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Abstract

In this paper we study the stability of the zero solution of difference equa-
tions with variable delays. In particular we consider the scalar delay equation

∆x(n) = −a(n)x(n − τ(n))

and its generalization

∆x(n) = −
N

∑

j=1

aj(n)x(n − τj(n)).

Fixed point theorems are used in the analysis.
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1 Introduction

Let R denote the real numbers, R
+ = [0,∞), Z the integers, Z

− the negative
integers, and Z

+ = {x ∈ Z | x ≥ 0}. In this paper we study the asymptotic
stability of the zero solution of the scalar delay equation

∆x(n) = −a(n)x(n − τ(n)) (1.1)

and its generalization

∆x(n) = −

N
∑

j=1

aj(n)x(n− τj(n)). (1.2)

where a, aj : Z
+ → R and τ, τj : Z

+ → Z
+ with n− τ(n) → ∞ as n→ ∞.

For each n0, define mj(n0) = inf{s− τj(s) : s ≥ n0}, m(n0) = min{mj(n0) : 1 ≤
j ≤ N}. Note that (1.2) becomes (1.1) for N = 1.

Recently, in [11], Raffoul studied the stability of the zero solution of (1.1) when
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τ(n) = r. Our objective in this research is to generalize the stability results in [11]
to (1.2) for variable τj(n)’s. For more on stability using fixed point theory we refer
to [1],[7],[9],[11],[12] and for basic results on difference calculus we refer to [2] and
[8]. We also refer to [3],[4],[5],[6] and [10] for other results on stability for difference
equations.

Remark 1.1 In [7], the author and Islam showed that the zero solution of the
equation

x(n + 1) = b(n)x(n) + a(n)x(n− τ(n))

is asymptotically stable with one of the assumptions being that

n−1
∏

s=0

b(s) → 0 as n→ ∞. (1.3)

However, as pointed out in [11], condition (1.3) cannot hold for (1.2) since b(n) =
1, for all n ∈ Z. The results we obtain in this paper overcome the requirement of
(1.3).

Let D(n0) denote the set of bounded sequences ψ : [m(n0), n0] → R with the
maximum norm ||.||. Also, let (B, ||.||) be the Banach space of bounded sequences
ϕ : [m(n0),∞) → R with the maximum norm. Define the inverse of n − τi(n) by
gi(n) if it exists and set

Q(n) =

N
∑

j=1

b(gj(n)),

where

N
∑

j=1

b(gj(n)) = 1 −
N

∑

j=1

a(gj(n)).

For each (n0, ψ) ∈ Z
+ × D(n0), a solution of (1.2) through (n0, ψ) is a function

x : [m(n0), n0 + α) → R
n for some positive constant α > 0 such that x(t) satisfies

(1.2) on [n0, n0+α) and x(n) = ψ(n) for n ∈ [m(n0), n0]. We denote such a solution
by x(n) = x(n, n0, ψ). For a fixed n0, we define

||ψ|| = max{|ψ(n)| : m(n0) ≤ n ≤ n0}.
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2 Stability

In this section we obtain conditions for the zero solution of (1.2) to be asymptoti-
cally stable.

We begin by rewriting (1.2) as

∆x(n) = −
N

∑

j=1

aj(gj(n))x(n) + ∆n

N
∑

j=1

n−1
∑

s=n−τj(n)

aj(gj(s))x(s) (2.1)

where ∆n represents that the difference is with respect to n. If we let

N
∑

j=1

bj(gj(n)) = 1 −
N

∑

j=1

aj(gj(n)),

then (2.1) is equivalent to

x(n + 1) =

N
∑

j=1

bj(gj(n))x(n) + ∆n

N
∑

j=1

n−1
∑

s=n−τj(n)

aj(gj(s))x(s) (2.2)

Lemma 2.1 Suppose that Q(n) 6= 0 for all n ∈ Z
+ and the inverse function gj(n)

of n− τj(n) exists. Then x(n) is a solution of (2.2) if and only if

x(n) =
(

x(n0)−

N
∑

j=1

n0−1
∑

s=n0−τj(n0)

aj(gj(s))x(s)
)

n−1
∏

s=n0

Q(s)+

N
∑

j=1

n−1
∑

s=n−τj(n)

aj(gj(s))x(s)

−
n−1
∑

s=n0

(

[1 −Q(s)]
n−1
∏

k=s+1

Q(k)
N

∑

j=1

s−1
∑

u=s−τj(s)

aj(gj(u))x(u)
)

, n ≥ n0.

