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Abstract

In this paper the problem of stability of the zero solution of singu-

larly perturbed system of linear differential equation with state delays

is investigated.

We show that if the zero solution of reduced subsystem and the one

of the fast subsystem are exponentially stable, then the zero solution

of the given singularly perturbed system of differential equations is

also exponentially stable.

Estimates of the block components of the fundamental matrix so-

lution are derived. These estimates are used to obtain asymptotic

expansions on unbounded interval for the solutions of this class of

singularly perturbed systems.
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1 Problem formulation

Consider the singularly perturbed system of functional differential equations

ẋ(t) = L11xt + L12yt

εẏ(t) = L21xt + L22yt (1.1)

where x ∈ Rn1, y ∈ Rn2, ε > 0 is a small parameter;

Lj1xt =
p
∑

i=0

Ai
j1x(t − τi) +

∫ 0

−τp

Dj1(s)x(t + s)ds

Lj2yt =
m
∑

i=0

Ai
j2y(t − εµi) +

∫ 0

−µm

Dj2(s)y(t + εs)ds

j = 1, 2, Ai
jk are constant matrices with apropriate dimensions Djk(·) are

integral matrix valued functions and 0 = τ0 < τ1 < ... < τp, 0 = µ0 < µ1 <

... < µm.

Setting Lε =

(

L11 L12
1
ε
L21

1
ε
L22

)

; z =

(

x

y

)

the system (1.1) may be written

in a compact form as:
ż(t) = Lεzt.

It is known (see [3], [4]) that the exponential stability of the zero solution of
the system (1.1) is equivalent with the fact that the roots of the equation

det(λI − Lε(e
λ·I)) = 0

are located in the half plane Re(λ) < 0.

Usually this condition is difficult to be check when the system is of high
dimension.

The goal of this paper is to provide some sufficient conditions assuring the
exponential stability for the system of type (1.1).

Such conditions are expressed in term of exponential stability of the zero
solution of some subsystems of lower dimensions not depending upon small
parameter ε.

Taking ε = 0 in (1.1) we obtain:

ẋ(t) = L11xt + L̃12y(t)

0 = L21xt + L̃22y(t) (1.2)

where

L̃j2 =
m
∑

i=0

Ai
j2 +

∫ 0

−µm

Dj2(s)ds, j = 1, 2.
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Assuming that the matrix L̃22 is invertible, we may associate the following
“reduced subsystem” :

ẋ(t) = Lrxt (1.3)

with

Lrxt =
p
∑

i=0

[Ai
rx(t − τi) +

∫ 0

−τp

Dr(s)x(t + s)ds] (1.4)

Ai
r = Ai

11 − L̃12L̃
−1
22 Ai

21, i = 0, 1, ..., p, Dr(s) = D11(s) − L̃12L̃
−1
22 D21(s).

Sometimes (1.3) will be called “slow subsystem” associated to (1.1).

Also, we associate the so called “fast subsystem” or “boundary layer subsys-
tem”:

y′(σ) = Lfyσ (1.5)

with

Lfyσ =
m
∑

i=0

Ai
22y(σ − µi) +

∫ 0

−µm

D22(s)y(σ + s)ds

where σ = t
ε
.

In this paper we show that the exponential stability of the zero solution of
the slow subsystem (1.3) and the one of the fast subsystem (1.5) implies the
exponential stability of the zero solution of the system (1.1) for arbitrary
ε > 0 small enough.

Our result extends to the class of systems of functional differential equations
with state delays of type (1.1) the well known result of Klimusev-Krasovski
[6].

Systems of differential equations of type (1.1) with m = 0, p = 1 and Djk(s) =
0 were considered in [5], where asymptotic structure of solutions was studied.

In [2] the system (1.1) with p = 0 was considered and the separation of time
scales was proposed.

2 The main result

We make the following assumptions:

H1) The roots of the equation

det[λIn2 −
m
∑

i=0

Ai
22e

−λµi −
∫ 0

−µm

D22(s)e
λsds] = 0 (2.1)
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are located in the half plane Re(λ) < −γf < 0 for some positive constant γf .

H2) The roots of the equation

det

[

λIn1 −
p
∑

i=0

Ai
re

−λτi −
∫ 0

−τp

Dr(s)Dr(s)e
λsds

]

= 0 (2.2)

are located in the half plane Re(λ) ≤ −γr < 0 for some positive constant γr.

