree 2:

ẋ = P(x, y) = a(x− 1)(x + 1), ẏ = Q(x, y), (2.3)

where a ∈ R and Q(x, y) an arbitrary polynomial of degree 2.
If a = 0 then all the straight lines x = constant are invariant and consequently system (2.3)

has no periodic solutions. Assume that a 6= 0, then the solution x(t, x0) of the first equation
of system (2.3) such that x(0, x0) = x0 is

x(t, x0) =
x0 cosh(at)− sinh(at)
cosh(at)− x0 sinh(at)

.
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Since the function x(t, x0) is not periodic, it follows that system (2.3) has no periodic orbits.
This completes the proof statement (b) of Theorem 1.1.

Proof of statement (c) of Theorem 1.1. Repeating the proof of statement (b) of Theorem 1.1 for
the invariant straight lines x− ε = 0 and x + ε = 0, we get the following polynomial differen-
tial system of degree 2:

ẋ = P(x, y) = a(x− ε)(x + ε), ẏ = Q(x, y), (2.4)

where a ∈ R and Q(x, y) an arbitrary polynomial of degree 2. Then when ε → 0 system (2.4)
becomes

ẋ = P(x, y) = ax2, ẏ = Q(x, y), (2.5)

and for this system the invariant straight line x = 0 has multiplicity 2.
As in the previous proof if a = 0 system (2.4) has no periodic solutions. Assume that

a 6= 0, then the solution x(t, x0) of the first equation of system (3.2) such that x(0, x0) = x0 is

x(t, x0) =
x0

1− ax0t
.

Since this function is not periodic, system (2.3) cannot have periodic orbits. This completes
the proof statement (c) of Theorem 1.1.

3 Proof of Theorem 1.4

In this section we prove the main results of our paper, i.e. Theorem 1.4. For this we will use
some tools presented in Sections 1 and 2.

Proof of statement (a) of Theorem 1.4. Doing an affine change of variables we can suppose that
the n parallel invariant straight lines of statement (a) of Theorem 1.4 of the polynomial differ-
ential system (1.2) of degree n are

x− α1 = 0, x− α2 = 0, . . . , x− αn = 0,

with α1 < α2 < · · · < αn.
It follows from the definition (1.3) of an invariant straight line that it is sufficient to prove

statement (a) of Theorem 1.4 for the following polynomial differential system of degree n:

ẋ = P(x, y) = a(x− α1) · · · (x− αn), ẏ = Q(x, y), (3.1)

where a ∈ R and Q(x, y) is an arbitrary polynomial of degree n.
If a = 0 then all the straight lines x = constant are invariant and consequently system

(3.1) has no periodic solutions. Assume that a 6= 0, then all the equilibrium points of the
polynomial differential system (3.1) are on one of the invariant straight lines x = αi for i =
1, . . . , n. Therefore, by Theorem 2.1 none of the equilibrium points of system (3.1) can be
surrounded by periodic orbits.

Proof of statement (b) of Theorem 1.4. Recall the definition of multiplicity k of an invariant straight
line stated in section 1. Repeating the arguments of the beginning of the proof of statement (c)
of Theorem 1.1 and taking into account the proof of statement (a) of Theorem 1.4 we see that
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it is sufficient to prove statement (b) of Theorem 1.4 for the following polynomial differential
system of degree n:

ẋ = P(x, y) = a(x− α1)
β1 · · · (x− αk)

βk , ẏ = Q(x, y), (3.2)

where α1 < · · · < αk and β1 + · · ·+ βk = n where βi is a positive integer for i = 1, . . . , k. Note
that for this system the invariant straight line x = αi has multiplicity βi for i = 1, . . . , k.

As in the proof of the previous statement, if a = 0 system (3.2) has no periodic solutions.
Assume that a 6= 0, then all the equilibrium points of the polynomial differential system
(3.2) are on one of the invariant straight lines x = βi. Again, by Theorem 2.1 none of the
equilibrium points of system (3.2) can be surrounded by periodic orbits.

