RADIAL SOLUTIONS TO A SUPERLINEAR DIRICHLET PROBLEM USING BESSEL FUNCTIONS

JOSEPH IAIA* AND SRIDEVI PUDIPEDDI**

Abstract

We look for radial solutions of a superlinear problem in a ball. We show that for if n is a sufficiently large nonnegative integer, then there is a solution u which has exactly n interior zeros. In this paper we give an alternate proof to that which was given in [1].

1. Introduction

In this paper we look for solutions $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ of the partial differential equation

$$
\left\{\begin{array}{l}
\Delta u+f(u)=g(|x|) \text { for } x \in \Omega \tag{1.1}\\
u=0 \text { for } x \in \partial \Omega
\end{array}\right.
$$

for $N \geq 2$ and where Ω is the ball of radius $T>0$ centered at the origin in \mathbb{R}^{N}, Δ is the Laplacian operator, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and where $g \in \mathbb{C}^{1}[0, T]$.

Motivation: A. Castro and A. Kurepa proved existence of solutions of (1.1) for a wide variety of nonlinearities, f. See [1]. In this paper we give an alternate and, in our estimation, a somewhat easier proof of this result by approximating solutions of (1.1) with appropriate linear equations. In a groundbreaking paper in 1979, B. Gidas, W. Ni, and L. Nirenberg [2] proved that if Ω is a ball then all positive solutions of

$$
\begin{gathered}
\Delta u+f(u)=0 \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

are spherically symmetric. K. McLeod, W.C. Troy and F.B. Weissler studied the radial solutions of

$$
\begin{gathered}
\Delta u+f(u)=0 \text { in } \Omega \\
\lim _{|x| \rightarrow \infty} u(x)=0
\end{gathered}
$$

for $\Omega \in \mathbb{R}^{N}$ in [3].
We assume the following hypotheses:
(H1) f is a locally Lipschitz continuous function, f is increasing for large $|u|$ and $f(0)=0$.
(H2) $\lim _{|u| \rightarrow \infty} \frac{f(u)}{u}=\infty$ (that is, f is superlinear).
Let $F(u)=\int_{0}^{u} f(s) d s$ and note that from (H2) it follows that

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \frac{F(u)}{u^{2}}=\infty \tag{1.2}
\end{equation*}
$$

(H3) There exists a k with $0<k \leq 1$, such that

$$
\lim _{u \rightarrow \infty}\left(\frac{u}{f(u)}\right)^{\frac{N}{2}}\left(N F(k u)-\frac{(N-2)}{2} u f(u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u|\right)=\infty
$$

where $\|\|$ is the supremum norm on $[0, T]$.
(H3*) There exists a k with $0<k \leq 1$, such that

$$
\lim _{u \rightarrow-\infty}\left(\frac{u}{f(u)}\right)^{\frac{N}{2}}\left(N F(k u)-\frac{(N-2)}{2} u f(u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u|\right)=\infty .
$$

EJQTDE, 2008 No. 38, p. 1
(H4) There exists an $\mathbf{M}>0$ such that

$$
N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2}| | g \||u|-T| | g^{\prime}| ||u|>-M
$$

for all u.
We assume that $u(x)=u(|x|)$ and let $r=|x|$. In this case (1.1) becomes the nonlinear ordinary differential equation

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+f(u)=g(r) \text { for } 0<r<T \tag{1.3}\\
u^{\prime}(0)=0, u(T)=0 . \tag{1.4}
\end{gather*}
$$

Main Theorem: If (H1)-(H4) are satisfied then (1.1) has infinitely many radially symmetric solutions with $u(0)>0$. If in place of $(\mathbf{H} 3)$ we have $\left(\mathbf{H} \mathbf{3}^{*}\right)$ then (1.1) has infinitely many radially symmetric solutions with $u(0)<0$.

2. Preliminaries

The technique used to solve (1.3) - (1.4) is the shooting method. That is, we first look at the initial value problem

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+f(u)=g(r) \text { for } 0<r<T \tag{2.1}\\
u(0)=d>0, u^{\prime}(0)=0 \tag{2.2}
\end{gather*}
$$

By varying d appropriately, we attempt to find a d such that $u(r, d)$ has exactly n zeros on $[0, T)$ and $u(T)=0$.

Multiplying (2.1) by r^{N-1} and integrating on $(0, r)$ gives

$$
\begin{equation*}
u^{\prime}=\frac{-1}{r^{N-1}} \int_{0}^{r} t^{N-1}[f(u)-g(t)] d t \tag{2.3}
\end{equation*}
$$

Integrating (2.3) and applying the initial conditions we get

$$
\begin{equation*}
u(r)=d-\int_{0}^{r} \frac{1}{s^{N-1}}\left(\int_{0}^{s} t^{N-1}[f(u)-g(t)] d t\right) d s \tag{2.4}
\end{equation*}
$$

Let $\phi(u)$ be equal to the right hand side of (2.4). It is straightforward to show that $\phi(u)$ is a contraction mapping on $\mathcal{C}[0, \epsilon]$, the set of continuous functions with supremum norm on $[0, \epsilon]$, for some $\epsilon>0$. Then by the contraction mapping principle there exists a $u \in \mathcal{C}[0, \epsilon]$ such that $\phi(u)=u$. Thus, u is continuous solution of (2.4). Then by (H1), (2.2), and (2.3), we see that u^{\prime} is continuous on $[0, \epsilon]$. From (H1) and (2.3) it follows that $\frac{u^{\prime}}{r}$ is bounded, that $\lim _{r \rightarrow 0^{+}} \frac{u^{\prime}}{r}$ exists, and so that $\frac{u^{\prime}}{r}$ is continuous on $[0, \epsilon]$. Then it follows from (2.1) that $u^{\prime \prime}$ is continuous on $[0, \epsilon]$.

