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Abstract In this note we apply Avery-Peterson multiple fixed point theorem to
investigate the existence of multiple positive periodic solutions to the following non-
linear non-autonomous functional differential system with feedback control

{

dx
dt

= −r(t)x(t) + F (t, xt, u(t− δ(t))),

du
dt

= −h(t)u(t) + g(t)x(t− σ(t)).

We prove the system above admits at least three positive periodic solutions under
certain growth conditions imposed on F .
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1. Introduction

In this note, we obtain a new result for the existence of at least three positive
ω-periodic solutions of the following system with feedback control:

{

dx
dt

= −r(t)x(t) + F (t, xt, u(t− δ(t))),

du
dt

= −h(t)u(t) + g(t)x(t− σ(t)).
(1)

where δ(t), σ(t) ∈ C(R,R), r(t), h(t), g(t) ∈ C(R, (0,+∞)), all of the above functions
are ω-periodic functions and ω > 0 is a constant. F (t, xt, z) is a function defined on
R×BC ×R and F (t+ω, xt+ω, z) = F (t, xt, z), where BC denotes the Banach space
of bounded continuous functions ϕ : R → R with the norm || ϕ|| = supθ∈R |ϕ(θ)|. If
x ∈ BC, then xt ∈ BC for any t ∈ R is defined by xt(τ) = x(t+ τ) for τ ∈ R.

Many special cases of (1) have been widely investigated by many authors, see, for
example [10,8,4,6]. But most work is for autonomous. In real world, any biological
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or environmental parameters, however, are naturally subject to fluctuation in time,
so it is reasonable to study the corresponding non-autonomous systems. System (1)
includes many mathematical ecological models with feedback control, such as the
multiplicative delay logistic model with feedback control studied in [7]. For more
information about the population models concerned with (1), we refer to [12] and the
references therein.

Considering the biological and environmental periodicity, such as seasonal effects
of weather, food supplies, mating habits, we shall focus on the existence of peri-
odic solutions with strictly positive components of (1). Recently, some authors have
studied the existence of at least one and two positive periodic solutions of (1) (cf.
[9,3,11]). The methods used in the references are mainly the continuation theorem
of Gaines and Mawhin’s coincidence degree theory [4] and the fixed point theorem
in cones [5]. We note that in a recent paper [9], by using a fixed point theorem [1]
involving three functionals on cones, Liu and Li studied problem (1) and obtained
two positive periodic solutions with some monotonic properties, that is, x(t) ≥ 0 is

ω−periodic and x(t)e
∫

t

0
r(s)ds is no decreasing on [0, ω]. The main goal of this paper

is to revisit problem (1) and obtain at least three positive periodic solutions of (1)
by means of a three fixed-points theorem due to Avery and Peterson [2].

The paper is divided into three sections, including this section. In Section 2 we
give some background knowledge and preliminary results. Section 3 is devoted to the
proof of the main result.

2. Background material and results
For the reader’s convenience, we shall summarize below a few concepts and results

from the theory of cones in Banach spaces [5].
Let E be a real Banach space and P ⊂ E a cone. The map α is said to be a

nonnegative continuous concave functional on the cone P provided that α : P →
[0,∞) is continuous and

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map γ is a nonnegative
continuous convex functional on cone P provided that γ : P → [0,∞) is continuous
and

γ(tx+ (1 − t)y) ≤ tγ(x) + (1 − t)γ(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ and θ be nonnegative continuous convex functionals on P , α be a non-
negative continuous concave functional on P , and ψ be a nonnegative continuous
functional on P . Then for positive real numbers a, b, c and d, we define the following
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convex sets:

P (γ, d) = {x ∈ P | γ(x) < d},

P (γ, α, b, d) = {x ∈ P | b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

and a closed set R(γ, ψ, a, d) = {x ∈ P | a ≤ ψ(x), γ(x) ≤ d}.
The following fixed point theorem due to Avery and Peterson [2] is crucial in the

proof of our main result.

