Solvability for second-order nonlocal boundary value problems with a p-Laplacian at resonance on a half-line*

Aijun Yang ${ }^{1, \star}$, Chunmei Miao ${ }^{2,1}$, Weigao Ge ${ }^{1}$
${ }^{1}$ Department of Applied Mathematics, Beijing Institute of Technology, Beijing, 100081, P. R. China.
${ }^{2}$ College of Science, Changchun University, Changchun, 130024, P. R. China.

Abstract

This paper investigates the solvability of the second-order boundary value problems with the one-dimensional p-Laplacian at resonance on a half-line

$$
\left\{\begin{array}{l}
\left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad 0<t<\infty \\
x(0)=\sum_{i=1}^{n} \mu_{i} x\left(\xi_{i}\right), \quad \lim _{t \rightarrow+\infty} c(t) \phi_{p}\left(x^{\prime}(t)\right)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+g(t) h\left(t, x(t), x^{\prime}(t)\right)=0, \quad 0<t<\infty \\
x(0)=\int_{0}^{\infty} g(s) x(s) d s, \quad \lim _{t \rightarrow+\infty} c(t) \phi_{p}\left(x^{\prime}(t)\right)=0
\end{array}\right.
$$

with multi-point and integral boundary conditions, respectively, where $\phi_{p}(s)=|s|^{p-2} s$, $p>1$. The arguments are based upon an extension of Mawhin's continuation theorem due to Ge. And examples are given to illustrate our results.

Keywords: Boundary value problem; Multi-point boundary condition; Integral boundary condition; Resonance; Half-line; p-Laplacian
MSC: 34B10; 34B15; 34B40

1. INTRODUCTION

In this paper, we consider the second-order boundary value problems with a p-Laplacian on a half line

$$
\begin{align*}
& \left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad 0<t<\infty \tag{1.1}\\
& x(0)=\sum_{i=1}^{n} \mu_{i} x\left(\xi_{i}\right), \quad \lim _{t \rightarrow+\infty} c(t) \phi_{p}\left(x^{\prime}(t)\right)=0 \tag{1.2}
\end{align*}
$$

[^0]with $0 \leq \xi_{i}<\infty, \mu_{i} \in \mathbb{R}, i=1,2, \cdots, n$,
\[

$$
\begin{equation*}
\sum_{i=1}^{n} \mu_{i}=1 \tag{1.3}
\end{equation*}
$$

\]

and

$$
\begin{align*}
& \left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+g(t) h\left(t, x(t), x^{\prime}(t)\right)=0, \quad 0<t<\infty, \tag{1.4}\\
& x(0)=\int_{0}^{\infty} g(s) x(s) d s, \quad \lim _{t \rightarrow+\infty} c(t) \phi_{p}\left(x^{\prime}(t)\right)=0 \tag{1.5}
\end{align*}
$$

with $g \in L^{1}[0, \infty), g(t)>0$ on $[0, \infty)$ and

$$
\begin{equation*}
\int_{0}^{\infty} g(s) d s=1 \tag{1.6}
\end{equation*}
$$

Throughout this paper, we assume
(A1) $c \in C[0, \infty) \cap C^{1}(0, \infty)$ and $c(t)>0$ on $[0, \infty), \phi_{q}\left(\frac{1}{c}\right) \in L^{1}[0, \infty)$.
(A2) $\sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{e^{-s}}{c(s)}\right) d s \neq 0$.
Due to the conditions (1.3) and (1.6), the differential operator $\frac{d}{d t}\left(c \phi_{p}\left(\frac{d}{d t} \cdot\right)\right)$ in (1.1) and (1.4) is not invertible under the boundary conditions (1.2) and (1.5), respectively. In the literature, boundary value problems of this type are referred to problems at resonance.

The theory of boundary value problems (in short: BVPs) with multi-point and integral boundary conditions arises in a variety of different areas of applied mathematics and physics. For example, bridges of small size are often designed with two supported points, which leads to a standard two-point boundary condition and bridges of large size are sometimes contrived with multi-point supports, which corresponds to a multi-point boundary condition [1]. Heat conduction, chemical engineering, underground water flow, thermo-elasticity and plasma physics can be reduced to the nonlocal problems with integral boundary conditions $[2,3]$. The study of multi-point BVPs for linear second-order ordinary differential equations was initiated by Il'in and Moiseev [4] in 1987. Since then many authors have studied more nonlinear multi-point BVPs [7-14]. Recently, BVPs with integral boundary conditions have received much attention. To identify a few, we refer the readers to [17-22] and references therein.

Second-order BVPs on infinite intervals arising from the study of radially symmetric solutions of nonlinear elliptic equation and models of gas pressure in a semi-infinite porous medium, have received much attention. For an extensive collection of results on BVPs on unbounded domains, we refer the readers to a monograph by Agarwal and O'Regan [16]. Other recent results and methods for BVPs on a half-line can be found in $[14,15]$ and the references therein.

From the existed results, we can see a fact: for the resonance case, only BVPs with linear differential operator on half-line were considered. The BVPs with multi-point and integral boundary conditions on a half-line have not investigated till now. Although some authors (see [5,9,10,12,17])
have studied BVPs with nonlinear differential operator, for example, with a p-Laplacian operator, the domains are bounded.

Motivated by the above works, we intend to discuss the BVPs (1.1)-(1.2) and (1.4)-(1.5) at resonance on a half-line. Due to the fact that the classical Mawhin's continuation theorem can't be directly used to discuss the BVP with nonlinear differential operator, in this paper, we investigate the BVPs (1.1)-(1.2) and (1.4)-(1.5) by applying an extension of Mawhin's continuation theorem due to Ge [5]. Furthermore, examples are given to illustrate the results.

2. Preliminaries

For the convenience of readers, we present here some definitions and lemmas.
Definition 2.1. We say that a mapping $f:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the Carathéodory conditions, if the following two conditions are satisfied:
(B1) for each $(u, v) \in \mathbb{R}^{2}$, the mapping $t \mapsto f(t, u, v)$ is Lebesgue measurable;
(B2) for a.e. $t \in[0, \infty)$, the mapping $(u, v) \mapsto f(t, u, v)$ is continuous on \mathbb{R}^{2}.
In addition, f is called a L^{1}-Carathéodory function if (B1), (B2) and (B3) hold, f is called a g-Carathéodory function if (B1), (B2) and (B4) are satisfied.
(B3) for each $r>0$, there exists $\alpha_{r} \in L^{1}[0, \infty)$ such that for a.e. $t \in[0, \infty)$ and every (u, v) such that $\max \left\{\|u\|_{\infty},\|v\|_{\infty}\right\} \leq r$, we have $|f(t, u, v)| \leq \alpha_{r}(t)$;
(B4) for each $l>0$ and $g \in L^{1}[0, \infty)$, there exists a function $\psi_{l}:[0, \infty) \rightarrow[0, \infty)$ satisfying $\int_{0}^{\infty} g(s) \psi_{l}(s) d s<\infty$ such that

$$
\max \{|u|,|v|\} \leq l \quad \text { implies }|f(t, u, v)| \leq \psi_{l}(t) \text { for a.e. } t \in[0, \infty)
$$

Definition 2.2 ${ }^{[5]}$. Let X and Z be two Banach spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Z}$, respectively. A continuous operator $M: X \cap \operatorname{dom} M \rightarrow Z$ is said to be quasi-linear if
(C1) $\operatorname{Im} M=M(X \cap \operatorname{dom} M)$ is a closed subset of Z;
(C2) $\operatorname{ker} M=\{x \in X \cap \operatorname{dom} M: M x=0\}$ is linearly homeomorphic to $\mathbb{R}^{n}, n<\infty$.
Definition 2.3 ${ }^{[6]}$. Let X be a Banach spaces and $X_{1} \subset X$ a subspace. The operator $P: X \rightarrow X_{1}$ is said to be a projector provided $P^{2}=P, P\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)=\lambda_{1} P x_{1}+\lambda_{2} P x_{2}$ for $x_{1}, x_{2} \in X$, $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. The operator $Q: X \rightarrow X_{1}$ is said to be a semi-projector provided $Q^{2}=Q$ and $Q(\lambda x)=\lambda Q x$ for $x \in X, \lambda \in \mathbb{R}$.