In order to show that $u \in \mathcal{C}^{2}[0, T]$, we define the energy equation of (2.1)-(2.2) as

$$
\begin{equation*}
E=\frac{u^{\prime 2}}{2}+F(u) \tag{2.5}
\end{equation*}
$$

Note that from (1.2) there exists a $J>0$ such that

$$
\begin{equation*}
F(u) \geq-J \tag{2.6}
\end{equation*}
$$

for all $u \in \mathbb{R}$.
From (2.5) and (2.6) we see that

$$
\begin{equation*}
u^{\prime 2} \leq 2(E+J) \tag{2.7}
\end{equation*}
$$

EJQTDE, 2008 No. 38, p. 2

Using (2.1) we see that

$$
\begin{aligned}
E^{\prime} & =-\frac{N-1}{r} u^{\prime 2}-g(r) u^{\prime} \\
& \leq\|g\| u^{\prime} \mid \quad(\text { defined in }(\mathbf{H} 3)) \\
& \leq\|g\| \sqrt{2} \sqrt{E+J} \quad(\text { by }(2.7))
\end{aligned}
$$

Dividing by $\sqrt{E+J}$ and integrating gives

$$
\frac{1}{\sqrt{2}}\left|u^{\prime}\right| \leq \sqrt{E(t)+J} \leq \sqrt{F(d)+J}+\|g\| t \leq \sqrt{F(d)+J}+\|g\| T
$$

Thus, from (2.7) it follows that $\left|u^{\prime}\right|$ is uniformly bounded wherever it is defined and since $u(0)=d$, thus $|u|$ is uniformly bounded wherever it is defined. It follows from this that u and u^{\prime} are defined on all of $[0, T]$ and from (2.1) it then follows that $u \in \mathcal{C}^{2}[0, T]$.

The next several arguments presented were essentially originally proved in [1] and are included here for completeness.

Since $f(u)>0$ for sufficiently large $u>0$ (by (H2)), we see from (2.3) that $u^{\prime}<0$ on ($0, r$) for small $r>0$ if d is sufficiently large. Let k be the number given by (H3). Now for sufficiently large d it follows that $u^{\prime}<0$ on $\left(0, r_{k d}\right)$ where $r_{k d}$ is the smallest positive value of r such that $u\left(r_{k d}\right)=k d$.

Remark 1: First, we want to find a lower bound for $r_{k d}$. Since f is increasing for large u (by (H1)), we see from (2.3) that

$$
\begin{aligned}
-r^{N-1} u^{\prime} & \leq[f(d)+\|g\|] \int_{0}^{r} t^{N-1} d t \\
& =[f(d)+\|g\|] \frac{r^{N}}{N}
\end{aligned}
$$

Dividing by r^{N-1} and integrating on $\left[0, r_{k d}\right]$ we see that

$$
(1-k) d=\int_{0}^{r_{k d}}-u^{\prime} d t \leq \int_{0}^{r_{k d}} \frac{t[f(d)+\|g\|]}{N} d t=\frac{t[f(d)+\|g\|]}{2 N} r_{k d}^{2}
$$

Thus,

$$
r_{k d} \geq \sqrt{\frac{2 N(1-k) d}{f(d)+\|g\|}}
$$

For sufficiently large d we have $\|g\| \leq f(d)$ (by (H2)), thus we obtain for sufficiently large d

$$
r_{k d} \geq \sqrt{\frac{2 N(1-k) d}{2 f(d)}}
$$

So,

$$
\begin{equation*}
r_{k d} \geq \sqrt{\frac{N(1-k) d}{f(d)}} \tag{2.8}
\end{equation*}
$$

for sufficiently large d.
Remark 2: Because of its appearance in Pohozaev's identity we will see that it will be important to find a lower bound on

$$
\begin{equation*}
\int_{0}^{r_{k d}} t^{N-1}\left(N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2} g(t) u-t g^{\prime}(t) u\right) d t \tag{2.9}
\end{equation*}
$$

EJQTDE, 2008 No. 38, p. 3

By hypothesis (H2), $F^{\prime}=f>0$ for large u. Therefore, F is increasing for large u. Since for large d, u is decreasing for $0 \leq t \leq r_{k d}$, and $k d \leq u(t) \leq d$, this implies $F(k d) \leq F(u) \leq F(d)$. So on $\left[0, r_{k d}\right]$ we have

$$
\begin{equation*}
\int_{0}^{r_{k d}} t^{N-1} N F(u) d t \geq F(k d) r_{k d}^{N} \text { for large } d \tag{2.10}
\end{equation*}
$$

then by hypothesis (H1), f is increasing for large u and using this we have

$$
\int_{0}^{r_{k d}} t^{N-1} \frac{N-2}{2} u f(u) d t \leq \frac{N-2}{2 N} d f(d) r_{k d}^{N} \quad \text { for large } d
$$

so,

$$
\begin{equation*}
-\int_{0}^{r_{k d}} t^{N-1} \frac{N-2}{2} u f(u) d t \geq-\frac{N-2}{2 N} d f(d) r_{k d}^{N} \tag{2.11}
\end{equation*}
$$

Now using the estimates in (2.8), (2.10), (2.11) and using the fact that g and g^{\prime} are bounded, we estimate (2.9) as follows:

$$
\begin{gather*}
\int_{0}^{r_{k d}} t^{N-1}\left(N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2} g(t) u-t g^{\prime}(t) u\right) d t \geq\left(F(k d)-\frac{N-2}{2 N} d f(d)-\frac{N+2}{2 N}\|g\| d-\frac{1}{N} T\left\|g^{\prime}\right\| d\right) r_{k d}^{N} \tag{2.12}\\
\geq\left(N F(k d)-\frac{N-2}{2} d f(d)-\frac{N+2}{2}\|g\| d-T\left\|g^{\prime}\right\| d\right)\left(\frac{1}{N}\left(\sqrt{\frac{N(1-k) d}{f(d)}}\right)^{N}\right) \\
=C(N, k)\left(N F(k d)-\frac{N-2}{2} d f(d)-\frac{N+2}{2}\|g\| d-T\left\|g^{\prime}\right\| d\right)\left(\frac{d}{f(d)}\right)^{\frac{N}{2}}
\end{gather*}
$$

where $C(N, k)=\frac{1}{N}[N(1-k)]^{\frac{N}{2}}$.
Lemma 2.1. If (H1) - (H4) are satisfied, then

$$
\begin{equation*}
\lim _{d \rightarrow \infty} \inf _{[0, T]} E(r, d)=\infty \tag{2.13}
\end{equation*}
$$

