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BP 89, 22000 Sidi Bel Abbès, Algérie
e-mail: agh ouahab@yahoo.fr

Abstract

In this paper, the authors consider the first-order nonresonance impulsive differen-
tial inclusion with periodic conditions

y′(t) − λy(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(t−k ) = Ik(y(t−k )), k = 1, 2, . . . ,m,

y(0) = y(b),

where J = [0, b] and F : J × R
n → P(Rn) is a set-valued map. The functions Ik

characterize the jump of the solutions at impulse points tk (k = 1, 2, . . . ,m). The
topological structure of solution sets as well as some of their geometric properties
(contractibility and Rδ-sets) are studied. A continuous version of Filippov’s theorem
is also proved.

Key words and phrases: Impulsive differential inclusions, periodic conditions, contract-
ible, Rδ-set, acyclic, continuous selection, Filippov’s theorem.
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1 Introduction

Many processes in engineering, physics, biology, population dynamics, medicine, and other
areas are subject to abrupt changes such as shocks or perturbations (see for instance [1, 34]
and the references therein). These changes may be viewed as impulses. For example, in the
treatment of some diseases, periodic impulses correspond to the administration of a drug.
In environmental sciences such impulses correspond to seasonal changes of the water level
of artificial reservoirs. Such models can be described by impulsive differential equations.
Contributions to the study of the mathematical aspects of such equations can be found, for
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example, in the works of Bainov and Simeonov [9], Lakshmikantham, Bainov, and Simeonov
[35], Pandit and Deo [38], and Samoilenko and Perestyuk [41].

Impulsive ordinary differential inclusions and functional differential inclusions with dif-
ferent conditions have been intensely studied in the last several years, and we refer the reader
to the monographs by Aubin [6] and Benchohra et al. [11], as well as the thesis of Ouahab
[37], and the references therein.

We will consider the problem

y′(t) − λy(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, (1)

y(t+k ) − y(tk) = Ik(y(tk)), k = 1, 2, . . . , m, (2)

y(0) = y(b), (3)

where λ 6= 0 is a parameter, J = [0, b], F : J × R
n → P(Rn) is a multi-valued map,

Ik ∈ C(Rn,Rn), k = 1, 2, . . . , m, t0 = 0 < t1 < . . . < tm < tm+1 = b, ∆y|t=tk = y(t+k )− y(t−k ),
y(t+k ) = lim

h→0+
y(tk + h), and y(t−k ) = lim

h→0+
y(tk − h).

In 1923, Kneser proved that the Peano existence theorem can be formulated in such a
way that the set of all solutions is not only nonempty but is also compact and connected
(see [39, 40]). Later, in 1942, Aronszajn [5] improved Kneser’s theorem by showing that the
set of all solutions is even an Rδ–set. It should also be clear that the characterization of the
set of fixed points for some operators implies the corresponding result for the solution sets.

Lasry and Robert [36] studied the topological properties of the sets of solutions for a large
class of differential inclusions including differential difference inclusions. The present paper
is a continuation of their work but for a general class of impulsive differential inclusions with
periodic conditions. Aronszajn’s results for differential inclusions with difference conditions
was improved by several authors, for example, see [2, 3, 4, 21, 23, 24]. Very recently, prop-
erties of the solutions of impulsive differential inclusions with initial conditions were study
by Djebali et al. [18].

The main goal of this paper is to examine some properties of solutions sets for impul-
sive differential inclusions with periodic conditions and to present a continuous version of
Filippov’s theorem.

2 Preliminaries

Here, we introduce notations, definitions, and facts from multi-valued analysis that will be
needed throughout this paper. We let C(J,R) denote the Banach space of all continuous
functions from J into R with the Tchebyshev norm

‖x‖∞ = sup{|x(t)| : t ∈ J},

and we let L1(J,R) be the Banach space of measurable functions x : J −→ R that are
Lebesgue integrable with the norm

|x|1 =

∫ b

0

|x(s)|ds.
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By ACi(J,Rn), we mean the space of functions y : J → R
n that are i-times differentiable

and whose ith derivative, y(i), is absolutely continuous.
For a metric space (X, d), the following notations will be used throughout this paper:

• P(X) = {Y ⊂ X : Y 6= ∅}.

• Pp(X) = {Y ∈ P(X) : Y has the property “p”} where p could be: cl = closed, b =
bounded, cp = compact, cv = convex, etc. Thus,

• Pcl(X) = {Y ∈ P(X) : Y closed}.

• Pb(X) = {Y ∈ P(X) : Y bounded}.

• Pcv(X) = {Y ∈ P(X) : Y convex, } where X is a Banach spaces.

• Pcp(X) = {Y ∈ P(X) : Y compact}.

• Pcv,cp(X) = Pcv(X) ∩ Pcp(X).

Let (X, ‖.‖) be a separable Banach space and F : J → Pcl(X) be a multi-valued map.
We say that F is measurable provided for every open U ⊂ X, the set F+1(U) = {t ∈ J :
F (t) ⊂ U} is Lebesgue measurable in J . We will need the following lemma.

Lemma 2.1 ([15, 20]) The mapping F is measurable if and only if for each x ∈ X, the
function ζ : J → [0,+∞) defined by

ζ(t) = dist(x, F (t)) = inf{‖x− y‖ : y ∈ F (t)}, t ∈ J,

is Lebesgue measurable.