Let $X_{1}=\operatorname{ker} M$ and X_{2} be the complement space of X_{1} in X, then $X=X_{1} \oplus X_{2}$. On the other hand, suppose Z_{1} is a subspace of Z and Z_{2} is the complement of Z_{1} in Z, then $Z=Z_{1} \oplus Z_{2}$. Let $P: X \rightarrow X_{1}$ be a projector and $Q: Z \rightarrow Z_{1}$ be a semi-projector, and $\Omega \subset X$ an open and bounded set with the origin $\theta \in \Omega$, where θ is the origin of a linear space. Suppose $N_{\lambda}: \bar{\Omega} \rightarrow Z$, $\lambda \in[0,1]$ is a continuous operator. Denote N_{1} by N. Let $\sum_{\lambda}=\left\{x \in \bar{\Omega}: M x=N_{\lambda} x\right\}$.

Definition 2.4 ${ }^{[5]}$. N_{λ} is said to be M-compact in $\bar{\Omega}$ if there is a vector subspace Z_{1} of Z with $\operatorname{dim} Z_{1}=\operatorname{dim} X_{1}$ and an operator $R: \bar{\Omega} \times[0,1] \rightarrow X_{2}$ being continuous and compact such that for $\lambda \in[0,1]$,

$$
\begin{gather*}
(I-Q) N_{\lambda}(\bar{\Omega}) \subset \operatorname{Im} M \subset(I-Q) Z \tag{2.1}\\
Q N_{\lambda} x=0, \quad \lambda \in(0,1) \Longleftrightarrow Q N x=0 \tag{2.2}
\end{gather*}
$$

$R(\cdot, 0)$ is the zero operator and $\left.R(\cdot, \lambda)\right|_{\Sigma_{\lambda}}=\left.(I-P)\right|_{\lambda}$,

$$
\begin{equation*}
M[P+R(\cdot, \lambda)]=(I-Q) N_{\lambda} \tag{2.3}
\end{equation*}
$$

Theorem 2.1 ${ }^{[5]}$. Let X and Z be two Banach spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Z}$, respectively, and $\Omega \subset X$ an open and bounded set. Suppose $M: X \cap \operatorname{dom} M \rightarrow Z$ is a quasi-linear operator and $N_{\lambda}: \bar{\Omega} \rightarrow Z, \lambda \in[0,1]$ is M-compact. In addition, if
(D1) $M x \neq N_{\lambda} x$, for $\lambda \in(0,1), x \in \operatorname{dom} M \cap \partial \Omega$;
(D2) $\operatorname{deg}\{J Q N, \Omega \cap \operatorname{ker} M, 0\} \neq 0$, where $J: Z_{1} \rightarrow X_{1}$ is a homeomorphism with $J(\theta)=\theta$. Then the abstract equation $M x=N x$ has at least one solution in $\bar{\Omega}$.

Proposition $2.1^{[6]}$. ϕ_{p} has the following properties
(E1) ϕ_{p} is continuous, monotonically increasing and invertible. Moreover, $\phi_{p}^{-1}=\phi_{q}$ with $q>1$ satisfying $\frac{1}{p}+\frac{1}{q}=1$;

$$
\begin{aligned}
& \text { (E2) } \forall u, v \geq 0, \quad \phi_{p}(u+v) \leq \phi_{p}(u)+\phi_{p}(v), \quad \text { if } 1<p<2, \\
& \phi_{p}(u+v) \leq 2^{p-2}\left(\phi_{p}(u)+\phi_{p}(v)\right) \text {, if } p \geq 2 \text {. }
\end{aligned}
$$

3. RELATED LEMMAS

Let $A C[0, \infty)$ denote the space of absolutely continuous functions on the interval $[0, \infty)$. In this paper, we work in the following spaces

$$
\begin{aligned}
X=\left\{x:[0, \infty) \rightarrow \mathbb{R} \mid \quad x, c \phi_{p}\left(x^{\prime}\right) \in\right. & A C[0, \infty), \lim _{t \rightarrow \infty} x(t) \text { and } \lim _{t \rightarrow \infty} x^{\prime}(t) \text { exist } \\
& \text { and } \left.\left(c \phi_{p}\left(x^{\prime}\right)\right)^{\prime} \in L^{1}[0, \infty)\right\}, \\
Y= & L^{1}[0, \infty) \text { and } Z=\left\{z:[0, \infty) \rightarrow \mathbb{R}: \int_{0}^{\infty} g(t)|z(t)| d t<\infty\right\}
\end{aligned}
$$

with norms $\|x\|_{X}=\max \left\{\|x\|_{\infty},\left\|x^{\prime}\right\|_{\infty}\right\}$, where $\|x\|_{\infty}=\sup _{t \in[0, \infty)}|x(t)|,\|y\|_{1}=\int_{0}^{\infty}|y(t)| d t$ and $\|z\|_{Z}=\int_{0}^{\infty} g(t)|z(t)| d t$ for $x \in X, y \in Y$ and $z \in Z$. By the standard arguments, we can prove that $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{1}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ are all Banach spaces.

Define $M_{1}: \operatorname{dom} M_{1} \rightarrow Y$ and $N_{\lambda}^{1}: X \rightarrow Y$ with

$$
\operatorname{dom} M_{1}=\left\{x \in X: x(0)=\sum_{i=1}^{n} \mu_{i} x\left(\xi_{i}\right), \quad \lim _{t \rightarrow+\infty} c(t) \phi_{p}\left(x^{\prime}(t)\right)=0\right\}
$$

by $M_{1} x(t)=\left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}$ and $N_{\lambda}^{1} x(t)=\lambda f\left(t, x(t), x^{\prime}(t)\right), t \in[0, \infty)$.
Let $M_{2}: \operatorname{dom} M_{2} \rightarrow Z$ and $N_{\lambda}^{2}: X \rightarrow Z$ with

$$
\operatorname{dom} M_{2}=\left\{x \in X: g x \in L^{1}[0, \infty), x(0)=\int_{0}^{\infty} x(s) g(s) d s, \lim _{t \rightarrow \infty} c(t) \phi_{p}\left(x^{\prime}(t)\right)=0\right\}
$$

be defined by $M_{2} x(t)=-\frac{1}{g(t)}\left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}$ and $N_{\lambda}^{2} x(t)=\lambda h\left(t, x(t), x^{\prime}(t)\right), t \in[0, \infty)$.
Then the BVPs (1.1)-(1.2) and (1.4)-(1.5) can be written as $M_{1} x=N^{1} x$ and $M_{2} x=N^{2} x$, respectively, here denote $N_{1}^{i}=N^{i}, i=1,2$.

Lemma 3.1. The operators $M_{1}: \operatorname{dom} M_{1} \rightarrow Y$ and $M_{2}: \operatorname{dom} M_{2} \rightarrow Z$ are quasi-linear.
Proof. It is clear that $X_{1}=\operatorname{ker} M_{1}=\left\{x \in \operatorname{dom} M_{1}: x(t) \equiv a \in \mathbb{R}\right.$ on $\left.[0, \infty)\right\}$.
Let $x \in \operatorname{dom} M_{1}$ and consider the equation $\left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=y(t)$. It follows from (1.2) that

$$
c(t) \phi_{p}\left(x^{\prime}(t)\right)=-\int_{t}^{\infty} y(s) d s
$$

so that

$$
\begin{equation*}
x^{\prime}(t)=-\phi_{q}\left(\frac{1}{c(t)}\right) \phi_{q}\left(\int_{t}^{\infty} y(s) d s\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t)=\int_{t}^{\infty} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} y(\tau) d \tau\right) d s+C, \tag{3.2}
\end{equation*}
$$

where C is a constant. In view of (1.2) and (1.3), we have

$$
\begin{equation*}
\sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} y(\tau) d \tau\right) d s=0 \tag{3.3}
\end{equation*}
$$

Thus,

$$
\operatorname{Im} M_{1} \subset\left\{y \in Y: \sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} y(\tau) d \tau\right) d s=0\right\} .
$$