Theorem 2.1 [2]. Let P be a cone in a real Banach space E. Let γ and θ be
nonnegative continuous convex functionals on P , α be a nonnegative continuous con-
cave functional on P , and ψ be a nonnegative continuous functional on P satisfying
ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such that for some positive numbers M and d,

α(x) ≤ ψ(x) and ‖x‖ ≤Mγ(x) (∗)

for all x ∈ P (γ, d). Suppose T : P (γ, d) → P (γ, d) is completely continuous and there
exist positive numbers a, b, and c with a < b such that

(S1) {x ∈ P (γ, θ, α, b, c, d)| α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(S3) 0 /∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d), such that

γ(xi) ≤ d for i = 1, 2, 3, b < α(x1),

a < ψ(x2), with α(x2) < b, and ψ(x3) < a.

In order to apply Theorem 2.1 to establish the existence of multiple positive
solutions of system (1), we shall define an operator on a cone in a suitable Banach
space. To this end, we first transform system (1) into a single equation. By integrating
the latter equation in system (1) from t to t+ ω, we obtain

u(t) =

t+ω
∫

t

k(t, s)g(s)x(s− σ(s))ds := (Φx)(t), (2)

where

k(t, s) =
exp{

∫ s

t
h(v)dv}

exp{
∫ ω

0
h(v)dv} − 1

.
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When x is an ω-periodic function, it is easy to see that k(t+ω, s+ω) = k(t, s), u(t+
ω) = u(t), and

n :=
exp{−

∫ ω

0
h(v)dv}

exp{
∫ ω

0
h(v)dv} − 1

≤ k(t, s) ≤
exp{

∫ ω

0
h(v)dv}

exp{
∫ ω

0
h(v)dv} − 1

:= m (∗∗)

for(t, s) ∈ R
2, where m,n are positive constants.

Therefore, the existence problem of ω-periodic solution of system (1) is equivalent
to that of ω-periodic solution of the following equation:

dx

dt
= −r(t)x(t) + F (t, xt, (Φx)(t− δ(t))). (3)

In what follows, we shall adopt the following notations for convenience: R =
(−∞,∞),R+ = [0,∞), I = [0, ω], f ∗ := maxt∈I f(t), f∗ := mint∈I f(t), where f is a
continuous positive periodic function with period ω. BC(X, Y ) denotes the space of
bounded continuous functions ϕ : X → Y.

Throughout the paper we always assume that

(H1) F (t, xt, (Φx)(t − δ(t))) is a continuous function of t for each x ∈ BC(R,R+),
and F (t, xt, (Φx)(t− δ(t))) ≥ 0 for (t, x) ∈ R ×BC(R,R+), where Φ is defined
as (2).

(H2) For any C > 0 and ε > 0, there exists µ > 0 such that for γ, ξ ∈ BC, ‖γ‖ ≤ C,
‖ξ‖ ≤ C, ‖γ − ξ‖ < µ and for 0 ≤ s ≤ ω imply

|F (s, γs, (Φγ)(s− δ(s))) − F (s, ξs, (Φξ)(x− δ(s)))| < ε.

By integrating equation (3) from t to t+ ω, we have

x(t) =

∫ t+ω

t

G(t, s)F (s, xs, (Φx)(s− δ(s)))ds,

where

G(t, s) =
exp{

∫ s

t
r(v)dv}

exp{
∫ ω

0
r(v)dv} − 1

. (4)

It is clear that G(t+ ω, s+ ω) = G(t, s) for all (t, s) ∈ R
2 and

p :=
exp{−

∫ ω

0
r(v)dv}

exp{
∫ ω

0
r(v)dv} − 1

≤ G(t, s) ≤
exp{

∫ ω

0
r(v)dv}

exp{
∫ ω

0
r(v)dv} − 1

:= q

for all s ∈ [t, t+ ω], where p, q are positive constants.
We denote by β := p

q
. In order to use Theorem 2.1, we let E be the set E = {x ∈

C(R,R) : x(t + ω) = x(t), t ∈ R} with the norm ‖x‖ = supt∈I |x(t)|; then E ⊂ BC
is a Banach space. Also we define P as P = {x ∈ E : x(t) ≥ β‖x‖, t ∈ I}. One may
readily verify that P is a cone in E.
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Define an operator T : P → P by

(Tx)(t) =

∫ t+ω

t

G(t, s)F (s, xs, (Φx)(s− δ(s)))ds (5)

for x ∈ P, t ∈ R, where G(t, s) is defined by (4) and Φ is defined by (2). Under
the conditions (H1), (H2), we known that T : P → P is well defined, completely
continuous [9], and each positive ω-periodic solution of (1) is a fixed point of the
operator T on P .