Let (X, ‖ · ‖) be a Banach space and F : X → P(X) be a multi-valued map. We say
that F has a fixed point if there exists x ∈ X such that x ∈ F (x). The set of fixed points
of F will be denoted by FixF . We say that F has convex (closed) values if F (x) is convex
(closed) for all x ∈ X, and that F is totally bounded if F (A) =

⋃
x∈A{F (x)} is bounded in

X for each bounded set A of X, i.e.,

sup
x∈A

{sup{‖y‖ : y ∈ F (x)}} <∞.

Let (X, d) and (Y, ρ) be two metric spaces and let F : X → Pcl(Y ) be a multi-valued
mapping. We say that F is upper semi-continuous (u.s.c. for short) on X if for each x0 ∈ X

the set F (x0) is a nonempty, closed subset of X, and if for each open set N of Y containing
F (x0), there exists an open neighborhood M of x0 such that G(M) ⊆ Y. That is, if the set
F−1(V ) = {x ∈ X, F (x) ∩ V 6= ∅} is closed for any closed set V in Y . Equivalently, F
is u.s.c. if the set F+1(V ) = {x ∈ X, F (x) ⊂ V } is open for any open set V in Y . The
mapping F is said to be lower semi-continuous (l.s.c.) if the inverse image of V by F

F−1(V ) = {x ∈ X : F (x) ∩ V 6= ∅}
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is open for any open set V in Y . Equivalently, F is l.s.c. if the core of V by F

F+1(V ) = {x ∈ X : F (x) ⊂ V }

is closed for any closed set V in Y . Finally, for a multi-valued function G : J×R
n → P(Rn),

we take

‖G(t, z)‖P := sup{|v| : v ∈ G(t, z)}.

Definition 2.2 A mapping G is a multi-valued Carathéodory function if:

(a) The function t 7→ G(t, z) is measurable for each z ∈ R
n;

(b) For a.e. t ∈ J, the map z 7→ G(t, z) is upper semi-continuous.

Furthermore, it is L1−Carathéodory if it is locally integrably bounded, i.e., for each positive
real number r, there exists hr ∈ L1(J,R+) such that

‖G(t, z)‖P ≤ hr(t) for a.e. t ∈ J and all ‖z‖ ≤ r.

Consider the Hausdorf pseudo-metric distance Hd : P(Rn)×P(Rn) −→ R
+∪{∞} defined

by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(R
n), Hd) is a metric space and

(Pcl(X), Hd) is a generalized metric space (see [33]). Moreover, Hd satisfies the triangle
inequality. Note that if x0 ∈ R

n, then

d(x0, A) = inf
x∈A

d(x0, x) while Hd({x0}, A) = sup
x∈A

d(x0, x).

Definition 2.3 A multivalued operator N : R
n → Pcl(R

n) is called:

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ R
n;

(b) a contraction if it is γ-Lipschitz with γ < 1.

Additional details on multi-valued maps can be found in the works of Aubin and Cellina
[7], Aubin and Frankowska [8], Deimling [17], Gorniewicz [20], Hu and Papageorgiou [30],
Kamenskii [32], Kisielewicz [33], and Tolstonogov [42].
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2.1 Background in Geometric Topology

We begin with some elementary notions from geometric topology. For additional details, we
recommend [12, 22, 28, 31]. In what follows, we let (X, d) denote a metric space. A set
A ∈ P(X) is contractible provided there exists a continuous homotopy h : A × [0, 1] → A

such that

(i) h(x, 0) = x, for every x ∈ A, and

(ii) h(x, 1) = x0, for every x ∈ A.

Note that if A ∈ Pcv,cp(X), then A is contractible. Clearly, the class of contractible sets is
much larger than the class of all compact convex sets. The following concepts are needed in
the sequel.

Definition 2.4 A space X is called an absolute retract (written as X ∈ AR) provided that
for every space Y , a closed subset B ⊆ Y , and a continuous map f : B → X, there exists a
continuous extension f̃ : Y → X of f over Y , i.e., f̃(x) = f(x) for every x ∈ B.

Definition 2.5 A space X is called an absolute neighborhood retract (written as X ∈ ANR)
if for every space Y , any closed subset B ⊆ Y , and any continuous map f : B → X, there
exists a open neighborhood U of B and a continuous map f̃ : U → X such that f̃(x) = f(x)
for every x ∈ B.

Definition 2.6 A space X is called an Rδ−set if there exists a sequence of nonempty com-
pact contractible spaces {Xn} such that

Xn+1 ⊂ Xn for every n

and

X =
∞⋂

n=1

Xn.

It is well known that any contractible set is acyclic and that the class of acyclic sets is
larger than that of contractible sets. The continuity of the Čech cohomology functor yields
the following lemma.

Lemma 2.7 ([22]) Let X be a compact metric space. If X is an Rδ–set, then it is an acyclic
space.
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3 Space of Solutions

Let Jk = (tk, tk+1], k = 0, 1, . . . , m, and let yk be the restriction of a function y to Jk. In
order to define mild solutions to the problem (1)–(3), consider the space

PC = {y : J → R
n | yk ∈ C(Jk,R

n), k = 0, 1, . . . , m, and

y(t−k ) and y(t+k ) exist and satisfy y(t−k ) = y(tk) for k = 1, 2, . . . , m}.