Proof. Let us suppose $0 \leq r \leq T$. Consider Pohozaev's identity which states

$$
\left[r^{N} E-r^{N} g(r) u+\frac{N-2}{2} r^{N-1} u u^{\prime}\right]^{\prime}=r^{N-1}\left[N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2} g(r) u-r g^{\prime}(r) u\right]
$$

This can be verified by simply differentiating and then using (2.1).
Integrating Pohozaev's identity on $[0, r]$, and using (H4) and (2.12) gives

$$
\begin{gather*}
r^{N} E(r, d)-r^{N} g(r) u+\frac{N-2}{2} r^{N-1} u u^{\prime}=\int_{0}^{r} t^{N-1}\left[N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2} g(t) u-t g^{\prime}(t) u\right] d t \\
=\int_{0}^{r_{k d}} t^{N-1}\left[N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2} g(t) u-t g^{\prime}(t) u\right] d t \\
\quad+\int_{r_{k d}}^{r} t^{N-1}\left[N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2} g(t) u-t g^{\prime}(t) u\right] d t \\
\geq C(N, k)\left(\frac{d}{f(d)}\right)^{\frac{N}{2}}\left[N F(k d)-\frac{N-2}{2} d f(d)-\frac{N+2}{2}\|g\| d-T\left\|g^{\prime}\right\| d\right]-M\left(\frac{r^{N}-r_{k d}^{N}}{N}\right) \tag{2.14}
\end{gather*}
$$

Ignoring the last term on the right hand side we get
$r^{N} E(r, d)-r^{N} g(r) u+\frac{N-2}{2} r^{N-1} u u^{\prime} \geq C(N, k)\left(\frac{d}{f(d)}\right)^{\frac{N}{2}}\left[N F(k d)-\frac{N-2}{2} d f(d)-\frac{N+2}{2}\|g\| d-T\left\|g^{\prime}\right\| d\right]-\frac{M T^{N}}{N}$
EJQTDE, 2008 No. 38, p. 4

Now let us estimate $u u^{\prime}$.
First note from (1.2) that there exists a B such that if $|u| \geq B$ then $\frac{u^{2}}{F(u)} \leq 1$. That is if $|u| \geq B$ then $u^{2} \leq F(u) \leq F(u)+J$. On other hand if $|u| \leq B$ then $u^{2} \leq B^{2}$. And since $F(u)+J \geq 0($ by $(2.6))$ we see that for all u we have

$$
\begin{equation*}
u^{2} \leq F(u)+J+B^{2} \tag{2.15}
\end{equation*}
$$

Using Young's inequality, (2.5), and (2.15) gives us the following:

$$
\begin{aligned}
u u^{\prime} & \leq \frac{1}{2} u^{2}+\frac{1}{2} u^{\prime 2} \\
& \leq\left(F(u)+J+B^{2}\right)+\frac{1}{2} u^{\prime 2} \\
& =\left(\frac{1}{2} u^{\prime 2}+F(u)\right)+J+B^{2} \\
& =E(r, d)+J+B^{2} .
\end{aligned}
$$

Substituting this into the left hand side of (2.14), rewriting, and estimating we see that

$$
\begin{aligned}
r^{N} E-r^{N} g(r) u+\frac{N-2}{2} r^{N-1} u u^{\prime} & \leq T^{N} E+T^{N}\|g\||u|+\frac{N-2}{2} T^{N-1}\left|u u^{\prime}\right| \\
& \leq T^{N} E+T^{N}\|g\|^{2}+T^{N} u^{2}+\frac{N-2}{2} T^{N-1}\left[E+J+B^{2}\right] \\
& \leq T^{N} E+T^{N}\|g\|^{2}+T^{N}\left[E+J+B^{2}\right]+\frac{N-2}{2} T^{N-1}\left[E+J+B^{2}\right] \\
& =\left(2 T^{N}+\frac{N-2}{2} T^{N-1}\right) E+T^{N-1}\left(\left(T+\frac{N-2}{2}\right)\left(J+B^{2}\right)+\|g\|^{2}\right) \\
& =C_{1} E+C_{2}
\end{aligned}
$$

where $C_{1}>0$ and $C_{2}>0$ depend only on T, N, J, B and $\|g\|$.
Thus, combining the above with (2.14) gives:

$$
\begin{gathered}
C(N, k)\left(\frac{d}{f(d)}\right)^{\frac{N}{2}}\left[N F(k d)-\frac{N-2}{2} d f(d)-\frac{N+2}{2}\|g\| d-T\left\|g^{\prime}\right\| d\right]-\frac{M T^{N}}{N} \\
\leq C_{1} E+C_{2}
\end{gathered}
$$

Thus,

$$
C_{1} E \geq C(N, k)\left(\frac{d}{f(d)}\right)^{\frac{N}{2}}\left[N F(k d)-\frac{N-2}{2} d f(d)-\frac{N+2}{2}\|g\| d-T\left\|g^{\prime}\right\| d\right]-C_{3}
$$

where C_{3} depends on $T, N, J, B,\|g\|$ and M.
By assumption the right hand side of the above inequality goes to infinity as $d \rightarrow \infty$. Therefore,

$$
\lim _{d \rightarrow \infty} \inf _{[0, T]} E(r, d)=\infty
$$

Lemma 2.2. If d is sufficiently large and $u\left(r_{0}\right)=0$, then $u^{\prime}\left(r_{0}\right) \neq 0$.
Proof. By Lemma 2.1, if d is sufficiently large then $\inf _{[0, T]} E(r, d)>0$. So if $u\left(r_{0}\right)=0$ then we have $\frac{1}{2} u^{\prime}\left(r_{0}\right)^{2}=E\left(r_{0}\right) \geq \inf _{[0, T]} E(r, d)>0$.