Conversely, if (3.3) holds for $y \in Y$, we take $x \in \operatorname{dom} M_{1}$ as given by (3.2), then $\left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=$ $y(t)$ for $t \in[0, \infty)$ and (1.2) is satisfied. Hence, we have

$$
\begin{equation*}
\operatorname{Im} M_{1}=\left\{y \in Y: \sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} y(\tau) d \tau\right) d s=0\right\} \tag{3.4}
\end{equation*}
$$

So we have $\operatorname{dimker} M_{1}=1<\infty, \operatorname{Im} M_{1} \subset Y$ is closed. Therefore, M_{1} is a quasi-linear operator.
Similarly, we can calculate that

$$
\operatorname{ker} M_{2}=\left\{x \in \operatorname{dom} M_{2}: x(t) \equiv a \in \mathbb{R} \text { on }[0, \infty)\right\}
$$

and prove that

$$
\begin{equation*}
\operatorname{Im} M_{2}=\left\{z \in Z: \int_{0}^{\infty} g(t) \int_{0}^{t} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} g(\tau) z(\tau) d \tau\right) d s d t=0\right\} \tag{3.5}
\end{equation*}
$$

Hence, M_{2} is also a quasi-linear operator.
In order to apply Theorem 2.1, we have to prove that R is completely continuous, and then to prove that N is M-compact. Because the Arzelà-Ascoli theorem fails to the noncompact interval case, we will use the following criterion.

Lemma 3.2 ${ }^{[14]}$. Let X be the space of all bounded continuous vector-valued functions on $[0, \infty)$ and $S \subset X$. Then S is relatively compact if the following conditions hold:
(F1) S is bounded in X;
(F2) all functions from S are equicontinuous on any compact subinterval of $[0, \infty)$;
(F3) all functions from S are equiconvergent at infinity, that is, for any given $\varepsilon>0$, there exists a $T=T(\varepsilon)>0$ such that $\|\chi(t)-\chi(\infty)\|_{\mathbb{R}^{n}}<\varepsilon$ for all $t>T$ and $\chi \in S$.

Lemma 3.3. If f is a L^{1}-Carathéodory function, then the operator $N_{\lambda}^{1}: \bar{U} \rightarrow Y$ is M_{1}-compact in \bar{U}, where $U \subset X$ is an open and bounded subset with $\theta \in U$.
Proof. We recall the condition (A2) and define the continuous operator $Q_{1}: Y \rightarrow Y_{1}$ by

$$
\begin{equation*}
Q_{1} y(t)=\omega_{1}(t) \phi_{p}\left(\sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} y(\tau) d \tau\right) d s\right) \tag{3.6}
\end{equation*}
$$

where $\omega_{1}(t)=e^{-t} / \phi_{p}\left(\sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{e^{-s}}{c(s)}\right) d s\right)$. It is easy to check that $Q_{1}^{2} y=Q_{1} y$ and $Q_{1}(\lambda y)=\lambda Q_{1} y$ for $y \in Y, \lambda \in \mathbb{R}$, that is, Q_{1} is a semi-projector and $\operatorname{dim} X_{1}=1=\operatorname{dim} Y_{1}$. Moreover, (3.4) and (3.6) imply that $\operatorname{Im} M_{1}=\operatorname{ker} Q_{1}$.

It is easy to see that $Q_{1}\left[\left(I-Q_{1}\right) N_{\lambda}^{1}(x)\right]=0, \forall x \in \bar{U}$. So $\left(I-Q_{1}\right) N_{\lambda}^{1}(x) \in \operatorname{ker} Q_{1}=\operatorname{Im} M_{1}$. For $y \in \operatorname{Im} M_{1}$, we have $Q_{1} y=0$. Thus, $y=y-Q_{1} y=\left(I-Q_{1}\right) y \in\left(I-Q_{1}\right) Y$. Therefore, (2.1) is satisfied. Obviously, (2.2) holds.

Define $R_{1}: \bar{U} \times[0,1] \rightarrow X_{2}$ by

$$
\begin{equation*}
R_{1}(x, \lambda)(t)=\int_{t}^{\infty} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} \lambda\left(f\left(\tau, x(\tau), x^{\prime}(\tau)\right)-\left(Q_{1} f\right)(\tau)\right) d \tau\right) d s \tag{3.7}
\end{equation*}
$$

where X_{2} is the complement space of $X_{1}=\operatorname{ker} M_{1}$ in X. Clearly, $R_{1}(\cdot, 0)=\theta$. Now we prove that $R_{1}: \bar{U} \times[0,1] \rightarrow X_{2}$ is compact and continuous.

We first assert that R_{1} is relatively compact for any $\lambda \in[0,1]$. In fact, since $U \subset X$ is a bounded set, there exists $r>0$ such that $\bar{U} \subset\left\{x \in X:\|x\|_{X} \leq r\right\}$. Because the function f is L^{1}-Carathéodory, there exists $\alpha_{r} \in L^{1}[0, \infty)$ such that for a.e. $t \in[0, \infty),\left|f\left(t, x(t), x^{\prime}(t)\right)\right| \leq \alpha_{r}(t)$ for $x \in \bar{U}$. Then for any $x \in \bar{U}, \lambda \in[0,1]$, we have

$$
\begin{aligned}
\left|R_{1}(x, \lambda)(t)\right| & \leq \int_{t}^{\infty}\left|\phi_{q}\left(\frac{1}{c(s)}\right)\right| \phi_{q}\left(\int_{s}^{\infty} \lambda\left|f\left(\tau, x(\tau), x^{\prime}(\tau)\right)-\left(Q_{1} f\right)(\tau)\right| d \tau\right) d s \\
& \leq \int_{0}^{\infty}\left|\phi_{q}\left(\frac{1}{c(s)}\right)\right| d s \phi_{q}\left[\int_{0}^{\infty}\left|\alpha_{r}(s)\right| d s+\int_{0}^{\infty}\left|\left(Q_{1} f\right)(s)\right| d s\right]
\end{aligned}
$$

$$
=\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot \phi_{q}\left[\left\|\alpha_{r}\right\|_{1}+\left\|Q_{1} f\right\|_{1}\right]=: L_{1}<\infty .
$$

From (A1), we can see that $\phi_{q}\left(\frac{1}{c}\right)$ is bounded. Hence,

$$
\begin{aligned}
\left|R_{1}^{\prime}(x, \lambda)(t)\right| & \leq\left|\phi_{q}\left(\frac{1}{c(t)}\right)\right| \phi_{q}\left(\int_{t}^{\infty} \lambda\left|f\left(s, x(s), x^{\prime}(s)\right)-\left(Q_{1} f\right)(s)\right| d s\right. \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty} \cdot \phi_{q}\left[\left\|\alpha_{r}\right\|_{1}+\left\|Q_{1} f\right\|_{1}\right]=: L_{2}<\infty
\end{aligned}
$$

that is, $R_{1}(\cdot, \lambda) \bar{U}$ is uniformly bounded. Meanwhile, for any $t_{1}, t_{2} \in[0, T]$ with T a positive constant, one gets

$$
\left|R_{1}(x, \lambda)\left(t_{2}\right)-R_{1}(x, \lambda)\left(t_{1}\right)\right|=\left|\int_{t_{1}}^{t_{2}} R_{1}^{\prime}(x, \lambda)(s) d s\right| \leq L_{2}\left|t_{2}-t_{1}\right| \rightarrow 0, \quad \text { as } \quad\left|t_{2}-t_{1}\right| \rightarrow 0
$$

and

$$
\begin{aligned}
& \left|\phi_{p}\left(R_{1}^{\prime}(x, \lambda)\left(t_{2}\right)\right)-\phi_{p}\left(R_{1}^{\prime}(x, \lambda)\left(t_{1}\right)\right)\right| \\
= & \left|\frac{1}{c\left(t_{2}\right)} \int_{t_{2}}^{\infty} \lambda\left[f\left(s, x(s), x^{\prime}(s)\right)-\left(Q_{1} f\right)(s)\right] d s-\frac{1}{c\left(t_{1}\right)} \int_{t_{1}}^{\infty} \lambda\left[f\left(s, x(s), x^{\prime}(s)\right)-\left(Q_{1} f\right)(s)\right] d s\right| \\
\leq & \left|\frac{1}{c\left(t_{2}\right)}\right| \cdot\left|\int_{t_{2}}^{t_{1}} \lambda\left[f\left(s, x(s), x^{\prime}(s)\right)-\left(Q_{1} f\right)(s)\right] d s\right| \\
& +\left|\left[\frac{1}{c\left(t_{2}\right)}-\frac{1}{c\left(t_{1}\right)}\right] \int_{t_{1}}^{\infty} \lambda\left[f\left(s, x(s), x^{\prime}(s)\right)-\left(Q_{1} f\right)(s)\right] d s\right| \\
\leq & \left\|\frac{1}{c}\right\|_{\infty} \cdot\left|\int_{t_{1}}^{t_{2}}\left[\alpha_{r}(s)+\left|\left(Q_{1} f\right)(s)\right|\right] d s\right|+\left[\left\|\alpha_{r}\right\|_{1}+\left\|Q_{1} f\right\|_{1}\right]\left|\frac{1}{c\left(t_{2}\right)}-\frac{1}{c\left(t_{1}\right)}\right| \rightarrow 0, \\
& \quad \text { as }\left|t_{2}-t_{1}\right| \rightarrow 0 .
\end{aligned}
$$