Remark:

a) Under the assumption H1) it follows that λ = 0 is not a root of the
equation (2.1) and hence the matrix L̃22 is invertible.

Thus the matrices Ai
r, i = 0, 1, ..., p and Dr(s) are well defined.

b) If 0 < αf < γf there exists βf ≥ 1 such that the solutions of the system
(1.5) satisfy:

|y(σ)| ≤ βfe
−αf σ||y0|| (2.3)

for all σ ≥ 0; ||y0|| = sups∈[−µm,0] |y(s)|.

c) If 0 < αr < γr there exists βr ≥ 1 such that for any solutions of the system
(1.3) we have

|x(t)| ≤ βre
−αrt||x0||, (∀) t ≥ 0. (2.4)

The main result of this paper is:

Theorem 2.1 Under the assumptions H1), H2) there exists ε0 > 0 such that
for arbitrary ε ∈ (0, ε0) the zero solution of the system (1.1) is exponentially
stable.

Moreover, if

(

Φ11(t, ε) Φ12(t, ε)
Φ21(t, ε) Φ22(t, ε)

)

is the partition of the fundamental ma-

trix solution, we have
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|Φ11(t, ε)| ≤ β1e
−α1t

|Φ12(t, ε)| ≤ εβ1e
−α1(t)

|Φ21(t, ε)| ≤ β2e
−α1t

|Φ22(t, ε)| ≤ β2(e
−α2

t
ε + εe−α1t), (∀)t ≥ 0, ε ∈ (0, ε0)

αj, βj, j = 1, 2 are positive constants which depend by αf , αr, βf , βr, respec-
tively.

Proof:

Let Φr(t) be the fundamental matrix solution of the reduced system (1.3)
and Φf (σ) be the fundamental matrix solution of the fast system (1.5).

It is easy to see that t → Φf (
t
ε

is the fundamental matrix solution of the
system

εẏ(t) = L22yt, t ≥ 0.

Let

(

x(t, ε)
y(t, ε)

)

be a solution of the system (1.1) with the initial conditions:

x(s, ε) = 0,−τp ≤ s < 0

y(s, ε) = 0,−εµm ≤ s < 0.

Using the variation of constants formula we obtain:

y(t, ε) = Φf (
t

ε
)y(0) +

1

ε

∫ t

0
Φf (

t − s

ε
)L21xsds (2.5)

x(t, ε) = Φr(t)x(0) +
∫ t

0
Φr(t − s)L12ysds +

∫ t

0
Φr(t − s)L̃12L̃

−1
22 L21xsds.(2.6)

Further we write:
∫ t

0
Φr(t − s)L12ysds =

m
∑

i=0

∫ t

0
Φr(t − s)Ai

12y(s − εµi, ε)ds

+
∫ t

0
Φr(t − s)

∫ 0

−µm

D12(θ)y(s + εθ, ε)dθds

=
m
∑

i=0

∫ t

εµi

Φr(t − s)Ai
12y(s − εµi, ε)ds

+
∫ 0

−µm

∫ t

θ
Φr(t − s)D12(θ)y(s + εθ, ε)dsdθ (2.7)

=
m
∑

i=0

∫ t

0
Φr(t − s − εµi)A

i
12y(s, ε)ds

+
∫ t

0

∫ 0

−µm

Φr(t − s + θ)D12(θ)dθy(s, ε)ds.
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Substituting (2.5) in (2.7) we get:

m
∑

i=0

∫ t

0
Φr(t − s − εµi)A

i
12y(s, ε)ds

=
m
∑

i=0

∫ t

0
Φr(t − s − εµi)A

i
12Φf (

s

ε
)y(0)ds

+
1

ε

m
∑

i=0

∫ t

0
Φr(t − s − εµi)A

i
12

∫ s

0
Φf (

s − σ

ε
)L21yσdσds. (2.8)

Applying Fubini theorem we have:

1

ε

∫ t

0
Φr(t − s − εµi)A

i
12

∫ s

0
Φf (

s − σ

ε
)L21xσdσds

=
1

ε

∫ t

0

∫ t

s
Φr(t − σ − εµi)A

i
12Φf (

σ − s

ε
)dσL21xsds. (2.9)