Lemma 2.3. For d sufficiently large u has a finite number of zeros on $[0, T]$.
Proof. Suppose there exists $0<z_{1}<z_{2}<\ldots<z_{n}<\ldots<T$ and $u\left(z_{i}\right)=0$. Then by the mean value theorem there exists $m_{1}<m_{2}<\ldots$ such that $u^{\prime}\left(m_{k}\right)=0$ and where $z_{k}<m_{k}<z_{k+1}<T$. So there exists $z=\lim _{n \rightarrow \infty} z_{n}$ and by continuity $u(z)=0$. Also, $\lim _{k \rightarrow \infty} m_{k}=z$ and $u^{\prime}(z)=0$ but by the above Lemma 2.2, this cannot happen for sufficiently large d.

3. Finding zeros

Now we want to show that if d is sufficiently large then $u(r, d)$ will have lots of zeros on $[0, T]$. From (1.2) we know that $F(u) \rightarrow \infty$ as $|u| \rightarrow \infty$. Therefore, since $\lim _{d \rightarrow \infty} \inf _{[0, T]} E(r, d)=\infty$ (by Lemma 2.1), and since $F(u)$ is increasing for large u and decreasing when u is a large negative number, then for sufficiently large d there are exactly two solutions of $F(u)=\frac{1}{2} \inf _{[0, T]} E(r, d)$ which we denote as $h_{2}(d)<0<h_{1}(d)$. For $d>0$ sufficiently large we see from (H2) that $u^{\prime \prime}(0)=\frac{-f(d)+g(0)}{N}<0$ and $u^{\prime}(0)=0$ so u is initially decreasing on $(0, r)$. Note that $h_{1}(d) \rightarrow \infty$ as $d \rightarrow \infty$. From (2.3) we see that u will be decreasing as long as $f(u) \geq\|g\|$. So we see that there is a smallest $r>0, r_{1}(d)$, such that $u\left(r_{1}(d)\right)=h_{1}(d)$ and $d \geq u>h_{1}(d)$ on $\left[0, r_{1}(d)\right)$.

Let

$$
\begin{equation*}
C(d)=\frac{1}{2} \min _{r \in\left[0, r_{1}(d)\right]} \frac{f(u)}{u}=\frac{1}{2} \min _{u \in\left[h_{1}(d), d\right]} \frac{f(u)}{u} \tag{3.1}
\end{equation*}
$$

Then by (H2) we see that $C(d) \rightarrow \infty$ as $d \rightarrow \infty$.
Lemma 3.1. $r_{1}(d) \rightarrow 0$ as $d \rightarrow \infty$.
Proof. To show this we compare

$$
\begin{equation*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+\frac{f(u)}{u} u=g(r) \tag{3.2}
\end{equation*}
$$

with initial conditions $u(0)=d>0$ and $u^{\prime}(0)=0$ with

$$
\begin{equation*}
v^{\prime \prime}+\frac{N-1}{r} v^{\prime}+C(d) v=0 \tag{3.3}
\end{equation*}
$$

with initial conditions $v(0)=d$ and $v^{\prime}(0)=0$. Note from (3.1) that

$$
\begin{equation*}
\frac{f(u)}{u} \geq 2 C(d)>C(d) \quad \text { on }\left[0, r_{1}(d)\right] \tag{3.4}
\end{equation*}
$$

Claim: $u<v$ on $\left(0, r_{1}(d)\right]$ for sufficiently large d.
Proof of the Claim: Since

$$
\begin{aligned}
u(0) & =d=v(0) \\
u^{\prime}(0) & =0=v^{\prime}(0)
\end{aligned}
$$

then for large d we see from (3.4) that

$$
u^{\prime \prime}(0)=\frac{-f(d)}{N}+\frac{g(0)}{N}<-\frac{C(d)}{N} d=v^{\prime \prime}(0)
$$

Thus, $u<v$ on $(0, \epsilon)$ for some $\epsilon>0$.
Multiplying (3.2) by $r^{N-1} v,(3.3)$ by $r^{N-1} u$, and then taking the difference of the resultant equations gives

$$
\left(r^{N-1}\left(u^{\prime} v-u v^{\prime}\right)\right)^{\prime}+r^{N-1} u v\left(\frac{f(u)}{u}-\frac{g(r)}{u}-C(d)\right)=0
$$

EJQTDE, 2008 No. 38, p. 6

Since g is bounded, for sufficiently large d we see from (3.4) that

$$
\begin{aligned}
\frac{f(u)}{u}-\frac{g(r)}{u}-C(d) & \geq 2 C(d)-\frac{\|g\|}{u}-C(d) \quad \text { on }\left[0, r_{1}(d)\right] \\
& =C(d)-\frac{\|g\|}{u} \\
& \geq C(d)-\frac{\|g\|}{h_{1}(d)} \\
& >0 \quad\left(\text { since } C(d) \rightarrow \infty \text { as } d \rightarrow \infty \text { and } h_{1}(d) \rightarrow \infty \text { as } d \rightarrow \infty\right) .
\end{aligned}
$$

Now integrating this from 0 to r where $0<r \leq r_{1}(d)$ and using $u(0)=v(0)=d$ and $u^{\prime}(0)=v^{\prime}(0)=0$ gives

$$
u^{\prime}(r) v(r)-v^{\prime}(r) u(r)<0 \quad \text { on }\left(0, r_{1}(d)\right] .
$$