Then $\left|R_{1}^{\prime}(x, \lambda)\left(t_{2}\right)-R_{1}^{\prime}(x, \lambda)\left(t_{1}\right)\right| \rightarrow 0$, as $\left|t_{2}-t_{1}\right| \rightarrow 0$. So, $R_{1}(\cdot, \lambda) \bar{U}$ is equicontinuous on $[0, T]$.
In additional, we claim that $R_{1}(\cdot, \lambda) \bar{U}$ is equiconvergent at infinity. In fact,

$$
\begin{aligned}
&\left|R_{1}(x, \lambda)(t)-R_{1}(x, \lambda)(+\infty)\right| \leq \int_{t}^{\infty}\left|\phi_{q}\left(\frac{1}{c(s)}\right)\right| \phi_{q}\left(\int_{s}^{\infty} \lambda\left|f\left(\tau, x(\tau), x^{\prime}(\tau)\right)-\left(Q_{1} f\right)(\tau)\right| d \tau\right) d s \\
& \leq \int_{t}^{\infty} L_{2} d s \rightarrow 0 \text { uniformly as } t \rightarrow+\infty \\
&\left|R_{1}^{\prime}(x, \lambda)(t)-R_{1}^{\prime}(x, \lambda)(+\infty)\right| \leq\left|\phi_{q}\left(\frac{1}{c(t)}\right)\right| \phi_{q}\left(\int_{t}^{\infty} \lambda\left|f\left(s, x(s), x^{\prime}(s)\right)-\left(Q_{1} f\right)(s)\right| d s\right) \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty} \cdot \phi_{q}\left[\int_{t}^{\infty}\left(\alpha_{r}(s)+\left|\left(Q_{1} f\right)(s)\right|\right) d s\right] \rightarrow 0 \\
& \quad \text { uniformly as } t \rightarrow+\infty .
\end{aligned}
$$

Thus, Lemma 3.2 implies that $R_{1}(\cdot, \lambda) \bar{U}$ is relatively compact. Since f is L^{1}-Carathéodory, the continuity of R_{1} on \bar{U} follows from the Lebesgue dominated convergence theorem.

Define a projector $P_{1}: X \rightarrow X_{1}$ by $P_{1} x(t)=\lim _{t \rightarrow+\infty} x(t)$. For any $x \in \sum_{\lambda}^{1}=\left\{x \in \bar{U}: M_{1} x=\right.$ $\left.N_{\lambda}^{1} x\right\}$, we have $\lambda f\left(t, x(t), x^{\prime}(t)\right)=\left(c(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime} \in \operatorname{Im} M_{1}=\operatorname{ker} Q_{1}$. Hence

$$
\begin{aligned}
R_{1}(x, \lambda)(t) & =\int_{t}^{\infty} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} \lambda\left(f\left(\tau, x(\tau), x^{\prime}(\tau)\right)-\left(Q_{1} f\right)(\tau)\right) d \tau\right) d s \\
& =\int_{t}^{\infty} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty}\left(c(\tau) \phi_{p}\left(x^{\prime}(\tau)\right)\right)^{\prime} d \tau\right) d s \\
& =-\int_{t}^{\infty} x^{\prime}(s) d s=x(t)-\lim _{t \rightarrow+\infty} x(t)=\left[\left(I-P_{1}\right) x\right](t)
\end{aligned}
$$

which implies (2.3). For any $x \in \bar{U}$, we have

$$
\begin{aligned}
& M_{1}\left[P_{1} x+R_{1}(x, \lambda)\right](t) \\
= & M_{1}\left[\lim _{t \rightarrow+\infty} x(t)+\int_{t}^{\infty} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} \lambda\left(f\left(\tau, x(\tau), x^{\prime}(\tau)\right)-\left(Q_{1} f\right)(\tau)\right) d \tau\right) d s\right] \\
= & \lambda\left(f\left(t, x(t), x^{\prime}(t)\right)-Q_{1} f\left(t, x(t), x^{\prime}(t)\right)\right) \\
= & {\left[\left(\left(I-Q_{1}\right) N_{\lambda}^{1}\right)(x)\right](t), }
\end{aligned}
$$

which yields (2.4). As a result, N_{λ}^{1} is M_{1}-compact in \bar{U}.
Lemma 3.4. If h is a g-Carathéodory function, then the operator $N_{\lambda}^{2}: \bar{\Omega} \rightarrow Z$ is M_{2}-compact, where $\Omega \subset X$ is an open and bounded subset with $\theta \in \Omega$.
Proof. As in the proof of Lemma 3.3, we first define the semi-projection $Q_{2}: Z \rightarrow Z_{1}$ by

$$
\begin{equation*}
Q_{2} z(t)=\phi_{p}\left(\frac{1}{\omega_{2}} \int_{0}^{\infty} g(s) \int_{0}^{s} \phi_{q}\left(\frac{1}{c(\tau)}\right) \phi_{q}\left(\int_{\tau}^{\infty} g(r) z(r) d r\right) d \tau d s\right), \tag{3.8}
\end{equation*}
$$

where $\omega_{2}=\int_{0}^{\infty} g(s) \int_{0}^{s} \phi_{q}\left(\frac{1}{c(\tau)}\right) \phi_{q}\left(\int_{\tau}^{\infty} g(r) d r\right) d \tau d s$. (3.5) and (3.8) imply that $\operatorname{Im} M_{2}=\operatorname{ker} Q_{2}$. It is easy to check that the conditions (2.1) and (2.2) hold.

Let $R_{2}: \bar{\Omega} \times[0,1] \rightarrow X_{2}^{\prime}$ be defined by

$$
\begin{equation*}
R_{2}(x, \lambda)(t)=\int_{0}^{t} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} \lambda g(\tau)\left(h\left(\tau, x(\tau), x^{\prime}(\tau)\right)-\left(Q_{2} f\right)(\tau)\right) d \tau\right) d s \tag{3.9}
\end{equation*}
$$

where X_{2}^{\prime} is the complement space of $X_{1}^{\prime}=\operatorname{ker} M_{2}$ in X. Clearly, $R_{2}(\cdot, 0)=\theta$.
Now we prove that $R_{2}: \bar{\Omega} \times[0,1] \rightarrow X_{2}^{\prime}$ is compact and continuous. We first assert that R_{2} is relatively compact for $\lambda \in[0,1]$. In fact, there exists $l>0$ such that $\bar{\Omega} \subset\left\{x \in X:\|x\|_{X} \leq\right.$ $l\}$. Again, since h is a g-Carathéodory function, there exists nonnegative function ψ_{l} satisfying $\int_{0}^{\infty} g(s) \psi_{l}(s) d s<\infty$ such that for a.e. $t \in[0, \infty),\left|h\left(t, x(t), x^{\prime}(t)\right)\right| \leq \psi_{l}(t)$ for $x \in \bar{\Omega}$. Then for any $x \in \bar{\Omega}, \lambda \in[0,1]$, we have