Endowed with the norm

‖y‖PC = max{‖yk‖∞ : k = 0, 1, . . . , m},

this is a Banach space.

Definition 3.1 A function y ∈ PC ∩ ∪m
k=0AC(Jk,R

n) is said to be a solution of problem
(1)–(3) if there exists v ∈ L1(J,Rn) such that v(t) ∈ F (t, y(t)) a.e. t ∈ J , y′(t)−λy(t) = v(t)
for t ∈ J\{t1, . . . , tm}, y(t

+
k ) − y(tk) = Ik(y(tk)), k = 1, 2, . . . , m, and y(0) = y(b).

4 Solutions Sets

In this section, we present results about the topological structure of the set of solutions of
some nonlinear functional equations due to Aronszajn [5] and further developed by Browder
and Gupta in [14].

Theorem 4.1 Let X be a space, let (E, ‖ · ‖) be a Banach space, and let f : X → E be a
proper map, i.e., f is continuous and for every compact K ⊂ E the set f−1(K) is compact.
Assume further that for each ε > 0 a proper map fε : X → E is given, and the following two
conditions are satisfied:

(i) ‖fε(x) − f(x)‖ < ε for every x ∈ X;

(ii) for every ε > 0 and u ∈ E such that ‖u‖ ≤ ε, the equation fε(x) = u has exactly one
solution.

Then the set S = f−1(0) is Rδ.

Definition 4.2 A single valued map f : [0; a] × X → Y is said to be measurable-locally-
Lipschitz if f(·, x) is measurable for every x ∈ X, and for each x ∈ X there exists a neigh-
borhood Vx of x and an integrable function Lx : [0, a] → [0,∞) such that

‖f(t, x1) − f(t, x2)‖ ≤ Lx(t)‖x1 − x2‖ for every t ∈ [0, a] and x1, x2 ∈ Vx.

The following result is know as the Lasota–Yorke Approximation Theorem.
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Theorem 4.3 ([20]) Let E be a normed space, X be a metric space, and let f : X → E be
a continuous map. Then, for each ε > 0 there is a locally Lipschitz map fε : X → E such
that

‖f(x) − fε(x)‖ < ε for every x ∈ X.

We consider the impulsive problem

y′(t) − λy(t) = f(t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, (4)

∆y|t=tk = Ik(y(t
−
k )), k = 1, 2, . . . , m, (5)

y(0) = y(b), (6)

where J = [0, b], f : J × R
n → R

n is a Carathédory function, 0 = t0 < t1 < · · · <
tm < tm+1 = b, λ ∈ R\{0}, ∆y|t=tk = y(t+k ) − y(t−k ), and y(t+k ) = limh→0+ y(tk + h) and
y(t−k ) = limh→0+ y(tk − h) represent the right and left limits of y(t) at t = tk, respectively.

The following result of Graef and Ouahab will be used to prove our main existence
theorems.

Lemma 4.4 ([26]) The function y is the unique solution of the problem (4)–(6) if and only
if

y(t) =

∫ b

0

H(t, s)f(y(s))ds+

m∑

k=1

H(t, tk)Ik(y(tk)), (7)

where

H(t, s) = (e−λb − 1)−1






e−λ(b+s−t), if 0 ≤ s ≤ t ≤ b,

e−λ(s−t), if 0 ≤ t < s ≤ b.

We denote by S(f, 0, b) the set of all solutions of the impulsive problem (4)–(6). Now,
we are in a position to state and prove our first Aronsajn type result. For the study of this
problem, we first list the following hypotheses.

(R1) There exist functions p, q ∈ L1(J,R+) and α ∈ [0, 1) such that

|f(t, y)| ≤ p(t)|y|α + q(t) for each (t, y) ∈ J × R
n.

(R2) There exist constants c∗k, b
∗
k ∈ R+ and αk ∈ [0, 1) such that

|Ik(y)| ≤ c∗k + b∗k|y|
αk, k = 1, 2, . . . , m, y ∈ R

n.

Theorem 4.5 Assume that conditions (R1)–(R2) hold. Then S(f, 0, b) is Rδ. Moreover,
S(f, 0, b) is an acyclic space.
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Proof. Let G : PC → PC defined by

G(y)(t) =

∫ b

0

H(t, s)f(s, y(s))ds+

m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ [t0, b].

Thus, FixG = S(f, 0, b). From (R1) and (R2), we have S(f, 0, b) 6= ∅ (see [26]) and there
exists M > 0 such that

‖y‖PC ≤M for every y ∈ S(f, 0, b).

Define

f̃(t, y(t)) =





f(t, y(t)), if |y(t)| ≤M,

f(t, My(t)
|y(t)|

), if |y(t)| ≥M,

and

Ĩk(y(t)) =





Ik(y(t)), if |y(t)| ≤M,

Ik(
My(t)
|y(t)|

), if |y(t)| ≥ M.

Since f is an L1−Carathédory function, f̃ is Carathédory and integrably bounded. We
consider the following modified problem

y′(t) − λy(t) = f̃(t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, (8)

∆y|t=tk = Ĩk(y(t
−
k )), k = 1, 2, . . . , m, (9)

y(0) = y(b). (10)

We can easily prove that S(f, 0, b) = S(f̃ , 0, b). Since f̃ integrably bounded, there exists
h ∈ L1(J,R+) such that

‖f̃(t, x)‖ ≤ h(t) a.e. t ∈ J and for all x ∈ R
n. (11)

Now S(f̃ , 0, b) = FixG̃, where G̃ : PC → PC is defined by

G̃(y)(t) =

∫ b

0

H(t, s)f̃(s, y(s))ds+
m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ [t0, b].