From now on, we fix 0 ≤ η ≤ l ≤ ω, τ ∈ R and let the nonnegative continuous
concave functional α, the nonnegative continuous convex functionals θ, γ, and the
nonnegative continuous functional ψ be defined on the cone P by

α(x) = min
η≤t≤l

|xt(τ)|,

ψ(x) = θ(x) = max
0≤t≤ω

|xt(τ)| = max
0≤t≤ω

|x(t)|,

γ(x) = max
0≤t≤ω

|(Φx)(t− δ(t))|.

The following lemma is useful in the proof of our main result.

Lemma 2.1. For x ∈ P , there exists a constant M > 0 such that

max
0≤t≤ω

|xt(τ)| ≤M max
0≤t≤ω

|(Φx)(t− δ(t))|.

Proof. For x ∈ P , we have

max
0≤t≤ω

|(Φx)(t− δ(t))| = max
0≤t≤ω

(Φx)(t− δ(t))

= max
0≤t≤ω

∫ t−δ(t)+ω

t−δ(t)
k(t− δ(t), s)g(s)x(s− σ(s))ds

= max
0≤t≤ω

∫ ω

0
k(t− δ(t), s)g(s)x(s− σ(s))ds

≥ β‖x‖ max
0≤t≤ω

∫ ω

0
k(t− δ(t), s)g(s)ds = Lβ max

0≤t≤ω
|xt(τ)|,

(6)

where L := max
0≤t≤ω

∫ ω

0
k(t−δ(t), s)g(s)ds. Setting M := 1

Lβ
, we complete the proof.

By Lemma 2.1, the functionals defined above satisfy relations

α(x) ≤ θ(x) = ψ(x), ∀x ∈ P. (7)

Moreover, for each x ∈ P , there holds

‖x‖ = max
0≤t≤ω

|xt(τ)| ≤
max
0≤t≤ω

|(Φx)(t− δ(t))|

Lβ
= Mγ(x). (8)
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We also find that ψ(λx) = λψ(x) for ∀λ ∈ [0, 1] and ∀x ∈ P . Therefore, the condition
(∗) of Theorem 2.1 is satisfied.

3. Main result

Denote by λω = max
0≤t≤ω

∫ ω

0
k(t− δ(t), s)g(s)ds× max

0≤t≤ω

∫ ω

0
G(t− σ(t), s)ds, and

N = min
η≤t≤l

∫ ω

0

G(t+τ, s)ds, D = max
0≤t≤ω

∫ ω

0

G(t+τ, s)ds, L = max
0≤t≤ω

∫ ω

0

k(t, s)g(s)ds.

Our main result is the following

Theorem 3.1. Let 0 < a < b < b
β
≤ d

L
, and suppose that F satisfies the following

conditions:

(C1) F (t, u, v) ≤ d/λω, for (t, u, v) ∈ [0, ω] × [0,Md] × [0, d];

(C2) F (t, u, v) > b/N, for (t, u, v) ∈ [η, l] × [b, b/β] × [0, d];

(C3) F (t, u, v) < a/D, for (t, u, v) ∈ [0, ω] × [0, a] × [0, d].

Then equation (3) admits at least three positive solutions x1, x2 and x3 such that
max
0≤t≤ω

|(Φxi)(t− δ(t))| ≤ d; b < min
η≤t≤l

|x1(t+ τ)|, a < max
0≤t≤ω

|x2(t+ τ)| with min
η≤t≤l

|x2(t+

τ)| < b, and max
0≤t≤ω

|x3(t+ τ)| < a.

Proof. Problem (1) has a solution x = x(t) if and only if x solves the operator
equation x = Tx. Thus we set out to verify that the operator T satisfies the Avery-
Peterson fixed point theorem which will prove the existence of three fixed points of
T which satisfy Theorem 2.1.