4 Proof of Theorem 1.5

Here we prove the five statements of Theorem 1.5.

Proof of statement (a) of Theorem 1.5. It follows immediately from Theorem 1.4.

For proving statement (b) of Theorem 1.5 we shall need to distinguish between a focus and
a center. Thus we briefly describe the algorithm due to Bautin for computing the Liapunov
constants. It is known that all the Liapunov constants must be zero in order to have a center,
for more details see Chapter 4 of [5], and the references quoted there.

We consider a planar analytic differential equation of the form

ẋ = −y + P(x, y) = −y +
∞

∑
k=2

Pk(x, y),

ẏ = x + Q(x, y) = x +
∞

∑
k=2

Qk(x, y),
(4.1)

where Pk and Qk are homogeneous polynomials of degree k. In a neighborhood of the origin
we can also write this differential system in polar coordinates (r, θ) as

dr
dθ

=
∞

∑
k=2

Sk(θ)rk, (4.2)

where Sk(θ) are trigonometric polynomials in the variables sin θ and cos θ.
If we denote by r(θ, r0) the solution of (4.2) such that r(0, r0) = r0 then close to r = 0 we

have

r(θ, r0) = r0 +
∞

∑
k=2

uk(θ)rk
0,

with uk(0) = 0 for k ≥ 2. The Poincaré return map near r = 0 is given by

Π(r0) = r(2π, r0) = r0 +
∞

∑
k=2

uk(2π)rk
0.

Since Π is analytic it is clear that Π(r0) ≡ r0 if and only if un(2π) = 0 for all n > 1, i.e. if
and only if the origin of system (4.1) is a center. The constants un(2π) for n > 1 are called
the Liapunov constants, and if some of them is not zero, then the origin of system (4.1) is not a
center.
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Proof of statement (b) of Theorem 1.5. We assume that two of the three invariant straight lines
are parallel and intersects the other invariant straight line, and that all these invariant straight
lines have multiplicity 1. Now we shall prove that the cubic polynomial differential system
(1.2) with these three invariant straight lines can have limit cycles.

Doing an affine change of variables we can suppose that the three invariant straight lines of
this statement are x− 1 = 0, x + 1 = 0 and y− 1 = 0. Proceeding as in the proof of statement
(b) of Theorem 1.1, we have that it is sufficient to prove this statement for the following cubic
polynomial differential system

ẋ = P(x, y) = (x− 1)(x + 1)(a1x + b1y + c1),

ẏ = Q(x, y) = (y− 1)(a2x + b2y + c2 + d2x2 + e2xy + f2y2),

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R. In fact we shall prove this statement for the particular
system

ẋ = P(x, y) = (x− 1)(x + 1)(a1x + b1y),

ẏ = Q(x, y) = (y− 1)(a2x + b2y + d2x2 + e2xy + f2y2),
(4.3)

where a1, b1, a2, b2, d2, e2, f2 ∈ R.
We recall the conditions stated in section 2 in order that a one-parameter family of periodic

orbits exhibits a Hopf bifurcation at an equilibrium point. The origin (0, 0) is an equilibrium
point of system (4.3), and its eigenvalues are

λ± = −1
2

(
a1 + b2 ±

√
a2

1 + b2
2 − 2a1b2 + 4a2b1

)
. (4.4)

We assume that
a2

1 + b2
2 − 2a1b2 + 4a2b1 < 0. (4.5)

Let

µ = a1 + b2, α(µ) = −1
2

µ, β(µ, b1, b2, a2) =
1
2

√
−µ2 − 4(µ− b2)b2 − 4a2b1.

By (4.5) the eigenvalues (4.4) are of the form λ±(µ, b1, b2, a2) = α(µ)± β(µ, b1, b2, a2)i.
So, when µ = 0 they are

±β(0, b1, b2, a2)i = ±
√

b2
2 − a2b1i.