By inequality (11) and the continuity of the Ik, we have

‖G̃(y)‖PC ≤ H∗‖h‖L1 +H∗

m∑

k=1

[c∗k +Mαkb∗k] := r,

where

H∗ = sup{H(t, s) | (t, s) ∈ J × J}.
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By the same method used in [25, 26, 37], we can prove that G̃ : PC → PC is a compact

operator, and we define the vector filed associated with G̃ by g = y − G̃(y). From the

compactness of G̃ and the Lasota–Yorke Approximation Theorem (Theorem 4.3 above), we

can easily prove that all the conditions of Theorem 4.1 are satisfied, and so S(f̃ , 0, b) is Rδ.
That it is acyclic follows from Lemma 2.7. �

The following definition and lemma can be found in [20, 29].

Definition 4.6 A mapping F : X → P(Y ) is LL-selectionable provided there exists a mea-
surable, locally-Lipchitzian map f : X → Y such that f ⊂ F .

Lemma 4.7 If ϕ : X → Pcp,cv(R
n) is an u.s.c. multi-valued map, then ϕ is σ−LL-

selectionable.

Let S(F, 0, b) denote the set of all solutions of (1)–(3). We are now going to characterize
the topological structure of S(F, 0, b). First, we prove the following result.

Theorem 4.8 Let F : J × R
n → Pcp,cv(R

n) be a Carathéodory map that is mLL-selection-
able. In addition to conditions (R1)–(R2), assume that:

(H1) There exist constants ck ≥ 0 such that

|Ik(u) − Ik(z)| ≤ ck|u− z|, k = 1, 2, . . . , m, for each u, z ∈ R
n;

(H2) There exist a function p ∈ L1(J,R+) such that

Hd(F (t, z1), F (t, z2)) ≤ p(t)‖z1 − z2‖ for all z1, z2 ∈ R
n

and

d(0, F (t, 0)) ≤ p(t), t ∈ J.

If H∗

[
m∑

k=1

ck + ‖p‖L1

]
< 1, then the solutions set S(F, 0, b) of the problem (1)–(3) is a

contractible set.

Proof. Let f ⊂ F be measurable and locally Lipschitz. Consider the single-valued
problem

y′(t) − λy(t) = f(t, y(t)), a.e. t ∈ J\{t1, t2, . . . , tm} (12)

y(t+k ) − y(tk) = Ik(x(t
−
k )), k = 1, 2, . . . , m (13)

y(0) = y(b). (14)
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By the Banach fixed point theorem, we can prove that the problem (12)–(14) has exactly
one solution. From Theorem 5.1 in [27], the set S(F, 0, b) is compact in PC. We define the
homotopy h : S(F, 0, b) × [0, 1] → S(F, 0, b) by

h(y, α) =

{
y, for α = 1 and y ∈ S(F, 0, b),

x, for, α = 0,

where x = S(f, 0, b) is exactly one solution of the problem (12)–(14). Note that

h(y, α)(t) =

{
y(t), for 0 ≤ t ≤ αb,

x(t), for, αb < t ≤ b,

Now we prove that h is a continuous homotopy. Let (yn, αn) ∈ S(F, 0, b) × [0, 1] such that
(yn, αn) → (y, α). We shall show that h(yn, αn) → h(y, α). We have

h(yn, αn)(t) =

{
yn(t), for t ∈ [0, αnb],

x(t), for, t ∈ (αnb, b].

If lim
n→∞

αn = 0, then

h(y, α)(t) = x(t), t ∈ (0, b].

Hence, ‖h(yn, αn) − h(y, α)‖PC → 0 as n→ ∞. If αn 6= 0 and 0 < lim
n→∞

αn = α < 1, then

h(y, α)(t) =





y(t), for t ∈ [0, αb],

x(t), for t ∈ (αb, b].

Since yn ∈ S(F, 0, b), there exist vn ∈ SF,yn
such that

yn(t) =

∫ b

0

H(t, s)vn(s)ds+

m∑

k=1

Hk(t, tk)Ik(yn(tk)), t ∈ [0, αnb].

Since yn converges to y, there exists R > 0 such that

‖yn‖PC ≤ R.

Hence, from (R1), we have

|vn(t)| ≤ p(t)Rα + q(t), a.e. t ∈ J

which implies

vn(t) ∈ p(t)Rα + q(t)B(0, 1).
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This implies that there exists a subsequence vnm
(t) converge in R

n to v(t). Since F (t, ·) is
upper semicontinuous, then for every ε > 0, there exist n0 ≥ 0 such that for every n ≥ n0,
we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y(t)) + εB(0, 1) a.e. t ∈ [0, αb].

Using the compactness of F (·, ·) we then have

v(t) ∈ F (t, y(t)) + εB(0, 1) which implies v(t) ∈ F (t, y(t)) a.e. t ∈ J.

