Stability in discrete equations with variable delays

ERNEST YANKSON
Department of Mathematics and Statistics
University of Cape Coast
Ghana.
email: ernestoyank@yahoo.com

Abstract

In this paper we study the stability of the zero solution of difference equations with variable delays. In particular we consider the scalar delay equation $$
\Delta x(n)=-a(n) x(n-\tau(n))
$$

and its generalization

$$
\Delta x(n)=-\sum_{j=1}^{N} a_{j}(n) x\left(n-\tau_{j}(n)\right)
$$

Fixed point theorems are used in the analysis.
Key words: Fixed point; Contraction mapping; Asymptotic stability Mathematics subject classifications: 34K13,34C25, 34G20.

1 Introduction

Let \mathbb{R} denote the real numbers, $\mathbb{R}^{+}=[0, \infty), \mathbb{Z}$ the integers, \mathbb{Z}^{-}the negative integers, and $\mathbb{Z}^{+}=\{x \in \mathbb{Z} \mid x \geq 0\}$. In this paper we study the asymptotic stability of the zero solution of the scalar delay equation

$$
\begin{equation*}
\Delta x(n)=-a(n) x(n-\tau(n)) \tag{1.1}
\end{equation*}
$$

and its generalization

$$
\begin{equation*}
\Delta x(n)=-\sum_{j=1}^{N} a_{j}(n) x\left(n-\tau_{j}(n)\right) \tag{1.2}
\end{equation*}
$$

where $a, a_{j}: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ and $\tau, \tau_{j}: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$with $n-\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$.
For each n_{0}, define $m_{j}\left(n_{0}\right)=\inf \left\{s-\tau_{j}(s): s \geq n_{0}\right\}, m\left(n_{0}\right)=\min \left\{m_{j}\left(n_{0}\right): 1 \leq\right.$ $j \leq N\}$. Note that (1.2) becomes (1.1) for $N=1$.

Recently, in [11], Raffoul studied the stability of the zero solution of (1.1) when
$\tau(n)=r$. Our objective in this research is to generalize the stability results in [11] to (1.2) for variable $\tau_{j}(n)$'s. For more on stability using fixed point theory we refer to $[1],[7],[9],[11],[12]$ and for basic results on difference calculus we refer to [2] and [8]. We also refer to $[3],[4],[5],[6]$ and $[10]$ for other results on stability for difference equations.

Remark 1.1 In [7], the author and Islam showed that the zero solution of the equation

$$
x(n+1)=b(n) x(n)+a(n) x(n-\tau(n))
$$

is asymptotically stable with one of the assumptions being that

$$
\begin{equation*}
\prod_{s=0}^{n-1} b(s) \rightarrow 0 \text { as } n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

However, as pointed out in [11], condition (1.3) cannot hold for (1.2) since $b(n)=$ 1 , for all $n \in \mathbb{Z}$. The results we obtain in this paper overcome the requirement of (1.3).

Let $D\left(n_{0}\right)$ denote the set of bounded sequences $\psi:\left[m\left(n_{0}\right), n_{0}\right] \rightarrow \mathbb{R}$ with the maximum norm $\|. \mid\|$. Also, let $(B,\|\|$.$) be the Banach space of bounded sequences$ $\varphi:\left[m\left(n_{0}\right), \infty\right) \rightarrow \mathbb{R}$ with the maximum norm. Define the inverse of $n-\tau_{i}(n)$ by $g_{i}(n)$ if it exists and set

$$
Q(n)=\sum_{j=1}^{N} b\left(g_{j}(n)\right),
$$

where

$$
\sum_{j=1}^{N} b\left(g_{j}(n)\right)=1-\sum_{j=1}^{N} a\left(g_{j}(n)\right)
$$

For each $\left(n_{0}, \psi\right) \in \mathbb{Z}^{+} \times D\left(n_{0}\right)$, a solution of (1.2) through $\left(n_{0}, \psi\right)$ is a function $x:\left[m\left(n_{0}\right), n_{0}+\alpha\right) \rightarrow \mathbb{R}^{n}$ for some positive constant $\alpha>0$ such that $x(t)$ satisfies (1.2) on $\left[n_{0}, n_{0}+\alpha\right)$ and $x(n)=\psi(n)$ for $n \in\left[m\left(n_{0}\right), n_{0}\right]$. We denote such a solution by $x(n)=x\left(n, n_{0}, \psi\right)$. For a fixed n_{0}, we define

$$
\|\psi\|=\max \left\{|\psi(n)|: m\left(n_{0}\right) \leq n \leq n_{0}\right\} .
$$

2 Stability

In this section we obtain conditions for the zero solution of (1.2) to be asymptotically stable.