$$
\begin{aligned}
\left|R_{2}(x, \lambda)(t)\right| & =\left|\int_{0}^{t} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left[\int_{s}^{\infty} \lambda g(\tau)\left(h\left(\tau, x(\tau), x^{\prime}(\tau)\right)-\left(Q_{2} f\right)(\tau)\right) d \tau\right] d s\right| \\
& \leq \int_{0}^{\infty} \phi_{q}\left(\frac{1}{c(s)}\right) d s \cdot \phi_{q}\left(\int_{0}^{\infty} g(s)\left|\psi_{l}(s)\right| d s+\int_{0}^{\infty} g(s)\left|\left(Q_{2} f\right)(s)\right| d s\right)
\end{aligned}
$$

$$
=\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot \phi_{q}\left(\left\|\psi_{l}\right\|_{Z}+\left\|Q_{2} f\right\|_{Z}\right)=: L_{3}<\infty
$$

and

$$
\begin{aligned}
\left|R_{2}^{\prime}(x, \lambda)(t)\right| & =\left|\phi_{q}\left(\frac{1}{c(t)}\right) \phi_{q}\left[\int_{t}^{\infty} \lambda g(s)\left(h\left(s, x(s), x^{\prime}(s)\right)-\left(Q_{2} f\right)(s)\right)\right] d s\right| \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty} \cdot \phi_{q}\left(\left\|\psi_{l}\right\|_{Z}+\left\|Q_{2} f\right\|_{z}\right)=: L_{4}<\infty
\end{aligned}
$$

that is, $R_{2}(\cdot, \lambda) \bar{\Omega}$ is uniformly bounded. Meanwhile, for any $t_{1}, t_{2} \in[0, T]$ with T a positive constant, as in the proof of Lemma 3.3, we can also show that $R_{2}(\cdot, \lambda) \bar{\Omega}$ is equicontinuous on $[0, T]$ and equiconvergent at infinity. Thus, Lemma 3.2 yields that $R_{2}(\cdot, \lambda) \bar{\Omega}$ is relatively compact. Since f is a g-Carathéodory function, the continuity of R_{1} on $\bar{\Omega}$ follows from the Lebesgue dominated convergence theorem.

Define $P_{2}: X \rightarrow X_{1}^{\prime}$ by $\left(P_{2} x\right)(t)=x(0)$. Similar to the proof of Lemma 3.3, we can check that the conditions (2.3) and (2.4) are satisfied. Therefore, N_{λ}^{2} is M_{2}-compact in $\bar{\Omega}$.

4. EXISTENCE RESULT FOR (1.1)-(1.2)

Theorem 4.1. If f is a L^{1}-Carathéodory function and suppose that
(G1) there exists a constant $A>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} f\left(\tau, x(\tau), x^{\prime}(\tau)\right) d \tau\right) d s \neq 0 \tag{4.1}
\end{equation*}
$$

for $x \in \operatorname{dom} M_{1} \backslash \operatorname{ker} M_{1}$ with $|x(t)|>A$ on $t \in[0, \infty)$;
(G2) there exist functions $\alpha, \beta, \gamma \in L^{1}[0, \infty)$ such that

$$
\begin{equation*}
|f(t, x, y)| \leq \alpha(t)|x|^{p-1}+\beta(t)|y|^{p-1}+\gamma(t), \quad \forall(x, y) \in \mathbb{R}^{2}, \quad \text { a.e. } t \in[0, \infty), \tag{4.2}
\end{equation*}
$$

here denote $\alpha_{1}=\|\alpha\|_{1}, \beta_{1}=\|\beta\|_{1}, \gamma_{1}=\|\gamma\|_{1}$;
(G3) there exist a constant $B>0$ such that either

$$
\begin{equation*}
b \cdot \sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} f(\tau, b, 0) d \tau\right) d s<0 \tag{4.3}
\end{equation*}
$$

or

$$
\begin{equation*}
b \cdot \sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} f(\tau, b, 0) d \tau\right) d s>0 \tag{4.4}
\end{equation*}
$$

for all $b \in \mathbb{R}$ with $|b|>B$.
Then the $B V P(1.1)-(1.2)$ has at least one solution provided

$$
\begin{equation*}
2^{q-2} \beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}+2^{2(q-2)} \alpha_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}<1 \quad \text { for } \quad p<2 \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}+\alpha_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}<1 \quad \text { for } \quad p \geq 2 \tag{4.6}
\end{equation*}
$$

Before the proof of the main result, we first prove two lemmas.
Lemma 4.1. $U_{1}=\left\{x \in \operatorname{dom} M_{1}: M_{1} x=N_{\lambda}^{1} x\right.$ for some $\left.\lambda \in(0,1)\right\}$ is bounded.
Proof. Since $N_{\lambda}^{1} x \in \operatorname{Im} M_{1}=\operatorname{ker} Q_{1}$ for $x \in U_{1}, Q_{1} N^{1} x=0$. It follows from (G1) that there exists $t_{0} \in[0, \infty)$ such that $\left|x\left(t_{0}\right)\right| \leq A$. Now, $|x(t)|=\left|x\left(t_{0}\right)+\int_{t_{0}}^{t} x^{\prime}(s) d s\right| \leq A+\left\|x^{\prime}\right\|_{1}$, that is,

$$
\begin{equation*}
\|x\|_{\infty} \leq A+\left\|x^{\prime}\right\|_{1} \tag{4.7}
\end{equation*}
$$

Also,

$$
x^{\prime}(t)=-\phi_{q}\left(\frac{1}{c(t)}\right) \phi_{q}\left(\int_{t}^{\infty} \lambda f\left(s, x(s), x^{\prime}(s)\right) d s\right)
$$

In the case $1<p<2$, by (G2) and Proposition 2.1, one gets

$$
\begin{aligned}
\left\|x^{\prime}\right\|_{\infty} & =\sup _{t \in[0, \infty)}\left|\phi_{q}\left(\frac{1}{c(t)}\right) \phi_{q}\left(\int_{t}^{\infty} \lambda f\left(s, x(s), x^{\prime}(s)\right) d s\right)\right| \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty} \cdot \phi_{q}\left[\alpha_{1}\|x\|_{\infty}^{p-1}+\beta_{1}\left\|x^{\prime}\right\|_{\infty}^{p-1}+\gamma_{1}\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty} \cdot 2^{q-2}\left[\phi_{q}\left(\alpha_{1}\|x\|_{\infty}^{p-1}+\gamma_{1}\right)+\beta_{1}^{q-1}\left\|x^{\prime}\right\|_{\infty}\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty} \cdot 2^{q-2}\left[2^{q-2}\left(\alpha_{1}^{q-1}\|x\|_{\infty}+\gamma_{1}^{q-1}\right)+\beta_{1}^{q-1}\left\|x^{\prime}\right\|_{\infty}\right] .
\end{aligned}
$$

Noticing (4.5), one arrives at

$$
\begin{equation*}
\left\|x^{\prime}\right\|_{\infty} \leq \frac{2^{2(q-2)}\left(\alpha_{1}^{q-1}\|x\|_{\infty}+\gamma_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-2^{q-2} \beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}=: W_{1}+W_{2}\|x\|_{\infty}, \tag{4.8}
\end{equation*}
$$

where $W_{1}=\frac{\left.2^{2(q-2)}\right)_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{\left.1-2^{q-2} \beta_{1}^{q-1} \| \phi_{q} \frac{1}{c}\right) \|_{\infty}}, W_{2}=\frac{2^{2(q-2)} \alpha_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-2^{q-2} \beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}$.

$$
\begin{align*}
\left\|x^{\prime}\right\|_{1} & =\int_{0}^{\infty}\left|\phi_{q}\left(\frac{1}{c(t)}\right) \phi_{q}\left(\int_{t}^{\infty} \lambda f\left(s, x(s), x^{\prime}(s)\right) d s\right)\right| d t \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot \phi_{q}\left[\alpha_{1}\|x\|_{\infty}^{p-1}+\beta_{1}\left\|x^{\prime}\right\|_{\infty}^{p-1}+\gamma_{1}\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot 2^{q-2}\left[\phi_{q}\left(\alpha_{1}\|x\|_{\infty}^{p-1}+\gamma_{1}\right)+\beta_{1}^{q-1}\left\|x^{\prime}\right\|_{\infty}\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot 2^{q-2}\left[2^{q-2}\left(\alpha_{1}^{q-1}\|x\|_{\infty}+\gamma_{1}^{q-1}\right)+\beta_{1}^{q-1}\left(W_{1}+W_{2}\|x\|_{\infty}\right)\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot 2^{q-2}\left[\left(2^{q-2} \alpha_{1}^{q-1}+W_{2} \beta_{1}^{q-1}\right)\|x\|_{\infty}+\left(2^{q-2} \gamma_{1}^{q-1}+W_{1} \beta_{1}^{q-1}\right)\right] \\
& =: W_{3}+W_{4}\|x\|_{\infty}, \tag{4.9}
\end{align*}
$$

where $W_{3}=2^{q-2}\left(2^{q-2} \gamma_{1}^{q-1}+W_{1} \beta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}, W_{4}=2^{q-2}\left(2^{q-2} \alpha_{1}^{q-1}+W_{2} \beta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}$. Thus, from (4.7) and (4.9), we have $\quad\|x\|_{\infty} \leq A+W_{3}+W_{4}\|x\|_{\infty}$.