From the Lebesgue Dominated Convergence Theorem, we have that v ∈ L1(J,Rn), so v ∈
SF,y. Using the continuity of Ik, we have

y(t) =

∫ b

0

H(t, s)v(s)ds+

m∑

k=1

H(t, tk)Ik(y(tk)) for t ∈ [0, αb].

If t ∈ (αnb, b], then

h(yn, αn)(t) = h(y, α)(t).

Thus,

‖h(yn, αn) − h(y, α)‖PC → 0 as n→ ∞.

In the case where α = 1, we have

h(y, α) = y.

Hence, h is a continuous function, h(y, 0) = x, and h(y, 1) = y. Therefore, S(F, 0, b) contracts
to the point x = S(f, 0, b). �

4.1 σ-selectionable multivalued maps

The next two definitions and the theorem that follows can be found in [20, 29] (see also [7],
p. 86).

Definition 4.9 We say that a map F : X → P(Y ) is σ−Ca-selectionable if there exists a
decreasing sequence of compact valued u.s.c. maps Fn : X → Y satisfying:

(a) Fn has a Carathédory selection, for all n ≥ 0 (Fn are called Ca-selectionable);

(b) F (x) =
⋂

n≥0

Fn(x), for all x ∈ X.

Definition 4.10 We say that a multivalued map φ : [0, a]×R
n → P(Rn) with closed values

is upper-Scorza-Dragoni if, given δ > 0, there exists a closed subset Aδ ⊂ [0, a] such that the
measure µ([0, a] \ Aδ) ≤ δ and the restriction φδ of φ to Aδ × R

n is u.s.c.
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Theorem 4.11 ([20, Theorem 19.19]) Let E and E1 be two separable Banach spaces and let
F : [a, b]×E → Pcp,cv(E1) be an upper-Scorza-Dragoni map. Then F is σ−Ca-selectionable,
the maps Fn : [a, b] × E → P(E1) (n ∈ N) are almost upper semicontinuous, and

Fn(t, e) ⊂ conv (∪x∈EFn(t, x)) .

Moreover, if F is integrably bounded, then F is σ−mLL-selectionable.

We are now in a position to state and prove another characterization of the geometric
structure of the set S(F, 0, b) of all solutions of the problem (1)–(3).

Theorem 4.12 Let F : J × R
n → Pcp,cv(R

n) be a Carathéodory and mLL-selectionable
multi-valued map and assume that conditions (R1)–(R2) and (H1)–(H2) hold with

H∗

[
‖p‖L1 +

k=m∑

k=1

ck

]
< 1.

Then, S(F, 0, b) is an Rδ-set.

Proof. Since F is σ−Ca-selectionable, there exists a decreasing sequence of multivalued
maps Fk : J × R

n → P(Rn) (k ∈ N) that have Carathéodory selections and satisfy

Fk+1(t, u) ⊂ Fk(t, x) for almost all t ∈ J and all x ∈ R
n

and

F (t, x) =
∞⋂

k=0

Fk(t, x), x ∈ R
n.

Then,

S(F, 0, b) =
∞⋂

k=0

S(Fk, 0, b).

From Theorems 5.1 and 5.2 in [27], the sets S(Fk, 0, b) are compact for all k ∈ N. Using
Theorem 4.8, the sets S(Fk, 0, b) are contractible for each k ∈ N. Hence, S(F, 0, b) is an
Rδ-set. �

Alternately, we have the following result.

Theorem 4.13 Let F : J × R
n → Pcp,cv(R

n) be an upper-Scorza-Dragoni. Assume that all
conditions of Theorem 4.12 are satisfied. Then the solution set S(F, 0, b) is an Rδ-set.

Proof Since F is upper-Scorza-Dragoni, then from Theorem 4.11, F is a σ−Ca-selection
map. Therefore S(F, 0, b) is an Rδ-set.
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5 Filippov’s Theorem

Let A be a subset of J×R
n. We say that A is L⊗B measurable if A belongs to the σ-algebra

generated by all sets of the form J ×R
n where J is Lebesgue measurable in J and D is Borel

measurable in R
n. A subset A of L1(J,R) is decomposable if for all u, v ∈ A and measurable

J ⊂ J , uχJ + vχJ−J ∈ A, where χ stands for the characteristic function. The family of all
nonempty closed and decomposable subsets of L1(J,Rn) is denoted by D.

Definition 5.1 Let Y be a separable metric space and let N : Y → P(L1(J,Rn)) be a
multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.), and

2) N has nonempty closed and decomposable values.

Let F : J × R
n → P(Rn) be a multivalued map with nonempty compact values. Assign

to F the multivalued operator

F : PC → P(L1(J,Rn))

by letting
F(y) = {w ∈ L1(J,Rn) : w(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

The operator F is called the Niemytzki operator associated to F .

Definition 5.2 Let F : J × R
n → P(Rn) be a multivalued function with nonempty compact

values. We say F is of lower semi-continuous type (l.s.c. type) if its associated Niemytzki
operator F is lower semi-continuous and has nonempty closed and decomposable values.

Next, we state a selection theorem due to Bressan and Colombo.

Theorem 5.3 ([13]) Let Y be separable metric space and let N : Y → P(L1(J,Rn)) be a
multivalued operator that has property (BC). Then N has a continuous selection, i.e., there
exists a continuous (single-valued) function g̃ : Y → L1(J,Rn) such that g̃(y) ∈ N(y) for
every y ∈ Y .

The following result is due to Colombo et al.