We assume that b2
2 − a2b1 > 0. We also have that (dα/dµ)|µ=0 = −1/2 6= 0. Now we claim

that the origin of system (4.3) with µ = 0, b2 = 0, a2 = 1, b1 = −1 and d2e2 + 2 f2 + e2 f2 6= 0 is
not a center. Before proving the claim we note that for these values the eigenvalues (4.4) are
±i and the condition (4.5) becomes −4 < 0. Hence, once the claim be proved all the conditions
for having a Hopf bifurcation hold, consequently there are systems (4.3) with limit cycles, and
statement (b) will be proved.

Now we prove the claim. System (4.3) becomes

ẋ = P(x, y) = −(x− 1)(x + 1)y,

ẏ = Q(x, y) = (y− 1)(x + d2x2 + e2xy + f2y2).
(4.6)

We write this system in polar coordinates (r, θ) where x = r cos θ and y = r sin θ, and we have

ṙ = − sin θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r2

− sin θ
(
cos3 θ − d2 sin θ cos2 θ − e2 sin2 θ cos θ − f2 sin3 θ

)
r3,

θ̇ = − 1− cos θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r

+ cos θ sin θ
(
d2 cos2 θ + (e2 + 1) sin θ cos θ + f2 sin2 θ

)
r2.
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This system in a neighborhood of the origin can be written as

dr
dθ

= r2 sin θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
− r3 sin θ

(
(d2 − 1)(d2 + 1) cos5 θ + d2(2e2 − 1) sin θ cos4 θ

+
(
e2

2 − e2 + 2d2 f2
)

sin2 θ cos3 θ + (d2 + 2e2 f2 − f2) sin3 θ cos2 θ

+
(

f 2
2 + e2

)
sin4 θ cos θ + f2 sin5 θ

)
+ O(r4).

Now using the Bautin’s algorithm described we get that

u1(2π) = 1, u2(2π) = 0, u3(2π) = −π

4
(d2e2 + 2 f2 + e2 f2).

Hence, due to the fact that d2e2 + 2 f2 + e2 f2 6= 0 we do not have a center at the origin of system
(4.6). This completes the proof of statement (b).

Proof of statement (c) of Theorem 1.5. Consider a polynomial differential system (1.2) of degree
3 with one invariant straight line with multiplicity 2 intersecting an invariant straight line
with multiplicity 1. We shall show that these systems can have limit cycles.

Proceeding as in the proof of statement (c) of Theorem 1.1 and see also the proof of state-
ment (b) of Theorem 1.5 we have that it is sufficient to prove statement (c) of Theorem 1.5 for
the following polynomial differential system of degree 3

ẋ = P(x, y) = (x− 1)2(a1x + b1y + c1),

ẏ = Q(x, y) = (y− 1)(a2x + b2y + c2 + d2x2 + e2xy + f2y2),

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R. We consider the particular subsystem

ẋ = (x− 1)2(a1x + b1y),

ẏ = (y− 1)(a2x + b2y + d2x2 + e2xy + f2y2),
(4.7)

where a1, b1, a2, b2, d2, e2, f2 ∈ R.
The origin (0, 0) is an equilibrium point of system (4.7), and its eigenvalues are

λ± =
1
2

(
a1 − b2 ±

√
a2

1 + b2
2 + 2a1b2 − 4a2b1

)
. (4.8)

We assume that
a2

1 + b2
2 + 2a1b2 − 4a2b1 < 0. (4.9)

Let

µ = a1 − b2, α(µ) =
1
2

µ, β(µ, b1, b2, a2) =
1
2

√
−µ2 + 4(µ + b2)b2 + 4a2b1.

By (4.9) the eigenvalues (4.8) are of the form λ±(µ, b1, b2, a2) = α(µ) ± β(µ, b1, b2, a2)i. So,
when µ = 0 they are

±β(0, b1, b2, a2) i = ±
√

b2
2 + a2b1 i.