Suppose now there is a first r_{0} with $0<r_{0} \leq r_{1}(d)$ such that $0<u\left(r_{0}\right)=v\left(r_{0}\right)$ and $u<v$ on $\left(0, r_{0}\right)$. Then we see from the above inequality that $u^{\prime}\left(r_{0}\right)<v^{\prime}\left(r_{0}\right)$. On other hand, $u(r)<v(r)$ on $\left(0, r_{0}\right)$ and $u\left(r_{0}\right)=v\left(r_{0}\right)$. So

$$
u(r)-u\left(r_{0}\right)<v(r)-v\left(r_{0}\right) \quad \text { on }\left(0, r_{1}(d)\right] .
$$

Thus, for $r<r_{0}$ we have

$$
\lim _{r \rightarrow r_{0}^{-}} \frac{u(r)-u\left(r_{0}\right)}{r-r_{0}} \geq \lim _{r \rightarrow r_{0}^{-}} \frac{v(r)-v\left(r_{0}\right)}{r-r_{0}}
$$

which gives

$$
u^{\prime}\left(r_{0}\right) \geq v^{\prime}\left(r_{0}\right)
$$

This is a contradiction since $u^{\prime}\left(r_{0}\right)<v^{\prime}\left(r_{0}\right)$. Hence this proves the claim.
Now let $z(r)=(r / \sqrt{C(d)})^{\frac{N-2}{2}} v(r / \sqrt{C(d)})$. Then

$$
\begin{equation*}
z^{\prime \prime}+\frac{z^{\prime}}{r}+\left(1-\frac{\left(\frac{N-2}{2}\right)^{2}}{r^{2}}\right) z=0 \tag{3.5}
\end{equation*}
$$

The above equation is Bessel's equation of order $\frac{N-2}{2}$. Thus, $z(r)=A_{1} J_{\frac{N-2}{2}}(r)+A_{2} Y_{\frac{N-2}{2}}(r)$ for constants A_{1} and A_{2} and where $J_{\frac{N-2}{2}}$ is the Bessel function of order $\frac{N-2}{2}$ which is bounded at $r=0$ and $Y_{\frac{N-2}{2}}$ is unbounded at $r=0$. Since z is bounded at $r=0$ and $Y_{\frac{N-2}{2}}$ is not, it must be that $z(r)=A_{1} J_{\frac{N-2}{2}}(r)$, and A_{1} is a positive constant.

Denoting $\beta_{\frac{N-2}{2}, 1}$ as the first positive zero of $J_{\frac{N-2}{2}}(r)$, we see that the first positive zero of v is $\frac{\beta_{\frac{N-2}{}, 1}^{2}}{\sqrt{C(d)}}$ and since $u<v$ on $\left[0, r_{1}(d)\right]$ (by the Claim) we see that

$$
r_{1}(d)<\frac{\beta_{\frac{N-2}{2}, 1}^{2}}{\sqrt{C(d)}}
$$

Since $C(d) \rightarrow \infty$ as $d \rightarrow \infty$ (as mentioned after (3.1)) it then follows that $\lim _{d \rightarrow \infty} r_{1}(d)=0$.
Lemma 3.2. For large d, u has a first positive zero, $z_{1}(d)$, and $z_{1}(d) \rightarrow 0$ as $d \rightarrow \infty$.
Proof. First we show that u has a zero. We prove this by contradiction. Suppose $u>0$ on $[0, T]$ and consider $r>r_{1}(d)$. Then $0<u<u\left(r_{1}(d)\right)=h_{1}(d)$ so $F(u)<F\left(h_{1}(d)\right)$. Also since $F\left(h_{1}(d)\right)=$ $\frac{1}{2} \inf _{[0, T]} E(r, d)$ we obtain

$$
\frac{u^{\prime 2}}{2}+F\left(h_{1}(d)\right)>\frac{u^{\prime 2}}{2}+F(u) \geq \inf _{[0, T]} E(r, d)=2 F\left(h_{1}(d)\right)
$$

EJQTDE, 2008 No. 38, p. 7
for $r>r_{1}(d)$.
Thus,

$$
u^{\prime 2} \geq 2 F\left(h_{1}(d)\right) \text { for } r>r_{1}(d)
$$

and thus

$$
-\int_{r_{1}(d)}^{r} u^{\prime}(t) d t \geq \int_{r_{1}(d)}^{r} \sqrt{2 F\left(h_{1}(d)\right)} d t
$$

and since u is decreasing and $u\left(r_{1}(d)\right)=h_{1}(d)$ this gives

$$
\begin{equation*}
h_{1}(d)-u(r)=u\left(r_{1}(d)\right)-u(r) \geq \sqrt{2 F\left(h_{1}(d)\right)}\left(r-r_{1}(d)\right) \tag{3.6}
\end{equation*}
$$

so,

$$
h_{1}(d)-\sqrt{2 F\left(h_{1}(d)\right)}\left(r-r_{1}(d)\right) \geq u(r)>0 .
$$

Thus,

$$
\begin{equation*}
\frac{h_{1}(d)}{\sqrt{2 F\left(h_{1}(d)\right)}} \geq r-r_{1}(d) \tag{3.7}
\end{equation*}
$$

Evaluating at $r=T$ gives

$$
T-r_{1}(d) \leq \frac{h_{1}(d)}{\sqrt{2 F\left(h_{1}(d)\right)}}
$$

for large d.
Since $h_{1}(d) \rightarrow \infty$ as $d \rightarrow \infty$, taking the limit of the above, using Lemma 3.1 and (1.2) we see that

$$
0<T=\lim _{d \rightarrow \infty}\left[T-r_{1}(d)\right] \leq \lim _{d \rightarrow \infty} \frac{h_{1}(d)}{\sqrt{2 F\left(h_{1}(d)\right)}}=0
$$