We begin by rewriting (1.2) as

$$
\begin{equation*}
\Delta x(n)=-\sum_{j=1}^{N} a_{j}\left(g_{j}(n)\right) x(n)+\Delta_{n} \sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1} a_{j}\left(g_{j}(s)\right) x(s) \tag{2.1}
\end{equation*}
$$

where Δ_{n} represents that the difference is with respect to n. If we let

$$
\sum_{j=1}^{N} b_{j}\left(g_{j}(n)\right)=1-\sum_{j=1}^{N} a_{j}\left(g_{j}(n)\right)
$$

then (2.1) is equivalent to

$$
\begin{equation*}
x(n+1)=\sum_{j=1}^{N} b_{j}\left(g_{j}(n)\right) x(n)+\Delta_{n} \sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1} a_{j}\left(g_{j}(s)\right) x(s) \tag{2.2}
\end{equation*}
$$

Lemma 2.1 Suppose that $Q(n) \neq 0$ for all $n \in \mathbb{Z}^{+}$and the inverse function $g_{j}(n)$ of $n-\tau_{j}(n)$ exists. Then $x(n)$ is a solution of (2.2) if and only if

$$
\begin{aligned}
x(n)= & \left(x\left(n_{0}\right)-\sum_{j=1}^{N} \sum_{s=n_{0}-\tau_{j}\left(n_{0}\right)}^{n_{0}-1} a_{j}\left(g_{j}(s)\right) x(s)\right) \prod_{s=n_{0}}^{n-1} Q(s)+\sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1} a_{j}\left(g_{j}(s)\right) x(s) \\
& -\sum_{s=n_{0}}^{n-1}\left([1-Q(s)] \prod_{k=s+1}^{n-1} Q(k) \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1} a_{j}\left(g_{j}(u)\right) x(u)\right), n \geq n_{0} .
\end{aligned}
$$

Proof. By the variation of parameters formula we obtain

$$
\begin{equation*}
x(n)=x\left(n_{0}\right) \prod_{s=n_{0}}^{n-1} Q(s)+\sum_{k=0}^{n-1}\left(\prod_{s=k}^{n-1} Q(s) \Delta_{k} \sum_{j=1}^{N} \sum_{s=k-\tau_{j}(k)}^{k-1} a_{j}\left(g_{j}(s)\right) x(s)\right) . \tag{2.3}
\end{equation*}
$$

Using the summation by parts formula we obtain

$$
\begin{align*}
& \sum_{k=0}^{n-1}\left(\prod_{s=k}^{n-1} Q(s) \Delta_{k} \sum_{j=1}^{N} \sum_{s=k-\tau_{j}(k)}^{k-1} a_{j}\left(g_{j}(s)\right) x(s)\right) \\
& =\sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1} a_{j}\left(g_{j}(s)\right) x(s) \\
& \quad-\prod_{s=n_{0}}^{n-1} Q(s) \sum_{j=1}^{N} \sum_{s=n_{0}-\tau_{j}\left(n_{0}\right)}^{n_{0}-1} a_{j}\left(g_{j}(s)\right) x(s) \\
& \quad-\sum_{s=n_{0}}^{n-1}\left([1-Q(s)] \prod_{k=s+1}^{n-1} Q(k) \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1} a_{j}\left(g_{j}(u)\right) x(u)\right) \tag{2.4}
\end{align*}
$$

Substituting (2.5) into (2.3) gives the desired result. This completes the proof of Lemma 2.1.

We next state and prove our main results.
Theorem 2.1 Suppose that the inverse function $g_{j}(n)$ of $n-\tau_{j}(n)$ exists, and assume there exists a constant $\alpha \in(0,1)$ such that

$$
\begin{align*}
& \sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1}\left|a_{j}\left(g_{j}(s)\right)\right|+ \\
& \sum_{s=n_{0}}^{n-1}\left(|[1-Q(s)]|\left|\prod_{k=s+1}^{n-1} Q(k)\right| \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1}\left|a_{j}\left(g_{j}(u)\right)\right|\right) \leq \alpha . \tag{2.5}
\end{align*}
$$

Moreover, assume that there exists a positive constant M such that

$$
\left|\prod_{s=n_{0}}^{n-1} Q(s)\right| \leq M
$$

Then the zero solution of (1.2) is stable.