In view of (4.5), we can see $W_{4}=\frac{2^{2(q-2)} \alpha_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}}{1-2^{q-2} \beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}<1$, then $\|x\|_{\infty} \leq \frac{A+W_{3}}{1-W_{4}}=$: $_{5}$ and $\left\|x^{\prime}\right\|_{\infty} \leq W_{1}+W_{2} W_{5}=: W_{6}$.

Similarly, in the case $p \geq 2$, it follows that

$$
\left\|x^{\prime}\right\|_{\infty} \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty} \cdot\left[\alpha_{1}^{q-1}\|x\|_{\infty}+\beta_{1}^{q-1}\left\|x^{\prime}\right\|_{\infty}+\gamma_{1}^{q-1}\right] .
$$

Again,

$$
\left\|x^{\prime}\right\|_{\infty} \leq \frac{\left(\gamma_{1}^{q-1}+\alpha_{1}^{q-1}\|x\|_{\infty}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-\beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}=: V_{1}+V_{2}\|x\|_{\infty}
$$

where $V_{1}=\frac{\gamma_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-\beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}, V_{2}=\frac{\alpha_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-\beta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}$.

$$
\begin{aligned}
\left\|x^{\prime}\right\|_{1} & \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot\left[\alpha_{1}^{q-1}\|x\|_{\infty}+\beta_{1}^{q-1}\left\|x^{\prime}\right\|_{\infty}+\gamma_{1}^{q-1}\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot\left[\left(\alpha_{1}^{q-1}+V_{2} \beta_{1}^{q-1}\right)\|x\|_{\infty}+\left(\gamma_{1}^{q-1}+V_{1} \beta_{1}^{q-1}\right)\right]=: V_{3}+V_{4}\|x\|_{\infty}
\end{aligned}
$$

where $V_{3}=\left(\gamma_{1}^{q-1}+V_{1} \beta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}, V_{4}=\left(\alpha_{1}^{q-1}+V_{2} \beta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}$.
Thus, $\|x\|_{\infty} \leq A+V_{3}+V_{4}\|x\|_{\infty}$, then $\|x\|_{\infty} \leq \frac{A+V_{3}}{1-V_{4}}:=V_{5}$ and $\left\|x^{\prime}\right\|_{\infty} \leq V_{1}+V_{2} V_{5}=: V_{6}$.
Therefore, U_{1} is bounded.
Lemma 4.2. If $U_{2}=\left\{x \in \operatorname{ker} M_{1}:-\lambda x+(1-\lambda) J Q_{1} N^{1} x=0, \lambda \in[0,1]\right\}$, where $J: \operatorname{Im} Q_{1} \rightarrow$ $\operatorname{ker} M_{1}$ is a homomorphism, then U_{2} is bounded.
Proof. Define $J: \operatorname{Im} Q_{1} \rightarrow \operatorname{ker} M_{1}$ by $J\left(b \omega_{1}(t)\right)=b$. Then for all $b \in U_{2}$,

$$
\lambda b=(1-\lambda) \phi_{p}\left(\sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} f(\tau, b, 0) d \tau\right) d s\right) .
$$

If $\lambda=1$, then $b=0$. In the case $\lambda \in[0,1)$, if $|b|>B$, then by (4.3), we have

$$
0 \leq \lambda b^{2}=(1-\lambda) b \phi_{p}\left(\sum_{i=1}^{n} \mu_{i} \int_{0}^{\xi_{i}} \phi_{q}\left(\frac{1}{c(s)}\right) \phi_{q}\left(\int_{s}^{\infty} f(\tau, b, 0) d \tau\right) d s\right)<0
$$

which is a contradiction. Thus, $\|x\|_{X}=|b| \leq B, \forall x \in U_{2}$, that is, U_{2} is bounded.
Proof of Theorem 4.1. Let $U \supset \bar{U}_{1} \cup \bar{U}_{2}$ be a bounded and open set, then from Lemmas 4.1 and 4.2, we can obtain
(i) $M_{1} x \neq N_{\lambda}^{1} x$ for all $(x, \lambda) \in\left[\operatorname{dom} M_{1} \cap \partial U\right] \times(0,1)$;
(ii) Let $H(x, \lambda)=-\lambda x+(1-\lambda) J Q_{1} N^{1} x, J$ is defined as in Lemma 4.2, we can see that $H(x, \lambda) \neq 0, \forall x \in \operatorname{dom} M \cap \partial U$. As a result, the homotopy invariance of Brouwer degree implies

$$
\begin{aligned}
\operatorname{deg}\left\{\left.J Q_{1} N^{1}\right|_{\left.{\overline{U n k e r ~} M_{1}}, U \cap \operatorname{ker} M_{1}, 0\right\}}\right. & =\operatorname{deg}\left\{H(\cdot, 0), U \cap \operatorname{ker} M_{1}, 0\right\} \\
& =\operatorname{deg}\left\{H(\cdot, 1), U \cap \operatorname{ker} M_{1}, 0\right\} \\
& =\operatorname{deg}\left\{-I, U \cap \operatorname{ker} M_{1}, 0\right\} \neq 0
\end{aligned}
$$

Theorem 2.1 yields that $M_{1} x=N^{1} x$ has at least one solution. The proof is completed.
Remark 4.1. When the second part of condition (G3) holds, we choose $\tilde{U}_{2}=\left\{x \in \operatorname{ker} M_{1}\right.$: $\left.\lambda x+(1-\lambda) J Q_{1} N^{1} x=0, \lambda \in[0,1]\right\}$ and take homotopy $\tilde{H}(x, \lambda)=\lambda x+(1-\lambda) J Q_{1} N^{1} x$. By a similar argument, we can also complete the proof.

Example 4.1. Consider

$$
\left\{\begin{array}{l}
\left(e^{t+1} \phi_{3}\left(x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad t \in(0, \infty) \tag{4.10}\\
x(0)=2 e x\left(\frac{1}{4}\right)+(1-2 e) x(3), \quad \lim _{t \rightarrow+\infty} e^{t+1} \phi_{p}\left(x^{\prime}(t)\right)=0
\end{array}\right.
$$

Corresponding to the BVP (1.1)-(1.2), we have $p=3, q=\frac{3}{2}, c(t)=e^{t+1}, \mu_{1}=2 e, \mu_{2}=1-2 e$, $\xi_{1}=\frac{1}{4}, \xi_{2}=3$ and

$$
f(t, u, v)=\frac{1}{1+t} e^{-t-1} u^{2}+e^{-t-2} \sin t \cdot v^{2}+\frac{1}{t^{2}+1} .
$$

It is easy to verify that (A1)-(A2) hold. Let $\alpha(t)=e^{-t-1}, \beta(t)=e^{-t-2}, \gamma(t)=\frac{1}{t^{2}+1}$, then $\alpha_{1}=\frac{1}{e}$, $\beta_{1}=\frac{1}{e^{2}},\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}=\frac{1}{\sqrt{e}},\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}=\frac{2}{\sqrt{e}}$. Also, we can check that (G1)-(G3) and (4.6) are all satisfied. Thus, the BVP (4.10) has at least one solution, by using Theorem 4.1.