This is impossible. Thus u has a first zero, $z_{1}(d)$. Then repeating the above argument on $\left[0, z_{1}(d)\right]$ and letting $r=z_{1}(d)$ in (3.7) we get

$$
0 \leq z_{1}(d)-r_{1}(d) \leq \frac{h_{1}(d)}{\sqrt{2 F\left(h_{1}(d)\right)}} \rightarrow 0
$$

as $d \rightarrow \infty$. Also, since $r_{1}(d) \rightarrow 0$ as $d \rightarrow \infty$ (by Lemma 3.1) we see that $z_{1}(d) \rightarrow 0$ as $d \rightarrow \infty$.
We next show for sufficiently large d that u attains the value $h_{2}(d)$ at some $r_{2}(d)$ where $z_{1}(d)<$ $r_{2}(d)<T$. So we suppose $u^{\prime}<0$ on a maximal interval $\left(z_{1}(d), r\right)$. Here $h_{2}(d)<u<0$ and this implies $F(u) \leq F\left(h_{2}(d)\right)$ for sufficiently large d. Then as in the beginning of the proof of Lemma 3.2

$$
\frac{1}{2} u^{\prime 2}+F\left(h_{2}(d)\right) \geq \frac{1}{2} u^{\prime 2}+F(u) \geq \inf _{[0, T]} E(r, d)=2 F\left(h_{2}(d)\right)
$$

so,

$$
u^{\prime 2} \geq 2 F\left(h_{2}(d)\right) \text { on }\left(z_{1}(d), r\right)
$$

Then

$$
\int_{z_{1}(d)}^{r}-u^{\prime} d t=\int_{z_{1}(d)}^{r}\left|u^{\prime}\right| d t \geq \int_{z_{1}(d)}^{r} \sqrt{2 F\left(h_{2}(d)\right)} d t
$$

and since $u\left(z_{1}(d)\right)=0$ this leads to

$$
-u(r) \geq \sqrt{2 F\left(h_{2}(d)\right)}\left(r-z_{1}(d)\right)
$$

and therefore

$$
\begin{equation*}
u(r) \leq-\sqrt{2} \sqrt{F\left(h_{2}(d)\right)}\left(r-z_{1}(d)\right) \tag{3.8}
\end{equation*}
$$

Now suppose by the way of contradiction that $u>h_{2}(d)$ on $\left(z_{1}(d), T\right)$. Then from (3.8) we see that

$$
h_{2}(d) \leq u(r) \leq-\sqrt{2} \sqrt{F\left(h_{2}(d)\right)}\left(r-z_{1}(d)\right)
$$

EJQTDE, 2008 No. 38, p. 8

$$
-h_{2}(d) \geq \sqrt{2} \sqrt{F\left(h_{2}(d)\right)}\left(r-z_{1}(d)\right)
$$

Evaluating this at $r=T$ gives

$$
T-z_{1}(d) \leq \frac{-h_{2}(d)}{\sqrt{2} \sqrt{F\left(h_{2}(d)\right)}}
$$

and now taking the limit, using Lemma 3.2, and (1.2) we see that

$$
0<T=\lim _{d \rightarrow \infty}\left[T-z_{1}(d)\right] \leq \lim _{d \rightarrow \infty} \frac{-h_{2}(d)}{\sqrt{2} \sqrt{F\left(h_{2}(d)\right)}}=0
$$

And again this is impossible. Therefore, there exists a smallest value of $r, r_{2}(d)$, such that $z_{1}(d)<$ $r_{2}(d)<T$ with $u\left(r_{2}(d)\right)=h_{2}(d)$ and $u>h_{2}(d)$ on [0, $\left.r_{2}(d)\right)$. Now evaluating (3.8) at $r=r_{2}(d)$ and using that $u\left(r_{2}(d)\right)=h_{2}(d)$ we obtain

$$
h_{2}(d)=u\left(r_{2}(d)\right) \leq-\sqrt{2} \sqrt{F\left(h_{2}(d)\right)}\left(r_{2}(d)-z_{1}(d)\right)
$$

now taking the limit as $d \rightarrow \infty$ and (1.2) gives

$$
\lim _{d \rightarrow \infty} \sqrt{2}\left[r_{2}(d)-z_{1}(d)\right] \leq \lim _{d \rightarrow \infty} \frac{-h_{2}(d)}{\sqrt{F\left(h_{2}(d)\right)}}=0
$$

Hence $r_{2}(d)-z_{1}(d) \rightarrow 0$ as $d \rightarrow \infty$ and since $z_{1}(d) \rightarrow 0$ as $d \rightarrow \infty$ (from Lemma 3.2) it follows that

$$
\begin{equation*}
r_{2}(d) \rightarrow 0 \text { as } d \rightarrow \infty \tag{3.9}
\end{equation*}
$$

We next want to show that u has a minimum on $\left(r_{2}(d), T\right)$. Suppose again by contradiction that u is decreasing on $\left(r_{2}(d), T\right)$. We want to show that there exists an extremum of u at r where $r>r_{2}(d)$.

Let $C(d)=\frac{1}{2} \min _{\left(-\infty, h_{2}(d)\right]} \frac{f(u)}{u}$. Note that $C(d) \rightarrow \infty$ as $d \rightarrow \infty$ by (H2). Now as in the proof of Lemma 3.1 we compare

$$
\begin{equation*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+\frac{f(u)}{u} u=g(r) \tag{3.10}
\end{equation*}
$$

with

$$
\begin{equation*}
v^{\prime \prime}+\frac{N-1}{r} v^{\prime}+C(d) v=0 \tag{3.11}
\end{equation*}
$$

with initial conditions $v\left(r_{2}(d)\right)=u\left(r_{2}(d)\right)$ and $v^{\prime}\left(r_{2}(d)\right)=u^{\prime}\left(r_{2}(d)\right)$. With an argument similar to the Claim in Lemma 3.1 we can show that $u>v$ on $\left(r_{2}(d), T\right)$ for sufficiently large d. Let $z(r)=$ $(r / \sqrt{C(d)})^{\frac{N-2}{2}} v(r / \sqrt{C(d)})$. Then again as earlier z solves Bessel's equation

$$
\begin{equation*}
z^{\prime \prime}+\frac{z^{\prime}}{r}+\left(1-\frac{\left(\frac{N-2}{2}\right)^{2}}{r^{2}}\right) z=0 \tag{3.12}
\end{equation*}
$$