Proof. Let $\epsilon>0$ be given. Choose $\delta>0$ such that

$$
(M+M \alpha) \delta+\alpha \epsilon \leq \epsilon
$$

Let $\psi \in D\left(n_{0}\right)$ such that $|\psi(n)| \leq \delta$. Define

$$
\mathbb{S}=\left\{\varphi \in B: \varphi(n)=\psi(n) \text { if } n \in\left[m\left(n_{0}\right), n_{0}\right],\|\varphi\| \leq \epsilon\right\} .
$$

Then $(\mathbb{S}, \||| |)$ is a complete metric space where, $\||.| |$ is the maximum norm.
Define the mapping $P: S \rightarrow S$ by

$$
(P \varphi)(n)=\psi(n) \text { for } n \in\left[m\left(n_{0}\right), n_{0}\right]
$$

and

$$
\begin{align*}
(P \varphi)(n) & =\left(\psi\left(n_{0}\right)-\sum_{j=1}^{N} \sum_{s=n_{0}-\tau_{j}\left(n_{0}\right)}^{n_{0}-1} a_{j}\left(g_{j}(s)\right) \psi(s)\right) \prod_{s=n_{0}}^{n-1} Q(s) \\
& +\sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1} a_{j}\left(g_{j}(s)\right) \varphi(s) \\
& -\sum_{s=n_{0}}^{n-1}\left([1-Q(s)] \prod_{k=s+1}^{n-1} Q(k) \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1} a_{j}\left(g_{j}(u)\right) \varphi(u)\right) . \tag{2.6}
\end{align*}
$$

Clearly, $\mathbb{P} \varphi$ is continuous. We first show that P maps from S to S. By (2.6)

$$
\begin{aligned}
|(P \varphi)(n)| \leq & M \delta+M \alpha \delta+\left\{\sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1} a_{j}\left(g_{j}(s)\right)\right. \\
& +\sum_{s=n_{0}}^{n-1}\left([1-Q(s)] \prod_{k=s+1}^{n-1} Q(k) \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1} a_{j}\left(g_{j}(u)\right) \varphi(u)\right\}\|\varphi\| \\
\leq & (M+M \alpha) \delta+\alpha \epsilon \\
\leq & \epsilon
\end{aligned}
$$

Thus P maps from S into itself. We next show that P is a contraction. Let $\zeta, \eta \in S$. Then

$$
\begin{aligned}
\mid(P \zeta)(t)- & (P \eta)(t) \mid \leq\left\{\sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1}\left|a_{j}\left(g_{j}(s)\right)\right|\right. \\
& \left.+\sum_{s=n_{0}}^{n-1}\left(|[1-Q(s)]|\left|\prod_{k=s+1}^{n-1} Q(k)\right| \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1}\left|a_{j}\left(g_{j}(u)\right)\right|\right)\right\}\|\zeta-\eta\| \\
\leq & \alpha\|\zeta-\eta\|
\end{aligned}
$$

This shows that P is a contraction. Thus, by the contraction mapping principle, P has a unique fixed point in S which solves (1.2) and for any $\varphi \in S,\|P \varphi\| \leq \epsilon$. This proves that the zero solution of (1.2) is stable.

Theorem 2.2 Assume that the hypotheses of Theorem 2.1 hold. Also assume that

$$
\begin{equation*}
\prod_{k=n_{0}}^{n-1} Q(k) \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.7}
\end{equation*}
$$

Then the zero solution of (1.2) is asymptotically stable.
Proof. We have already proved that the zero solution of (1.2) is stable. Let $\psi \in D\left(n_{0}\right)$ such that $|\psi(n)| \leq \delta$ and define
$\mathbb{S}^{*}=\left\{\varphi \in B: \varphi(n)=\psi(n)\right.$ if $n \in\left[m\left(n_{0}\right), n_{0}\right],\|\varphi\| \leq \epsilon$ and $\varphi(n) \rightarrow 0$, as $\left.n \rightarrow \infty\right\}$.
Define $P: S^{*} \rightarrow S^{*}$ by (2.6). From the proof of Theorem 2.2, the map P is a contraction and for every $\varphi \in S^{*},\|(P \varphi)\| \leq \epsilon$.

We next show that $(P \varphi)(n) \rightarrow 0$ as $n \rightarrow \infty$. The first term on the right side of (2.6) goes to zero because of condition (2.7). It is clear from (2.5) and the fact that $\varphi(n) \rightarrow 0$ as $n \rightarrow \infty$ that $\sum_{j=1}^{N} \sum_{s=n-\tau_{j}(n)}^{n-1}\left|a_{j}\left(g_{j}(s)\right)\right||\varphi(s)| \rightarrow 0$ as $n \rightarrow \infty$.