Proposition 5.4 ([16]) Consider a l.s.c. multivalued map G : S → D and assume that
φ : S → L1(J,Rn) and ψ : S → L1(J,R+) are continuous maps such that for every s ∈ S,
the set

H(s) = {u ∈ G(s) : |u(t) − φ(s)(t)| < ψ(s)(t)}

is nonempty. Then the map H : S → D is l.s.c. and admits a continuous selection.

Let us introduce the following hypotheses which are assumed hereafter.
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(H3) F : J × E −→ P(E) is a nonempty compact valued multivalued map such that:
a) (t, y) 7→ F (t, y) is L ⊗ B measurable;
b) y 7→ F (t, y) is lower semi-continuous for a.e. t ∈ J .

(H4) For each q > 0, there exists a function hq ∈ L1(J,R+) such that

‖F (t, y)‖ ≤ hq(t) for a.e. t ∈ J and for y ∈ R
n with ‖y‖ ≤ q.

The following lemma is crucial in the proof of our main theorem.

Lemma 5.5 ([19]). Let F : J × E → P(E) be a multivalued map with nonempty, compact
values. Assume that (H3) and (H4) hold. Then F is of l.s.c. type.

The following two lemmas are concerned with the measurability of multi-functions; they
will be needed in this section. The first one is the well known Kuratowski-Ryll-Nardzewski
selection theorem.

Lemma 5.6 ([20, Theorem 19.7]) Let E be a separable metric space and G a multi-valued
map with nonempty closed values. Then G has a measurable selection.

Lemma 5.7 ([43]) Let G : J → P(E) be a measurable multifunction and let g : J → E

be a measurable function. Then for any measurable v : J → R+ there exists a measurable
selection u of G such that

|u(t) − g(t)| ≤ d(g(t), G(t)) + v(t).

Corollary 5.8 Let G : [0, b] → Pcp(E) be a measurable multifunction and g : [0, b] → E be
a measurable function. Then there exists a measurable selection u of G such that

|u(t) − g(t)| ≤ d(g(t), G(t)).

Proof Let vε : [0, b] → R+ be defined by vε(t) = ε > 0. Then, from Lemma 5.7, there
exist a measurable selection uε of G such that

|uε(t) − g(t)| ≤ d(g(t), G(t)) + ε.

We take ε =
1

n
, n ∈ N, hence for every n ∈ N, we have

|un(t) − g(t)| ≤ d(g(t), G(t)) +
1

n
.

Using the fact that G has compact values, we may pass to a subsequence if necessary to get
that un(·) converges to a measurable function u in E. Thus,

|u(t) − g(t)| ≤ d(g(t), G(t))

completing the proof of the corollary. �

In the case of both differential equations and inclusions, existence results for problem
(1)–(3) can be found in [25, 26, 37]. The main result in this section is contained in the
following theorem. It is a Filippov type result for problem (1)–(3).

EJQTDE, 2009 No. 24, p. 14



Theorem 5.9 In addition to (H1), (H3), and (H4), assume that the following conditions
hold.

(H5) There exist a function p ∈ L1(J,R+) such that

Hd(F (t, z1), F (t, z2)) < p(t)‖z1 − z2‖ for all z1, z2 ∈ R
n.

(H6) There exists continuous mappings g(·) : PC → L1(J,Rn) and x ∈ PC such that





x′(t) − λx(t) = g(x)(t), a.e. t ∈ J\{t1, . . . , tm},
x(t+k ) − x(tk) = Ik(x(t

−
k )), k = 1, 2, . . . , m,

x(0) = x(b).
(15)

If

H∗‖p‖L1 +H∗

m∑

k=1

ck < 1

and there exists ε ∈ (0, 1] such that

d(g(y0)(t), F (t, y0(t)) < ε and
εH∗‖p‖L1

1 −H∗‖p‖L1 −H∗

m∑

k=1

ck

< 1,

then the problem (1)–(3) has at least one solution y satisfying the estimates

‖y − x‖PC ≤
2H∗‖p‖L1(

1 −H∗

m∑

k=1

ck

)(
1 −H∗

m∑

k=1

ck −H∗‖p‖L1

)

and
|y′(t) − λy(t) − g(x)(t)| ≤ 2H̃p(t) a.e. t ∈ J,

where

H̃ =
H∗‖p‖L1(

1 −H∗

m∑

k=1

ck −H∗‖p‖L1

)

and
H∗ = sup{H(t, s) | (t, s) ∈ J × J}.

Proof Let f0(y0)(t) = g(x)(t), t ∈ J , and

y0(t) =

∫ b

0

H(t, s)f0(y0)(s)ds+
m∑

k=0

H(t, tk)Ik(x(tk)), y0(tk) = x(tk).
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Let G1 : PC → P(L1(J,Rn)) be given by

G1(y) = {v ∈ L1(J,Rn) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

and G̃1 : PC → P(L1(J,Rn)) be defined by

G̃1(y) = {v ∈ G1(y) : |v(t) − g(y0)(t)| < p(t)|y(t) − y0(t)| + ε}.

Since t → F (t, y(t)) is a measurable multifunction, by Corollary 5.8, there exists a function
v1 which is a measurable selection of F (t, y(t)) a.e. t ∈ J such that

|v1(t) − g(y0)(t)| ≤ d(g(y0)(t), F (t, y(t)))

< p(t)|y0(t) − y(t)| + ε.