Proof. By the variation of parameters formula we obtain

x(n) = x(n0)

n−1
∏

s=n0

Q(s) +

n−1
∑

k=0

(

n−1
∏

s=k

Q(s)∆k

N
∑

j=1

k−1
∑

s=k−τj(k)

aj(gj(s))x(s)
)

. (2.3)
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Using the summation by parts formula we obtain

n−1
∑

k=0

(

n−1
∏

s=k

Q(s)∆k

N
∑

j=1

k−1
∑

s=k−τj(k)

aj(gj(s))x(s)
)

=

N
∑

j=1

n−1
∑

s=n−τj(n)

aj(gj(s))x(s)

−
n−1
∏

s=n0

Q(s)
N

∑

j=1

n0−1
∑

s=n0−τj(n0)

aj(gj(s))x(s)

−
n−1
∑

s=n0

(

[1 −Q(s)]
n−1
∏

k=s+1

Q(k)
N

∑

j=1

s−1
∑

u=s−τj(s)

aj(gj(u))x(u)
)

. (2.4)

Substituting (2.5) into (2.3) gives the desired result. This completes the proof of
Lemma 2.1.

We next state and prove our main results.

Theorem 2.1 Suppose that the inverse function gj(n) of n − τj(n) exists, and
assume there exists a constant α ∈ (0, 1) such that

N
∑

j=1

n−1
∑

s=n−τj(n)

|aj(gj(s))| +

n−1
∑

s=n0

(

|[1 −Q(s)]|
∣

∣

∣

n−1
∏

k=s+1

Q(k)
∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))|
)

≤ α. (2.5)

Moreover, assume that there exists a positive constant M such that

∣

∣

∣

n−1
∏

s=n0

Q(s)
∣

∣

∣
≤M.

Then the zero solution of (1.2) is stable.

Proof. Let ε > 0 be given. Choose δ > 0 such that

(M +Mα)δ + αε ≤ ε.

Let ψ ∈ D(n0) such that |ψ(n)| ≤ δ. Define

S = {ϕ ∈ B : ϕ(n) = ψ(n) if n ∈ [m(n0), n0], ||ϕ|| ≤ ε}.
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Then (S, ||.||) is a complete metric space where, ||.|| is the maximum norm.

Define the mapping P : S → S by
(

Pϕ
)

(n) = ψ(n) for n ∈ [m(n0), n0]

and

(

Pϕ
)

(n) =
(

ψ(n0) −
N

∑

j=1

n0−1
∑

s=n0−τj(n0)

aj(gj(s))ψ(s)
)

n−1
∏

s=n0

Q(s)

+
N

∑

j=1

n−1
∑

s=n−τj(n)

aj(gj(s))ϕ(s)

−
n−1
∑

s=n0

(

[1 −Q(s)]
n−1
∏

k=s+1

Q(k)
N

∑

j=1

s−1
∑

u=s−τj(s)

aj(gj(u))ϕ(u)
)

. (2.6)

Clearly, Pϕ is continuous. We first show that P maps from S to S. By (2.6)

|(Pϕ
)

(n)| ≤ Mδ +Mαδ +
{

N
∑

j=1

n−1
∑

s=n−τj(n)

aj(gj(s))

+

n−1
∑

s=n0

(

[1 −Q(s)]

n−1
∏

k=s+1

Q(k)

N
∑

j=1

s−1
∑

u=s−τj(s)

aj(gj(u))ϕ(u)
}

||ϕ||

≤ (M +Mα)δ + αε

≤ ε.

Thus P maps from S into itself. We next show that P is a contraction. Let ζ, η ∈ S.