We assume that b2
2 + a2b1 > 0. We also have that (dα/dµ)|µ=0 = 1/2 6= 0. Now we claim that

the origin of system (4.3) with µ = 0, b2 = 0, a2 = b1 = 1 and d2e2 + 2 f2 + e2 f2 6= 0 is not
a center. Before proving the claim we note that for these values the eigenvalues (4.8) are ±i
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and the condition (4.9) becomes −4 < 0. Hence, once the claim be proved all the conditions
for having a Hopf bifurcation hold, consequently there are systems (4.7) with limit cycles, and
statement (c) will be proved.

Now we prove the claim. Systems (4.7) becomes

ẋ = (x− 1)2y,

ẏ = (y− 1)(x + d2x2 + e2xy + f2y2).
(4.10)

We write this system in polar coordinates (r, θ) where x = r cos θ and y = r sin θ, and we have

ṙ = − sin θ
(
(d2 + 2) cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r2

+ sin θ
(
cos3 θ + d2 sin θ cos2 θ + e2 sin2 θ cos θ + f2 sin3 θ

)
r3,

θ̇ = −1− cos θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + ( f2 − 2) sin2 θ

)
r

+ cos θ sin θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r2.

This system in a neighborhood of the origin can be written as

dr
dθ

= r2 sin θ
(
(d2 + 2) cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
− r3 sin θ

(
cos3 θ + d2 sin θ cos2 θ + e2 sin2 θ cos θ + f2 sin3 θ

+ d2(d2 + 2) cos5 θ + 2(1 + d2)(e2 − 1) sin θ cos4 θ

+
(
e2

2 + 2 f2 + 2d2 f2 − 3− 2d2 − 2e2
)

sin2 θ cos3 θ

+ 2(e2 − 1)( f2 − 1) sin3 θ cos2 θ + ( f2 − 2) f2 sin4 θ cos θ
)
+ O(r4).

Then using Bautin’s algorithm we get that

u1(2π) = 1, u2(2π) = 0, u3(2π) = −π

4
(d2e2 + 2 f2 + e2 f2).

Hence, since d2e2 + 2 f2 + e2 f2 6= 0 we do not have a center at the origin of system (4.10). This
completes the proof of statement (c).

Proof of statement (d) of Theorem 1.5. We shall show that if the 3 invariant straight lines of mul-
tiplicity 1 intersect at a unique point, then the polynomial differential system (1.2) of degree 3
can have limit cycles.

Doing an affine change of variables we can suppose that the three invariant straight lines
of multiplicity 1 intersecting at a point of the polynomial differential system (1.2) of degree
3 are x − 1 = 0, y− 2 = 0 and y− x − 1 = 0. Proceeding as in the proof of some previous
statements we have that it is sufficient to prove statement (d) of Theorem 1.5 for the following
polynomial differential system of degree 3:

ẋ = P(x, y) = (x− 1)(a1x + b1y + c1 + d1x2 + e1xy + f1y2),

ẏ = Q(x, y) = (y− 2)(a2x + b2y + c2 + d2x2 + e2xy + f2y2),
(4.11)

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R and the coefficients d2, e2, f2 satisfy the following rela-
tions:

d2 = −a1 + a2 + c1 − c2 + d1,

e2 = a1 − a2 − b1 + b2 − 2c1 + 2c2 + e1,

f2 = b1 − b2 + c1 − c2 + f1.
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We consider the particular system

ẋ = (x− 1)(a1x + b1y + d1x2 + e1xy + f1y2),

ẏ = (y− 2)(a2x + b2y + (−a1 + a2 + d1)x2

+ (a1 − a2 − b1 + b2 + e1)xy + (b1 − b2 + f1)y2),

(4.12)

where a1, b1, d1, e1, f1, a2, b2 ∈ R.
The origin (0, 0) is an equilibrium point of system (4.12), and its eigenvalues are

λ± = −1
2

(
a1 + 2b2 ±

√
a2

1 + 4b2
2 − 4a1b2 + 8a2b1

)
. (4.13)

We assume that

a2
1 + 4b2

2 − 4a1b2 + 8a2b1 < 0. (4.14)

Let

µ = a1 + 2b2, α(µ) = −1
2

µ, β(µ, b1, b2, a2) =
1
2

√
−µ2 + 4(µ− 2b2)b2 − 4a2b1.