Thus, v1 ∈ G̃1(y) 6= ∅. By Lemma 5.5, F is of lower semi-continuous type. Then y → G̃1(y)

is l.s.c. and has decomposable values. Thus, y → G̃1(y) is l.s.c with decomposable values.
By Theorem 5.3, there exists a continuous function f1 : PC → L1(J,Rn) such that

f1(y) ∈ G̃1(y) for all y ∈ PC. Consider the problem

y′(t) − λy(t) = f1(y)(t), t ∈ J, t 6= tk, k = 1, 2, . . . , m, (16)

∆y|t=tk = Ik(y(t
−
k )), k = 1, 2, . . . , m, (17)

y(0) = y(b). (18)

From [10, 26], the problem (16)–(18) has at least one solution which we denote by y1.
Consider

y1(t) =

∫ b

0

H(t, s)f1(y1)(s)ds+

m∑

k=0

H(t, tk)Ik(y1(tk)), t ∈ J,

where y1 is a solution of the problem (16)–(18). For every t ∈ J, we have

|y1(t) − y0(t)| ≤

∫ b

0

|H(t, s)||f1(y1)(s) − f0(y0)(s)| ds

+

m∑

k=1

|H(t, s)||Ik(y1(tk)) − Ik(y0(tk))|

≤ H∗‖p‖L1‖y1 − y0‖PC +H∗‖p‖L1ε+H∗

m∑

k=1

ck|y1(tk) − y0(tk)|.

Then,

‖y1 − y0‖PC ≤
H∗‖p‖L1ε

1 −H∗‖p‖L1 −H∗

m∑

k=1

ck

.
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Define the set-valued map G2 : PC → P(L1(J,Rn) by

G2(y) = {v ∈ L1(J,Rn) : v(t) ∈ F (t, y(t)), a.e. t ∈ J}

and

G̃2(y) = {v ∈ G2(y) : |v(t) − f1(y1)(t)| < p(t)|y(t) − y1(t)| + εp(t)|y1(t) − y0(t)|}.

Since t→ F (t, y(t) is measurable, by Corollary 5.8, there exists a function v2 ∈ G̃2 which is
a measurable selection of F (t, y1(t)) a.e. t ∈ J such that

|v2(t) − f1(y1)(t)| ≤ d(f1(y1)(t), F (t, y(t)))

≤ Hd(f1(y1(t)), F (t, y(t)))

≤ p(t)|y1(t) − y(t)|

< p(t)|y1(t) − y(t)| + εp(t)|y1(t) − y0(t)|.

Then, v2 ∈ G̃2(y) 6= ∅. Using the above method, we can prove that G̃2 has at least one
continuous selection denoted by f2. Thus, there exists y2 ∈ PC such that

y2(t) =

∫ b

0

H(t, s)f2(y2)(s)ds+
m∑

k=1

H(t, tk)Ik(y2(tk)), t ∈ J,

and y2 is a solution of the problem





y′(t) − λy(t) = f2(y)(t), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(tk) = Ik(y(t

−
k )), k = 1, 2, . . . , m,

y(0) = y(b).
(19)

We then have

|y2(t) − y1(t)| ≤ H∗

∫ b

0

|f2(y2)(s) − f1(y1)(s)| ds+H∗

m∑

k=1

ck|y2(tk) − y1(tk)|

≤ H∗

∫ b

0

p(s)|y2(s) − y1(s)| ds+H∗

∫ b

0

ε p(s)|y1(s) − y0(s)| ds

+ H∗

m∑

k=1

ck|y2(tk) − y1(tk)|

≤ H∗‖p‖

∫ b

0

|y2(s) − y1(s)| ds+ εH∗‖p‖L1‖y1 − y0‖PC

+ H∗

m∑

k=1

ck|y2(tk) − y1(tk)|.
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Thus,

‖y2 − y1‖PC ≤
ε2H2

∗‖p‖
2
L1(

1 −H∗‖p‖L1 −H∗

m∑

k=1

ck

)2 .

Let
G3(y) = {v ∈ L1(J,Rn) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}

and

G̃3(y) = {v ∈ G3(y) : |v(t) − f2(y2)(t)| < p(t)|y(t) − y2(t)| + εp(t)|y2(t) − y1(t)|}.

Arguing as we did for G̃2 shows that G̃3 is a l.s.c. type multi-valued map with nonempty
decomposable values, so there exists a continuous selection f3(y) ∈ G̃3(y) for all y ∈ PC.
Consider

y3(t) =

∫ b

0

H(t, s)f3(y3)(s)ds+

m∑

k=1

Ik(y3(tk)), t ∈ J,

where y3 is a solution of the problem




y′(t) − λy(t) = f3(y)(t), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(tk) = Ik(y(t

−
k )), k = 1, 2, . . . , m,

y(0) = y(b).
(20)

We have

|y3(t) − y2(t)| ≤ H∗

∫ t

0

|f3(s) − f2(s)| ds+H∗

m∑

k=1

ck|y3(tk) − y2(tk)|.

Hence, from the estimates above, we have

‖y3 − y2‖PC ≤
ε3H3

∗‖p‖
3
L1(

1 −H∗‖p‖L1 −H∗

m∑

k=1

ck

)3 .