On the other hand:

1

ε

∫ t

s
Φr(t − σ − εµi)A

i
12Φf (

σ − s

ε
)dσ

=
∫ t−s

ε

0
Φr(t − s − εσ − εµi)A

i
12Φf(σ)dσ

= Φr(t − s)Ai
12

∫

∞

0
Φf (σ) + Ψ1(t, s, ε)

where

Ψ1(t, s, ε) =
∫

∞

0
[Φr(t − s − εσ − εµi) − Φr(t − s)]Ai

12Φf(σ)dσ

−
∫

∞

t−s
ε

Φr(t − s − εσ − εµi)A
i
12Φf (σ)dσ.

Based on (2.3) and (2.4) we deduce:

|Ψ1(t, s, ε)| ≤ β̃1[e
−α2

t−s
ε + εe−α1(t−s)]

αj > 0, β̃1 > 0, j = 1, 2.

It is easy to check that
∫

∞

0
Φf(σ)dσ = −L̃−1

22 .

Finally we obtain
∫ t

0
Φr(t − s)L12ysds = −

∫ t

0
Φr(t − s)L̃12L̃

−1
22 L21xsds (2.10)

+
∫ t

0
Ψ0(t, s, ε)dsy(0) +

∫ t

0
Ψ2(t, s, ε)L21xsds

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 6, p. 6



where

|Ψ0(t, s, ε)| ≤ β̃0e
−α1(t−s)e−α2

s
ε

|Ψ2(t, s, ε)| ≤ β̃2(e
α2

(t−s)
ε + εe−α1(t−s)).

Substituting (2.10) into (2.6) we get

x(t, ε) = Φr(t)x(0) +
∫ t

0
Ψ0(t, s, ε)dsy(0) +

∫ t

0
Ψ2(t, s, ε)L21xsds.

Directly

|x(t, ε)| ≤ β̃3e
−α1t(|x(0)| + ε|y(0)|) + β̃4

∫ t

0
(e−α2

t−s
ε + εe−α1(t−s))|L21xs|ds.

By standard techniques in singular perturbation theory [8], [1] we obtain that
there exists ε0 > 0 such that for arbitrary 0 < ε < ε0 we have

|x(t, ε)| ≤ β1e
−α1t(|x(0)| + ε|y(0)|). (2.11)

Using (2.11) in (2.5) we deduce

|y(t, ε) ≤ β2e
−α2

t
ε |y(0)| + β3e

−α1t(|x(0)| + ε|y(0)|). (2.12)

From (2.11) and (2.12) we conclude that the zero solution of the system
(1.1) is exponentially stable. The estimates of the block components of the
fundamental matrix solution follows from (2.11) and (2.12) taking x(0) =
In1 , y(0) = 0 and x(0) = 0, y(0) = In2 , respectively. Thus the proof is
complete.

3 Asymptotic expansions

Let us consider system (1.1) with Djk(θ) = 0 for all θ < 0.

Based on the result of Theorem 2.1 we have:

Theorem 3.1 Under the assumptions H1−H2 the block components of the
fundamental matrix solutions of the system (1.1) have the following asymp-
totic structure:

Φ11(t, ε) = Φr(t) + εΦ̂11(t, ε)

Φ12(t, ε) = −εΦr(t)L̃12L̃
−1
22 + εΦ̃12(

t

ε
, ε) + ε2Φ̂12(t, ε)

Φ21(t, ε) = −L̃−1
22 L21(Φr)t + Φ̃21(

t

ε
, ε) + εΦ̂21(t, ε)

Φ22(t, ε) = Φf (
t

ε
) + εΦ̂22(t, ε)
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where

|Φ̂jk(t, ε)| ≤ β̂e−α̂t, ∀t ≥ 0

|Φ̃jl(σ, ε)| ≤ β̃e−α̃σ ∀σ ≥ 0,

α̂, α̃, β̂, β̃ being positive constants not depending upon ε, t, σ.

The asymptotic formulae in Theorem 3.1 allow us to obtain the asymptotic
structure of the solutions of a singularly perturbed affine system of functional
differential equations:

ẋ(t) = L11xt + L12yt + f(t)

εẏ(t) = L21xt + L22yt + g(t) t ≥ 0

where f(·), g(·) are integrable functions.
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