of order $\frac{N-2}{2}$.
Now it is a well known fact about Bessel functions (see [4], Page 165, Theorem C) that there exists a constant K such that every interval of length K has at least one zero of $z(r)$. This implies that every interval of length $\frac{K}{\sqrt{C(d)}}$ has a zero of v. Thus for large d, we see that v must have a zero on $\left(r_{2}(d), T\right)$. And since $u>v$ on $\left(r_{2}(d), T\right)$ we see that u gets positive which contradicts that u is decreasing on $\left(r_{2}(d), T\right)$. Thus we see that there exists an $m_{1}(d)$ with $r_{2}(d)<m_{1}(d)<T$ such that u decreases on $\left(r_{2}(d), m_{1}(d)\right)$ and $m_{1}(d)$ is a local minimum of u. Also we see that

$$
m_{1}(d)-r_{2}(d) \leq \frac{K}{\sqrt{C(d)}} \rightarrow 0
$$

EJQTDE, 2008 No. 38, p. 9
as $d \rightarrow \infty$. And since $r_{2}(d) \rightarrow 0$ as $d \rightarrow \infty$ (by (3.9)) we see that $m_{1}(d) \rightarrow 0$ as $d \rightarrow \infty$. Also, $F\left(u\left(m_{1}\right)\right)=E\left(m_{1}(d)\right) \geq \inf _{[0, T]} E(r, d) \rightarrow \infty$ as $d \rightarrow \infty$ (by Lemma 2.1). In a similar way we can show that for large d, u has a second zero, $z_{2}(d)$, with $m_{1}(d)<z_{2}(d)<T$ and $z_{2}(d) \rightarrow 0$ as $d \rightarrow \infty$ and u has a second extremum, $m_{2}(d)$, with $z_{2}(d)<m_{2}(d)<T$ and $m_{2}(d) \rightarrow 0$ as $d \rightarrow \infty$. Continuing in this way we can get as many zeros of $u(r, d)$ as desired on $(0, T)$ for large enough d.

4. Proof of the Main Theorem

To prove the Main Theorem we construct the following sets.
Let $\mathcal{S}_{k}=\left\{d \mid u(r, d)\right.$ has exactly k zeros for all $r \in[0, T)$ and $\left.\inf _{[0, T]} E>0\right\}$.
Let us denote $k_{0} \geq 0$ as the smallest value of k such that $\mathcal{S}_{k} \neq \emptyset$. Also, as we saw at the end of section $3, u(r, d)$ has more and more zeros on $(0, T)$ provided d is chosen large enough. And also $\inf _{[0, T]} E>0$ if d is chosen large enough (by Lemma 2.1). Hence it follows that $\mathcal{S}_{k_{0}}$ is bounded above and nonempty.

Let $d_{k_{0}}=\sup \mathcal{S}_{k_{0}}$.
Lemma 4.1. $u\left(r, d_{k_{0}}\right)$ has exactly k_{0} zeros on $[0, T)$.
Proof. By definition of $k_{0}, u\left(r, d_{k_{0}}\right)$ has at least k_{0} zeros on $[0, T)$. Suppose $u\left(r, d_{k_{0}}\right)$ has more than k_{0} zeros on $[0, T)$. Then for d close to $d_{k_{0}}$ and $d<d_{k_{0}}$, by continuity with respect to initial conditions and by Lemma 2.2, u(r,d) also has more than k_{0} zeros on $[0, T)$. However, if $d \in \mathcal{S}_{k_{0}}$, then $u(r, d)$ has exactly k_{0} zeros on $[0, T)$. This is a contradiction to the definition of $d_{k_{0}}$. Thus, $u\left(r, d_{k_{0}}\right)$ has exactly k_{0} zeros on $[0, T)$.
Lemma 4.2. $u\left(T, d_{k_{0}}\right)=0$.
Proof. If $u\left(T, d_{k_{0}}\right) \neq 0$ then by continuity with respect to initial conditions and Lemma $2.2, u(r, d)$ has the same number of zeros as $u\left(r, d_{k_{0}}\right)$ for d close to $d_{k_{0}}$. But if $d>d_{k_{0}}$ then $d \notin \mathcal{S}_{k_{0}}$ so $u(r, d)$ cannot have the same number of zeros as $u\left(r, d_{k_{0}}\right)$. This is a contradiction. Thus, $u\left(T, d_{k_{0}}\right)=0$.

$$
\text { Let } \mathcal{S}_{k_{0}+1}=\left\{d>d_{k_{0}} \mid u(r, d) \text { has exactly } k_{0}+1 \text { zeros on }[0, T) \text { and } \inf _{[0, T]} E>0\right\}
$$

Lemma 4.3. $\mathcal{S}_{k_{0}+1} \neq \emptyset$ and $\mathcal{S}_{k_{0}+1}$ is bounded above.
Proof. By continuity with respect to initial conditions and Lemma 2.2, if $d>d_{k_{0}}$ and d close to $d_{k_{0}}$ then $u(r, d)$ has at most $k_{0}+1$ zeros on $[0, T)$. Also, if $d>d_{k_{0}}$ then $d \notin \mathcal{S}_{k_{0}}$ so $u(r, d)$ does not have exactly k_{0} zeros on $[0, T)$. Now $u(r, d)$ cannot have less than k_{0} zeros because this would imply that $\mathcal{S}_{k_{0}}=\emptyset$ for some value of k smaller than k_{0} which contradicts the definition of k_{0}. Thus, $u(r, d)$ has at least $k_{0}+1$ zeros on $[0, T)$. Since we already showed that $u(r, d)$ for $d>d_{k_{0}}$ and d close to $d_{k_{0}}$ has at most $k_{0}+1$ zeros on $[0, T)$ therefore, for $d>d_{k_{0}}$ and d close to $d_{k_{0}}, u(r, d)$ has exactly $k_{0}+1$ zeros on $[0, T)$. Hence $\mathcal{S}_{k_{0}+1}$ is nonempty. Then by remarks at the end of section $3, \mathcal{S}_{k_{0}+1}$ is bounded above.