5. EXISTENCE RESULT FOR (1.4)-(1.5)

Theorem 5.1. If h is a g-Carathéodory function and suppose that
(H1) there exists a constant $A^{\prime}>0$ such that

$$
\begin{equation*}
\int_{0}^{\infty} g(s) \int_{0}^{s} \phi_{q}\left(\frac{1}{c(\tau)}\right) \phi_{q}\left(\int_{\tau}^{\infty} g(r) h\left(r, x(r), x^{\prime}(r)\right) d r\right) d \tau d s \neq 0 \tag{5.1}
\end{equation*}
$$

for $x \in \operatorname{dom} M_{2} \backslash \operatorname{ker} M_{2}$ with $|x(t)|>A^{\prime}$ on $t \in[0, \infty)$;
(H2) there exist nonnegative functions $\delta, \zeta, \eta \in Z$ such that

$$
\begin{equation*}
|h(t, u, v)| \leq \delta(t)|u|^{p-1}+\zeta(t)|v|^{p-1}+\eta(t), \quad \forall(u, v) \in \mathbb{R}^{2}, \text { a.e. } t \in[0, \infty) \tag{5.2}
\end{equation*}
$$

here denote $\delta_{1}=\|\delta\|_{Z}, \zeta_{1}=\|\zeta\|_{Z}, \eta_{1}=\|\eta\|_{z}$;
(H3) there exists a constant $B^{\prime}>0$ such that either

$$
\begin{equation*}
d \cdot \int_{0}^{\infty} g(s) \int_{0}^{s} \phi_{q}\left(\frac{1}{c(\tau)}\right) \phi_{q}\left(\int_{\tau}^{\infty} g(r) h(r, d, 0) d r\right) d \tau d s<0 \tag{5.3}
\end{equation*}
$$

or

$$
\begin{equation*}
d \cdot \int_{0}^{\infty} g(s) \int_{0}^{s} \phi_{q}\left(\frac{1}{c(\tau)}\right) \phi_{q}\left(\int_{\tau}^{\infty} g(r) h(r, d, 0) d r\right) d \tau d s>0 \tag{5.4}
\end{equation*}
$$

for all $d \in \mathbb{R}$ with $|d|>B^{\prime}$.
Then the $\operatorname{BVP}(1.4)-(1.5)$ has at least one solution on $[0, \infty)$ provided

$$
\begin{equation*}
\max \left\{2^{q-2} \zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}, \frac{2^{2(q-2)} \delta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}}{1-2^{q-2} \zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}\right\}<1 \quad \text { for } \quad p<2 \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\max \left\{\zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}, \frac{\delta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}}{1-\zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}\right\}<1 \quad \text { for } \quad p \geq 2 \tag{5.6}
\end{equation*}
$$

Proof. Let $\Omega_{1}=\left\{x \in \operatorname{dom} M_{2}: M_{2} x=N_{\lambda}^{2} x\right.$ for some $\left.\lambda \in(0,1)\right\}$. As in the proof of Lemma 4.1, for $x \in \Omega_{1}, N_{\lambda}^{2} x \in \operatorname{Im} M_{2}=\operatorname{ker} Q_{2}$, then $Q_{2} N^{2} x=0$, i.e.,

$$
\int_{0}^{\infty} g(s) \int_{0}^{s} \phi_{q}\left(\frac{1}{c(\tau)}\right) \phi_{q}\left(\int_{\tau}^{\infty} g(r) h\left(r, x(r), x^{\prime}(r)\right) d r\right) d \tau d s=0
$$

It follows from (H1) that there exists $t_{0} \in[0, \infty)$ such that $\left|x\left(t_{0}\right)\right| \leq A^{\prime}$. Thus, we can obtain

$$
\begin{equation*}
\|x\|_{\infty} \leq A^{\prime}+\left\|x^{\prime}\right\|_{1} . \tag{5.7}
\end{equation*}
$$

Also,

$$
x^{\prime}(t)=\phi_{q}\left(\frac{1}{c(t)}\right) \phi_{q}\left(\int_{t}^{\infty} \lambda g(s) h\left(s, x(s), x^{\prime}(s)\right) d s\right)
$$

In the case $1<p<2$, by (H2), Proposition 2.1 and (5.5), one gets

$$
\begin{equation*}
\left\|x^{\prime}\right\|_{\infty} \leq \frac{2^{2(q-2)}\left(\delta_{1}^{q-1}\|x\|_{\infty}+\eta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-2^{q-2} \zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}=: W_{1}^{\prime}+W_{2}^{\prime}\|x\|_{\infty} \tag{5.8}
\end{equation*}
$$

where $W_{1}^{\prime}=\frac{2^{2(q-2)} \eta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-2^{q-2} \zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}, W_{2}^{\prime}=\frac{2^{2(q-2)} \delta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-2^{q-2} \zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}$.

$$
\begin{align*}
\left\|x^{\prime}\right\|_{1} & =\int_{0}^{\infty} \left\lvert\, \phi_{q}\left(\frac{1}{c(t)}\right) \phi_{q}\left(\int_{t}^{\infty} \lambda g(s) h\left(s, x(s), x^{\prime}(s)\right) d s \mid d t\right.\right. \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot \phi_{q}\left[\delta_{1}\|x\|_{\infty}^{p-1}+\zeta_{1}\left\|x^{\prime}\right\|_{\infty}^{p-1}+\eta_{1}\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot 2^{q-2}\left[\left(2^{q-2} \delta_{1}^{q-1}+W_{2}^{\prime} \zeta_{1}^{q-1}\right)\|x\|_{\infty}+\left(2^{q-2} \eta_{1}^{q-1}+W_{1}^{\prime} \zeta_{1}^{q-1}\right)\right] \\
& =: W_{3}^{\prime}+W_{4}^{\prime}\|x\|_{\infty}, \tag{5.9}
\end{align*}
$$

where $W_{3}^{\prime}=2^{q-2}\left(2^{q-2} \eta_{1}^{q-1}+W_{1}^{\prime} \zeta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}, W_{4}^{\prime}=2^{q-2}\left(2^{q-2} \delta_{1}^{q-1}+W_{2}^{\prime} \zeta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}$.
Thus, from (5.7) and (5.9), we have $\|x\|_{\infty} \leq \frac{A^{\prime}+W_{3}^{\prime}}{1-W_{4}^{\prime}}=: W_{5}^{\prime}$. Then, $\left\|x^{\prime}\right\|_{\infty} \leq W_{1}^{\prime}+W_{2}^{\prime} W_{5}^{\prime}=: W_{6}^{\prime}$.
Similarly, for $p \geq 2$, it follows that

$$
\left\|x^{\prime}\right\|_{\infty} \leq \frac{\left(\eta_{1}^{q-1}+\delta_{1}^{q-1}\|x\|_{\infty}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-\zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}=: V_{1}^{\prime}+V_{2}^{\prime}\|x\|_{\infty}
$$

where $V_{1}^{\prime}=\frac{\eta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-\zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}, V_{2}^{\prime}=\frac{\delta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}{1-\zeta_{1}^{q-1}\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}}$.

$$
\begin{aligned}
\left\|x^{\prime}\right\|_{1} & \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot\left[\delta_{1}^{q-1}\|x\|_{\infty}+\zeta_{1}^{q-1}\left\|x^{\prime}\right\|_{\infty}+\eta_{1}^{q-1}\right] \\
& \leq\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1} \cdot\left[\left(\delta_{1}^{q-1}+V_{2}^{\prime} \zeta_{1}^{q-1}\right)\|x\|_{\infty}+\left(\eta_{1}^{q-1}+V_{1}^{\prime} \zeta_{1}^{q-1}\right)\right]=: V_{3}^{\prime}+V_{4}^{\prime}\|x\|_{\infty}
\end{aligned}
$$

where $V_{3}^{\prime}=\left(\eta_{1}^{q-1}+V_{1}^{\prime} \zeta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}, V_{4}^{\prime}=\left(\delta_{1}^{q-1}+V_{2}^{\prime} \zeta_{1}^{q-1}\right)\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}$.
Thus, $\|x\|_{\infty} \leq \frac{A^{\prime}+V_{3}^{\prime}}{1-V_{4}^{\prime}}=: V_{5}^{\prime}$ and $\left\|x^{\prime}\right\|_{\infty} \leq V_{1}^{\prime}+V_{2}^{\prime} V_{5}^{\prime}=: V_{6}^{\prime}$. As a result, Ω_{1} is bounded.