By (4.14) the eigenvalues (4.13) are of the form λ±(µ, b1, b2, a2) = α(µ)± β(µ, b1, b2, a2)i. So,
when µ = 0 they are

±β(0, b1, b2, a2) i = ±
√
−2b2

2 − a2b1 i.

We assume that 2b2
2 + a2b1 < 0. We also have that (dα/dµ)|µ=0 = −1/2 6= 0. Now we claim

that the origin of system (4.3) with µ = 0, b2 = 0, a2 = 1, b1 = −1 and 4d2
1 + 3e1d1 + 6d1 −

4 f 2
1 − 2e1 + 3e1 f1 + 8 f1 − 3 6= 0 is not a center. Before proving the claim we note that for these

values the eigenvalues (4.13) are ±i and the condition (4.14) becomes −8 < 0. Hence, once
the claim be proved all the conditions for having a Hopf bifurcation hold, consequently there
are systems (4.12) with limit cycles, and statement (d) will be proved.

Now we prove the claim. system (4.12) becomes

ẋ = (x− 1)(−y + d1x2 + e1xy + f1y2),

ẏ = (y− 2)
(

1
2

x +

(
1
2
+ d1

)
x2 +

(
1
2
+ e1

)
xy + ( f1 − 1)y2

)
.

(4.15)

We write this system in polar coordinates and we obtain

ṙ =
1
2

(
− 2d1 cos3 θ − 2(2 + 2d1 + e1) cos2 θ sin θ − (1 + 4e1 + 2 f1) cos θ sin2 θ

+4(1− f1) sin3 θ
)

r2 +
1
2

(
2d1 cos4 θ + 2e1 cos3 θ sin θ

+(1 + 2d1 + 2 f1) cos2 θ sin2 θ + (1 + 2e1) cos θ sin3 θ + 2( f1 − 1) sin4 θ
)

r3,

θ̇ = −1− 1
2

(
(−2(1 + 2d1) cos3 θ + (−1 + 2d1 − 4e1) cos2 θ sin θ

+2(3 + e1 − 2 f1) cos θ sin2 θ + 2 f1 sin3 θ
)

r

+
1
2

(
cos3 θ sin θ + cos2 θ sin2 θ − 2 cos θ sin3 θ)r2.
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This system in a neighborhood of the origin can be written as

dr
dθ

=
1
2

(
2d1 cos3 θ + 2(2d1 + e1 + 2) sin θ cos2 θ

+ (4e1 + 2 f1 + 1) sin2 θ cos θ + 4( f1 − 1) sin3 θ
)

r2

+
1
4

(
− 4d1(2d1 + 1) cos6 θ − 2

(
6d2

1 + 8e1d1 + 13d1 + 2e1 + 4
)

sin θ cos5 θ

+
(
2
(
4d2

1 − 12e1d1 − 8 f1d1 + 6d1 − 4e2
1 − 13e1 − 2 f1 − 3

)
sin2 θ − 4d1

)
cos4 θ

+
( (
−12e2

1 + 16d1e1 − 16 f1e1 + 12e1 + 42d1 − 24d1 f1 − 26 f1 + 31
)

sin3 θ

− 4e1 sin θ
)

cos3 θ +
(

2
(
4e2

1 − 12 f1e1 + 21e1 − 4 f 2
1 − 4d1 + 8d1 f1 + 6 f1 + 5

)
sin4 θ

− 2(2d1 + 2 f1 + 1) sin2 θ
)

cos2 θ +
(

2
(
−6 f 2

1 + 8e1 f1 + 21 f1 − 4e1 − 12
)

sin5 θ

− 2(2e1 + 1) sin3 θ
)

cos θ + 8( f1 − 1) f1 sin6 θ − 4( f1 − 1) sin4 θ

)
r3 + O(r4).