Then

|(Pζ)(t) − (Pη)(t)| ≤
{

N
∑

j=1

n−1
∑

s=n−τj(n)

|aj(gj(s))|

+

n−1
∑

s=n0

(

|[1 −Q(s)]|
∣

∣

∣

n−1
∏

k=s+1

Q(k)
∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))|
)}

||ζ − η||

≤ α||ζ − η||

This shows that P is a contraction. Thus, by the contraction mapping principle,
P has a unique fixed point in S which solves (1.2) and for any ϕ ∈ S, ||Pϕ|| ≤ ε.

This proves that the zero solution of (1.2) is stable.
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Theorem 2.2 Assume that the hypotheses of Theorem 2.1 hold. Also assume that

n−1
∏

k=n0

Q(k) → 0 as n→ ∞. (2.7)

Then the zero solution of (1.2) is asymptotically stable.

Proof. We have already proved that the zero solution of (1.2) is stable. Let
ψ ∈ D(n0) such that |ψ(n)| ≤ δ and define

S
∗ = {ϕ ∈ B : ϕ(n) = ψ(n) if n ∈ [m(n0), n0], ||ϕ|| ≤ ε and ϕ(n) → 0, as n→ ∞}.

Define P : S∗ → S∗ by (2.6). From the proof of Theorem 2.2, the map P is a
contraction and for every ϕ ∈ S∗, ||(Pϕ)|| ≤ ε.

We next show that (Pϕ)(n) → 0 as n → ∞. The first term on the right side
of (2.6) goes to zero because of condition (2.7). It is clear from (2.5) and the fact
that ϕ(n) → 0 as n → ∞ that

∑N

j=1

∑n−1
s=n−τj(n) |aj(gj(s))||ϕ(s)| → 0 as n → ∞.

Now we show that the last term on the right side of (2.6) goes to zero as
n → ∞. Since ϕ(n) → 0 and n − τj(n) → ∞ as n → ∞, for each ε1 > 0, there
exists a N1 > n0 such that s ≥ N1 implies |ϕ(s− τj(s))| < ε1 for j = 1, 2, 3, ..., N.
Thus for n ≥ N1, the last term, I3 in (2.6) satisfies

|I3| =
∣

∣

∣

n−1
∑

s=n0

(

[1 −Q(s)]
n−1
∏

k=s+1

Q(k)
N

∑

j=1

s−1
∑

u=s−τj(s)

aj(gj(u))ϕ(u)
)
∣

∣

∣

≤

N1−1
∑

s=n0

(

|[1 −Q(s)]|
∣

∣

∣

n−1
∏

k=s+1

Q(k)
∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))||ϕ(u)|
)

+

n−1
∑

s=N1

(

|[1 −Q(s)]|
∣

∣

∣

n−1
∏

k=s+1

Q(k)
∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))||ϕ(u)|
)

≤ max
σ≥m(n0)

|ϕ(σ)|

N1−1
∑

s=n0

(

|[1 −Q(s)]|
∣

∣

∣

n−1
∏

k=s+1

Q(k)
∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))|
)

+ ε1

n−1
∑

s=N1

(

|[1 −Q(s)]|
∣

∣

∣

n−1
∏

k=s+1

Q(k)
∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))|
)

By (2.7), there exists N2 > N1 such that n ≥ N2 implies

max
σ≥m(n0)

|ϕ(σ)|

N1−1
∑

s=n0

(

|[1 −Q(s)]|
∣

∣

∣

n−1
∏

k=s+1

Q(k)
∣

∣

∣

N
∑

j=1

s−1
∑

u=s−τj(s)

|aj(gj(u))|
)

< ε1.
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Apply (2.5) to obtain |I3| ≤ ε1 + ε1α < 2ε1. Thus, I3 → 0 as n → ∞. Hence
(Pϕ)(n) → 0 as n→ ∞, and so Pϕ ∈ S∗.

By the contraction mapping principle, P has a unique fixed point that solves
(1.2) and goes to zero as n goes to infinity. Therefore, the zero solution of (1.2) is
asymptotically stable.
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