Define $\Omega_{2}=\left\{x \in \operatorname{ker} M_{2}:-\mu x+(1-\mu) J Q_{2} N^{2} x=0, \mu \in[0,1]\right\}$, where $J: \operatorname{Im} Q_{2} \rightarrow \operatorname{ker} M_{2}$ is a homomorphism defined by $J(d)=d$. As in Lemma 4.2, we can prove that Ω_{2} is bounded.

Let $\Omega \supset \bar{\Omega}_{1} \cup \bar{\Omega}_{2}$ be a bounded and open set. Then $M_{2} x \neq N_{\lambda}^{2} x, \forall(x, \lambda) \in\left(\operatorname{dom} M_{2} \cap \partial \Omega\right) \times(0,1)$. Define a homotopy operator

$$
T(x, \mu)=-\mu x+(1-\mu) J Q_{2} N^{2} x
$$

We can see that $T(x, \mu) \neq 0, \forall x \in \operatorname{dom} M_{2} \cap \partial \Omega$. Therefore,

$$
\begin{aligned}
\operatorname{deg}\left\{\left.J Q_{2} N^{2}\right|_{\bar{\Omega} \cap \text { ker } M_{2}}, \Omega \cap \operatorname{ker} M_{2}, 0\right\} & =\operatorname{deg}\left\{T(\cdot, 0), \Omega \cap \operatorname{ker} M_{2}, 0\right\} \\
& =\operatorname{deg}\left\{T(\cdot, 1), \Omega \cap \operatorname{ker} M_{2}, 0\right\} \\
& =\operatorname{deg}\left\{-I, \Omega \cap \operatorname{ker} M_{2}, 0\right\} \neq 0 .
\end{aligned}
$$

Theorem 2.1 implies that $M_{2} x=N^{2} x$ has at least one solution. The proof is completed.
Remark 5.1. When the second part of condition (H3) holds, we may choose $\tilde{\Omega}_{2}=\left\{x \in \operatorname{ker} M_{2}\right.$: $\left.\mu x+(1-\mu) J Q_{2} N^{2} x=0, \mu \in[0,1]\right\}$ and take homotopy $\tilde{T}(x, \mu)=\mu x+(1-\mu) J Q_{2} N^{2} x$.

Remark 5.2. Under the multi-point boundary conditions, we can obtain the existence of solutions on a half-line by assume the nonlinear function f is L^{1}-Carathéodory. When the boundary conditions involved in the integral condition, however, this assumption on the nonlinear term is invalid if the domain is unbounded. In this paper, we overcome this difficulty by introducing the definition of g-Carathéodory function and multiplying the g-Carathéodory function h by the function $g \in L^{1}[0, \infty)$ in the equation (1.4).

Example 5.1. Consider

$$
\left\{\begin{array}{l}
3 e^{t}\left(e^{t} \phi_{3}\left(x^{\prime}(t)\right)\right)^{\prime}+h\left(t, x(t), x^{\prime}(t)\right)=0, \quad t \in(0, \infty) \tag{5.10}\\
x(0)=\int_{0}^{\infty} e^{-t} x(t) d t, \quad \lim _{t \rightarrow+\infty} 3 e^{t} \phi_{3}\left(x^{\prime}(t)\right)=0
\end{array}\right.
$$

Corresponding to the BVP (1.4)-(1.5), we have $p=3, c(t)=3 e^{t}, g(t)=e^{-t}$ and $h(t, u, v)=$ $t e^{-2 t} u^{2}+e^{-t} v^{2}$. It is easy to verify that (A1) holds. Let $\delta(t)=t e^{-2 t}, \zeta(t)=e^{-t}$, then $\delta_{1}=\frac{1}{9}$, $\zeta_{1}=\frac{1}{2},\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{\infty}=\frac{1}{\sqrt{3}},\left\|\phi_{q}\left(\frac{1}{c}\right)\right\|_{1}=\frac{2}{\sqrt{3}}$. Also, we can check that (H1)-(H3) and (5.6) are all satisfied. Thus, thanks to Theorem 5.1, the BVP (5.10) has at least one solution.

REFERENCES

[1] Y. Zou, Q. Hu and R. Zhang, On numerical studies of multi-point boundary value problem and its fold bifurcation, Appl. Math. Comput., 185 (2007) 527-537.
[2] A. V. Bitsadze, On the theory of nonlocal boundary value problems, Soviet Math. Dock., 30 (1964) 8-10.
[3] A. V. Bitsadze and A. A. Samarskii, Some elementary generalizations of linear elliptic boundary value
problems, Dokl. Akad. Nauk SSSR, 185 (1969) 739-740.
[4] V. A. Il'in and E. I. Moiseev, Nonlocal boundary value problem of the second kind for a SturmLiouville operator, Differ. Equ., 23 (1987) 979-987.
[5] W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Anal. 58 (2004) 477-488.
[6] W. Ge, Boundary value problems for ordinary nonlinear differential equations, Science Press, Beijing, 2007 (in Chinese).
[7] W. Feng and J. R. L. Webb, Solvability of a m-point boundary value problem with nonlinear growth, J. Math. Anal. Appl., 212 (1997) 467-480.
[8] C. P. Gupta, A generalized multi-point boundary value problem for second order ordinary differential equation, Appl. Math. Comput., 89 (1998) 133-146.
[9] R. Ma, Positive solutions for multipoint boundary value problems with a one-dimensional p-Laplacian, Comput. Math. Appl., 42 (2001) 755-765.
[10] H. Feng, H. Lian and W. Ge, A symmetric solution of a multipoint boundary value problems with one-dimensional p-Laplacian at resonance, Nonlinear Anal., 69 (2008) 3964-3972.
[11] N. Kosmatov, Multi-point boundary value problems on time scales at resonance, J. Math. Anal. Appl., 323 (2006) 253-266.
[12] A. J. Yang and W. Ge, Existence of symmetric solutions for a fourth-order multi-point boundary value problem with a p-Laplacian at resonance, J. Appl. Math. Comput., 29 (2009) 301-309.
[13] A. J. Yang and W. Ge, Positive solutions of multi-point boundary value problems with multivalued operators at resonance, J. Appl. Math. Comput., On line: 10.1007/s12190-008-0217-2.
[14] N. Kosmatov, Multi-point boundary value problems on an unbounded domain at resonance, Nonlinear Anal., 68 (2008) 2158-2171.
[15] H. Lian, H. Pang and W. Ge, Solvability for second-order three-point boundary value problems at resonance on a half-line, J. Math. Anal. Appl., 337 (2008) 1171-1181.
[16] R. P. Agarwal and D. O'Regan, Infinite interval problems for differential, difference and integral equations, Kluwer Academic, 2001.
[17] Z. L. Yang, Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Analysis, 62 (2005) 1251-1265.
[18] H. Ma, Symmetric positive solutions for nonlocal boundary value problems of fourth order, Nonlinear Analysis, 68 (2008) 645-651.
[19] X. Zhang, M. Feng and W. Ge, Symmetric positive solutions for p-Laplacian fourth-order differential equations with integral boundary conditions, J. Compu. Appl. Math., 222 (2008) 561-573.
[20] M. Feng, D. Ji and W. Ge, Positive solutions for a class of boundary-value problem with integral boundary conditions in Banach spaces, J. Compu. Appl. Math., 222 (2008) 351-363.
[21] J. M. Gallardo, Second order differential operators with integral boundary conditions and generation of semigroups, Rocky Mountain J. Math., 30 (2000) 1265-1292.
[22] C. Corduneanu, Integral equations and applications, Cambridge University Press, Cambridge, 1991. (Received June 12, 2008)

[^0]: *Supported by NNSF of China (10671012) and SRFDP of China (20050007011). *Corresponding author. E-mail address: yangaij2004@163.com