Now using Bautin’s algorithm we get that

u1(2π) = 1,

u2(2π) = 0,

u3(2π) = −π

4
(
4d2

1 + 3e1d1 + 6d1 − 4 f 2
1 − 2e1 + 3e1 f1 + 8 f1 − 3

)
.

Hence taking 4d2
1 + 3e1d1 + 6d1 − 4 f 2

1 − 2e1 + 3e1 f1 + 8 f1 − 3 6= 0 we do not have a center at
the origin of system (4.15). This completes the proof of statement (e).

Proof of statement (e) of Theorem 1.4. Assume that the three invariant straight lines of multi-
plicity 1 intersect pairwise in a unique point. Then the polynomial differential system (1.2) of
degree 3 can have limit cycles. Doing an affine change of variables we can suppose that these
three invariant straight lines are x− 1 = 0, y− 1 = 0 and y + x− 3 = 0.

Proceeding as in the previous statements we have that it is sufficient to prove statement (e)
of Theorem 1.5 for the following polynomial differential system of degree 3:

ẋ = P(x, y) = (x− 1)(a1x + b1y + c1 + d1x2 + e1xy + f1y2),

ẏ = Q(x, y) = (y− 1)(a2x + b2y + c2 + d2x2 + e2xy + f2y2),
(4.16)

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R and the coefficients d2, e2, f2 satisfy the relations

d2 =
1
18

(6a1 − 6a2 + 9b1 + 18e1 + 9 f1),

e2 =
1
36

(−6a1 − 12a2 + 3b1 − 12b2 − 18e1 + 27 f1),

f2 =
1
18

(−3b1 − 6b2 − 9 f1),

d1 =
1
4
(−2a1 − b1 − 2e1 − f1).



Periodic orbits for real planar polynomial vector fields of degree n 13

Taking c1 = c2 = 0 we consider the particular subsystem

ẋ = (x− 1)(a1x + b1y +
1
4
(−2a1 − b1 − 2e1 − f1)x2 + e1xy + f1y2),

ẏ = (y− 1)(a2x + b2y +
1
18

(6a1 − 6a2 + 9b1 + 18e1 + 9 f1)x2

+
1
36

(−6a1 − 12a2 + 3b1 − 12b2 − 18e1 + 27 f1)xy

+
1
18

(−3b1 − 6b2 − 9 f1)y2),

(4.17)

where a1, b1, d1, e1, f1, a2, b2 ∈ R.
The origin (0, 0) is an equilibrium point of system (4.17), and its eigenvalues are

λ± = −1
2

(
a1 + b2 ±

√
a2

1 + b2
2 − 2a1b2 + 4a2b1

)
. (4.18)

We assume that
a2

1 + b2
2 − 2a1b2 + 4a2b1 < 0, (4.19)

Let

µ = a1 + b2, α(µ) = −1
2

µ, β(µ, b1, b2, a2) =
1
2

√
−µ2 + 4(µ− b2)b2 − 4a2b1.

By (4.19) the eigenvalues (4.18) are λ±(µ, b1, b2, a2) = α(µ)± β(µ, b1, b2, a2)i. So, when µ = 0
they are

±β(0, b1, b2, a2) i = ±
√
−b2

2 − a2b1 i.