Repeating the process for n = 1, 2, . . . , we arrive at the bound

‖yn − yn−1‖PC ≤
εnHn

∗ ‖p‖
n
L1(

1 −H∗‖p‖L1 −H∗

m∑

k=1

ck

)n . (21)

By induction, suppose that (21) holds for some n. Let

G̃n+1(y) = {v ∈ Gn+1(y) : |v(t) − fn(yn)(t)| < p(t)|y(t) − yn(t)| + εp(t)|yn(t) − yn−1(t)|}.
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Since again G̃n+1 is a l.s.c type multifunction, there exists a continuous function fn+1(y) ∈

G̃n+1(y) that allows us to define

yn+1(t) =

∫ b

0

H(t, s)fn+1(yn+1)(s)ds+
m∑

k=1

H(t, tk)Ik(yn+1(tk)), t ∈ J. (22)

Therefore,

|yn+1(t) − yn(t)| ≤ H∗

∫ b

0

|fn+1(yn+1)(s) − fn(yn)(s)| ds+H∗

m∑

k=1

ck|yn(tk) − yn+1(tk)|.

Thus, we arrive at

‖yn+1 − yn‖PC ≤
εn+1Hn+1

∗ ‖p‖n+1
L1(

1 −H∗‖p‖L1 −H∗

m∑

k=1

ck

)n+1 . (23)

Hence, (21) holds for all n ∈ N, and so {yn} is a Cauchy sequence in PC, converging
uniformly to a function y ∈ PC. Moreover, from the definition of Gn(y), n ∈ N,

|fn+1(yn+1)(t) − fn(yn)(t)| ≤ p(t)|yn(t) − yn−1(t)| for a.e. t ∈ J.

Therefore, for almost every t ∈ J , {fn(yn)(t) : n ∈ N} is also a Cauchy sequence in R
n and

so converges almost everywhere to some measurable function f(·) in R
n. Moreover, since

f0 = g, we have

|fn(yn)(t)| ≤ |fn(yn)(t) − fn−1(yn−1)(t)| + |fn−1(yn−1)(t) − fn−2(yn−2)(t)| + . . .

+ |f2(y2)(t) − f1(y1)(t)| + |f1(y1)(t) − f0(y0)(t)| + |f0(y0)(t)|

≤
n∑

k=1

p(t)|yk(t) − yk−1(t)| + |f0(y0)(t)|

≤ p(t)
∞∑

k=1

|yk(t) − yk−1(t)| + |g(x)(t)|

≤ 2H̃p(t) + |g(x)(t)|.

Then, for all n ∈ N,
|fn(yn)(t)| ≤ 2H̃p(t) + g(x)(t) a.e. t ∈ J. (24)

From (24) and the Lebesgue Dominated Convergence Theorem, we conclude that fn(yn)
converges to f(y) in L1(J,Rn). Passing to the limit in (22), the function

y(t) =

∫ b

0

H(t, s)f(y)(s)ds+
m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ J,

EJQTDE, 2009 No. 24, p. 19



is a solution to the problem (1)–(3).
Next, we give estimates for |y′(t) − λy(t) − g(x)(t)| and |x(t) − y(t)|. We have

|y′(t) − λy(t) − g(x)(t)| = |f(y)(t)− f0(x)(t)|

≤ |f(y)(t) − fn(yn)(t)| + |fn(yn)(t) − f0(x)(t)|

≤ |f(y)(t) − fn(yn)(t)| +
n∑

k=1

|fk(yk)(t) − fk−1(yk−1)(t)|

≤ |f(y)(t) − fn(yn)(t)| + 2
n∑

k=1

p(t)|yk(t) − yk−1(t)|.

Using (23) and passing to the limit as n→ +∞, we obtain

|y′(t) − λy(t) − g(x)(t)| ≤ 2p(t)
∞∑

k=1

|yk−1(t) − yk−1(t)|

≤ 2p(t)
∞∑

k=1

Hk
∗‖p‖

k
L1(

1 −H∗‖p‖L1 −H∗

m∑

i=1

ci

)k
,

so
|y′(t) − λy(t) − g(x)(t)| ≤ 2H̃p(t), t ∈ J.

Similarly,

|x(t) − y(t)| =
∣∣∣
∫ b

0

H(t, s)g(x)(s)ds+

m∑

k=1

H(t, tk)Ik(x(tk))

−

∫ b

0

H(t, s)f(y)(s)ds−
m∑

k=1

H(t, tk)Ik(y(tk))
∣∣∣

≤ H∗

∫ b

0

|f(y)(s) − f0(y0)(s)|ds+H∗

m∑

k=1

ck|x(tk) − y(tk)|

≤ H∗

∫ b

0

|f(y)(s) − fn(yn)(s)|ds+H∗

∫ b

0

|fn(yn)(s) − f0(y0)(s)|ds

+H∗

m∑

k=1

ck|x(tk) − y(tk)|.

As n→ ∞, we arrive at

‖x− y‖PC ≤
2H∗‖p‖L1

(1 −H∗

m∑

k=1

ck)(1 −H∗

m∑

k=1

ck −H∗‖p‖L1)

,

completing the proof of the theorem.
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[2] J. Andres, G. Gabor, and L. Górniewicz, Boundary value problems on infinite intervals,
Trans. Amer. Math. Soc. 351 (1999), 4861-4903.
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