Now we show that the last term on the right side of (2.6) goes to zero as $n \rightarrow \infty$. Since $\varphi(n) \rightarrow 0$ and $n-\tau_{j}(n) \rightarrow \infty$ as $n \rightarrow \infty$, for each $\epsilon_{1}>0$, there exists a $N_{1}>n_{0}$ such that $s \geq N_{1}$ implies $\left|\varphi\left(s-\tau_{j}(s)\right)\right|<\epsilon_{1}$ for $j=1,2,3, \ldots, N$. Thus for $n \geq N_{1}$, the last term, I_{3} in (2.6) satisfies

$$
\begin{aligned}
\left|I_{3}\right|= & \left|\sum_{s=n_{0}}^{n-1}\left([1-Q(s)] \prod_{k=s+1}^{n-1} Q(k) \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1} a_{j}\left(g_{j}(u)\right) \varphi(u)\right)\right| \\
\leq & \sum_{s=n_{0}}^{N_{1}-1}\left(|[1-Q(s)]|\left|\prod_{k=s+1}^{n-1} Q(k)\right| \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1}\left|a_{j}\left(g_{j}(u)\right)\right||\varphi(u)|\right) \\
& +\sum_{s=N_{1}}^{n-1}\left(|[1-Q(s)]|\left|\prod_{k=s+1}^{n-1} Q(k)\right| \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1}\left|a_{j}\left(g_{j}(u)\right)\right||\varphi(u)|\right) \\
\leq & \max _{\sigma \geq m\left(n_{0}\right)}|\varphi(\sigma)| \sum_{s=n_{0}}^{N_{1}-1}\left(|[1-Q(s)]|\left|\prod_{k=s+1}^{n-1} Q(k)\right| \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1}\left|a_{j}\left(g_{j}(u)\right)\right|\right) \\
& +\epsilon_{1} \sum_{s=N_{1}}^{n-1}\left(|[1-Q(s)]|\left|\prod_{k=s+1}^{n-1} Q(k)\right| \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1}\left|a_{j}\left(g_{j}(u)\right)\right|\right)
\end{aligned}
$$

By (2.7), there exists $N_{2}>N_{1}$ such that $n \geq N_{2}$ implies

$$
\max _{\sigma \geq m\left(n_{0}\right)}|\varphi(\sigma)| \sum_{s=n_{0}}^{N_{1}-1}\left(|[1-Q(s)]|\left|\prod_{k=s+1}^{n-1} Q(k)\right| \sum_{j=1}^{N} \sum_{u=s-\tau_{j}(s)}^{s-1}\left|a_{j}\left(g_{j}(u)\right)\right|\right)<\epsilon_{1} .
$$

Apply (2.5) to obtain $\left|I_{3}\right| \leq \epsilon_{1}+\epsilon_{1} \alpha<2 \epsilon_{1}$. Thus, $I_{3} \rightarrow 0$ as $n \rightarrow \infty$. Hence $(P \varphi)(n) \rightarrow 0$ as $n \rightarrow \infty$, and so $P \varphi \in S^{*}$.

By the contraction mapping principle, P has a unique fixed point that solves (1.2) and goes to zero as n goes to infinity. Therefore, the zero solution of (1.2) is asymptotically stable.

References

[1] T. Burton and T. Furumochi, Fixed points and problems in stability theory, Dynam. Systems Appl. 10 (2001), 89-116.
[2] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1999.
[3] S. Elaydi, Periodicity and stability of linear Volterra difference systems, J. Math. Anal. Appl. 181 (1994), 483-492.
[4] S. Elaydi and S. Murakami, Uniform asymptotic stability in linear Volterra difference equations, J. Differerence Equ. Appl. 3 (1998), 203-218.
[5] P. Eloe, M. Islam and Y. Raffoul, Uniform asymptotic stability in nonlinear Volterra discrete systems, Special Issue on Advances in Difference Equations IV, Computers Math. Appl. 45 (2003), 1033-1039.
[6] M. Islam and Y. Raffoul, Exponential stability in nonlinear difference equations, J. Differerence Equ. Appl. 9 (2003), 819-825.
[7] M. Islam and E. Yankson, Boundedness and Stability in nonlinear delay difference equations employing fixed point theory, Electron. J. Qual. Theory Differ. Equ 26 (2005).
[8] W. Kelley and A. Peterson, Difference Equations: An Introduction with Applications, Harcourt Academic Press, San Diego, 2001.
[9] Y. Raffoul, Stability in neutral nonlinear differential equations with functional delays using fixed point theory, Mathematical and Computer Modelling 40 (2004), 691-700.
[10] Y. Raffoul, General theorems for stability and boundedness for nonlinear functional discrete systems, J. Math. Anal. Appl. 279 (2003), 639-650.
[11] Y. N. Raffoul, Stability and periodicity in discrete delay equations, J. Math. Anal. Appl. 324 (2006) 1356-1362.
[12] B. Zhang, Fixed points and stability in differential equations with variable delays, Nonlinear Analysis 63 (2005), 233-242.
(Received November 14, 2008)

EJQTDE, 2009 No. 8, p. 7