We assume that b2
2 + a2b1 < 0. We also have that dα

dµ |µ=0 = −1/2 6= 0. Now we claim that the
origin of system (4.17) with µ = 0, b2 = 0, a2 = 1, b1 = −1 and (6e1− 3 f1 + 5)(6e1 + 9 f1− 5) 6=0
is not a center. Before proving the claim we note that for these values the eigenvalues (4.18)
are ±i and the condition (4.19) becomes −4 < 0. Hence, once the claim be proved all the
conditions for having a Hopf bifurcation hold, consequently there are systems (4.17) with
limit cycles, and statement (e) will be proved.

Now we prove the claim. System (4.17) becomes

ẋ = (x− 1)
(
−y +

1
4
(1− 2e1 − f1)x2 + e1xy + f1y2

)
,

ẏ = (y− 1)
(

x +
1
18

(18e1 + 9 f1 − 15)x2 +
1
36

(−18e1 + 27 f1 − 15)xy +
1
18

(3− 9 f1)y2
)

.
(4.20)

We write this system in polar coordinates (r, θ) and we have

ṙ =
1
12

(
3(2e1 + f1 − 1) cos3 θ − 2(12e1 + 3 f1 + 1) cos2 θ sin θ

+(6e1 − 21 f1 + 17) cos θ sin2 θ + 2(3 f1 − 1) sin3 θ
)

r2

− 1
12

(
3(2e1 + f1 − 1) cos4 θ − 12e1 cos3 θ sin θ − 2(6e1 + 9 f1 − 5)θ cos2 θ sin2 θ

+(6e1 − 9 f1 + 5) cos θ sin3 θ + 2(3 f1 − 1) sin4 θ
)

r3,
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θ̇ = −1− 1
6

(
(6e1 + 3 f1 − 5) cos3 θ + 2(3 f1 − 5) cos2 θ sin θ

+(−6e1 − 3 f1 − 5) cos θ sin2 θ − 6 f1 sin3 θ
)

r

+
1

12

(
(18e1 + 9 f1 − 13) cos3 θ sin θ + (−18e1 + 9 f1 − 5) cos2 θ sin2 θ

−2(9 f1 − 1) cos θ sin3 θ
)

r2.

This system in a neighborhood of the origin can be written as

dr
dθ

=
1
12

(
− 3(2e1 + f1 − 1) cos3 θ + 2(12e1 + 3 f1 + 1) cos2 θ sin θ

+ (−6e1 + 21 f1 − 17) sin2 θ cos θ − 2(3 f1 − 1) sin3 θ
)

r2

+
1
72

(
3(2e1 + f1 − 1)(6e1 + 3 f1 − 5) cos6 θ

− 8
(
18e2

1 + 9 f1e1 − 6e1 + 3 f1 − 5
)

cos5 θ sin θ

+
(
18(2e1 + f1 − 1)− 2

(
54 f 2

1 + 144e1 f1 − 99 f1 − 150e1 + 25
)

sin2 θ
)

cos4 θ

+
(
6(4e1 − 2 f1 + 5)(6e1 + 9 f1 − 5) sin3 θ − 72e1 sin θ

)
cos3 θ

+
(
(−36e2

1 + 252 f1e1 − 132e1 + 135 f 2
1 − 6 f1 − 65) sin4 θ

− 12(6e1 + 9 f1 − 5) sin2 θ
)

cos2 θ

+
(
6(6e1 − 9 f1 + 5) sin3 θ − 2

(
−54 f 2

1 + 36e1 f1 + 63 f1 − 6e1 − 5
)

sin5 θ
)

cos θ

− 12 f1(3 f1 − 1) sin6 θ + 12(3 f1 − 1) sin4 θ

)
r3 + O(r4).

Now using Bautin’s algorithm we obtain that

u1(2π) = 1,

u2(2π) = 0,

u3(2π) =
π

144
(6e1 − 3 f1 + 5)(6e1 + 9 f1 − 5).

Hence taking (6e1− 3 f1 + 5)(6e1 + 9 f1− 5) 6= 0 we do not have a center at the origin of system
(4.20). This completes the proof of statement (e).
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