Define $d_{k_{0}+1}=\sup \mathcal{S}_{k_{0}+1}$.
As above we can show that $u\left(r, d_{k_{0}+1}\right)$ has exactly $k_{0}+1$ zeros on $[0, T)$ and $u\left(T, d_{k_{0}+1}\right)=0$. Proceeding inductively, we can find solutions that tend to zero at infinity and with any prescribed number, n, of zeros on $[0, T)$ where $n \geq k_{0}$. Hence, this completes the proof of the Main Theorem if (H3) holds.

If $\left(\mathbf{H} \mathbf{3}^{*}\right)$ holds instead of $(\mathbf{H} 3)$ let $v(r)=-u(r)$. Then v satisfies

$$
\begin{gather*}
v^{\prime \prime}+\frac{N-1}{r} v^{\prime}+f_{2}(v)=g_{2}(r) \tag{4.1}\\
v(0)=-d \tag{4.2}
\end{gather*}
$$

$$
\begin{equation*}
v^{\prime}(0)=0 \tag{4.3}
\end{equation*}
$$

where

$$
\begin{gathered}
f_{2}(v)=-f(-v) \\
g_{2}(r)=-g(r) \\
F_{2}(v)=\int_{0}^{v} f_{2}(u) d u=\int_{0}^{v}-f(-u) d u=F(-v)
\end{gathered}
$$

And, now we look for solutions of (4.1)-(4.3) with $-d>0$ (that is $d<0$) along with $v(T)=0$. It is straightforward to show that (H1), (H2) and (H4) are satisfied by f_{2} (and F_{2}).

Then by (H3*)

$$
\begin{aligned}
\infty & =\lim _{u \rightarrow-\infty}\left(\frac{u}{f(u)}\right)^{\frac{N}{2}}\left(N F(k u)-\frac{(N-2)}{2} u f(u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u|\right) \\
& =\lim _{u \rightarrow \infty}\left(\frac{-u}{f(-u)}\right)^{\frac{N}{2}}\left(N F(-k u)-\frac{(N-2)}{2}(-u) f(-u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u|\right) \\
& =\lim _{u \rightarrow \infty}\left(\frac{u}{f_{2}(u)}\right)^{\frac{N}{2}}\left(N F_{2}(k u)-\frac{(N-2)}{2} u f_{2}(u)-\frac{N+2}{2}\left\|g_{2}\right\||u|-T\left\|g_{2}^{\prime}\right\||u|\right) .
\end{aligned}
$$

Thus (H3) is satisfied by g_{2} and $f_{2}\left(\right.$ and $\left.F_{2}\right)$.
Also defining

$$
E_{2}(r, d)=\frac{1}{2} v^{\prime 2}+F_{2}(v)
$$

we see that

$$
\begin{aligned}
E_{2}(r, d) & =\frac{1}{2} u^{\prime 2}+F_{2}(-u) \\
& =\frac{1}{2} u^{\prime 2}+F(u) \\
& =E(r, d) .
\end{aligned}
$$

Therefore, $(\mathbf{H} \mathbf{1})-(\mathbf{H} 4)$ are satisfied by $f_{2}\left(\right.$ and $\left.F_{2}\right)$ and so by the first part of the theorem we see that there are an infinite number of solutions of (4.1)-(4.3) with $v(0)=-d>0$ and $v(T)=0$. Thus, $u(r)=-v(r)$ satisfies (1.3)-(1.4) with $u(0)=-v(0)=d<0$. This completes the proof of the Main Theorem.

Here is an example of a u that satisfies the hypotheses (H1)-(H4):

$$
\begin{equation*}
u^{\prime \prime}+\frac{2}{r} u^{\prime}+u^{3}-u=0 \tag{4.4}
\end{equation*}
$$

where $N=3, f(u)=u^{3}-u$ and $g(r)=0$.
Here are some graphs of solutions of (4.4) for different values of d, all graphs are generated numerically using Mathematica:
(a) Solution that remains positive when $d=4$

(b) Solution with exactly one zero when $d=4.5$

(c) Solution with exactly two zeros when $d=15$

(d) Solution with exactly three zeros when $d=35$

Now let us consider another example, here u satisfies the hypotheses (H1)-(H4):

$$
\begin{equation*}
u^{\prime \prime}+\frac{2}{r} u^{\prime}+u^{3}-u=\frac{1}{r^{2}+1} \tag{4.5}
\end{equation*}
$$

where $N=3, f(u)=u^{3}-u$ and $g(r)=\frac{1}{r^{2}+1}$.
Here are some graphs of solutions of (4.5) for different values of d, as above all graphs are generated numerically using Mathematica:
(a) Solution that remains positive when $d=5$

(b) Solution with exactly one zero when $d=6$

(c) Solution with exactly three zeros when $d=50$

References

[1] A. Castro and A. Kurepa, Infinitely Many Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball, Proceedings of American Mathematical Society, Volume 101, Number 1, Sept 1987.
[2] B. Gidas and W.M. Ni and L. Nirenberg, Symmetry and Related Properties via the Maximum Principle, Comm. Math. Phys., Volume 68, 209-243(1979)
[3] K. McLeod and W.C. Troy and F.B. Weissler, Radial solutions of $\Delta u+f(u)=0$ with Prescribed Numbers of Zeros, Journal of Differential Equations, Volume 83, 368-378(1990)
[4] G.F. Simmons, Differential Equations with Applications and Historical Notes, 2nd edition, McGraw-Hill Science/Engineering/Math(1991)
(Received August 8, 2008)
*Department of Mathematics, University of North Texas, Denton, Texas, **Department of Mathematics, Augsburg College, Minneapolis, MN

E-mail address: iaia@unt.edu, sridevi.pudipeddi@gmail.com