For x ∈ P (γ, d), there is γ(x) = max
0≤t≤ω

|(Φx)(t−δ(t))| ≤ d. By Lemma 2.1, we have

max
0≤t≤ω

|xt(τ)| = max
0≤t≤ω

x(t+τ) ≤ Md. Then condition (C1) implies F (t, xt(τ), (Φx)(t−

δ(t)) ≤ d/λω. On the other hand, for x ∈ P (γ, d), there is Tx ∈ P and

(Tx)(t− σ(t)) =

∫ t−σ(t)+ω

t−σ(t)

G(t− σ(t), s)F (s, xs, (Φx)(s− δ(s)))ds

=

∫ ω

0

G(t− σ(t), s)F (s, xs, (Φx)(s− δ(s)))ds

≤ max
0≤t≤ω

∫ ω

0

G(t− σ(t), s)ds×
d

λω

,

we have

γ(Tx) = max
0≤t≤ω

|(Φ(Tx))(t− δ(t))|
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= max
0≤t≤ω

∫ t−δ(t)+ω

t−δ(t)

k(t− δ(t), s)g(s)(Tx)(s− σ(s))ds

= max
0≤t≤ω

∫ ω

0

k(t− δ(t), s)g(s)(Tx)(s− σ(s))ds

≤ max
0≤t≤ω

∫ ω

0

k(t− δ(t), s)g(s)ds× max
0≤t≤ω

∫ ω

0

G(t− σ(t), s)ds
d

λω

≤ d.

Therefore, T : P (γ, d) → P (γ, d).

To check condition (S1) of Theorem 2.1, we take x(t) = b/β. It is easy to
see that x(t) = b/β ∈ P (γ, θ, α, b, b/β, d) and α(x) = b/β > b, and so {x ∈
P (γ, θ, α, b, b/β, d)| α(x) > b} 6= ∅.

Hence, for x ∈ P (γ, θ, α, b, b/β, d), there is

min
η≤t≤l

|xt(τ)| ≥ b, max
0≤t≤ω

|xt(τ)| ≤ b/β, max
0≤t≤ω

|(Φx)(t− δ(t))| ≤ d

such that b ≤ xt(τ) ≤ b/β, 0 ≤ (Φx)(t− δ(t)) ≤ d, t ∈ [η, l].
Thus, by condition (C2) of this theorem, we have F (t, xt, (Φx)(t − δ(t))) > b/N

and

α(Tx) = min
η≤t≤l

|(Tx)(t+ τ)| = min
η≤t≤l

∫ t+τ+ω

t+τ

G(t+ τ, s)F (s, xs, (Φx)(s− δ(s)))ds

>
b

N
min
η≤t≤l

∫ ω

0

G(t+ τ, s)ds = b,

i.e. α(Tx) > b for allx ∈ P (γ, θ, α, b, b/β, d). This show that condition (S1) of
Theorem 2.1 is satisfied.

Secondly, with (7), (8), we have α(Tx) ≥ βθ(Tx) > β × b
β

= b for all x ∈

P (γ, α, b, d) with θ(Tx) > b
β
. Thus, condition (S2) of Theorem 2.1 is satisfied.

Finally, we show that condition (S3) of Theorem 2.1 also holds. Clearly, as ψ(0) =
0 < a, there holds 0 6∈ R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d) with ψ(x) = a.
This implies that for t ∈ [0, ω], there is max

0≤t≤ω
|xt(τ)| = a, max

0≤t≤ω
|(Φx)(t − δ(t))| ≤ d.

Hence,
0 ≤ xt(τ) ≤ a, 0 ≤ (Φx)(t− δ(t)) ≤ d, t ∈ [0, ω],

and by the condition (C3) of this theorem,

ψ(Tx) = max
0≤t≤ω

|(Tx)t(τ)| = max
0≤t≤ω

∫ t+τ+ω

t+τ

G(t+ τ, s)F (s, xs, (Φx)(s− δ(s)))ds

<
a

D
max
0≤t≤ω

∫ ω

0

G(t+ τ, s)ds = a.

So, the condition (S3) of Theorem 2.1 is satisfied. On the other hand, for x ∈ P,
(7), (8) holds. Therefore, an application of Theorem 2.1 implies (3) has at least three
positive solutions.
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Remark 3.1. Under the assumptions (H1), (H2) and the following assumption

(H0) mg∗ > 1
ω
, ng∗ <

1
ω
,

where m,n are given in (∗∗) and g∗ := maxt∈I g(t), g∗ := mint∈I g(t) are defined as
in Section 2, Liu and Li [9] obtained two positive periodic solutions for problem (1).
But in this paper we completely remove assumption (H0). Moreover, we obtain at
least three positive periodic solutions for (1) with more general nonlinearity F .
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