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RADIAL SOLUTIONS TO A SUPERLINEAR DIRICHLET PROBLEM USING

BESSEL FUNCTIONS

JOSEPH IAIA* AND SRIDEVI PUDIPEDDI**

Abstract. We look for radial solutions of a superlinear problem in a ball. We show that for if n is a

sufficiently large nonnegative integer, then there is a solution u which has exactly n interior zeros. In
this paper we give an alternate proof to that which was given in [1].

1. Introduction

In this paper we look for solutions u : R
N → R of the partial differential equation

(1.1)

{

∆u + f(u) = g(|x|) for x ∈ Ω

u = 0 for x ∈ ∂Ω,

for N ≥ 2 and where Ω is the ball of radius T > 0 centered at the origin in RN , ∆ is the Laplacian
operator, and f : R → R is a continuous function and where g ∈ C1[0, T ].

Motivation: A. Castro and A. Kurepa proved existence of solutions of (1.1) for a wide variety of
nonlinearities, f. See [1]. In this paper we give an alternate and, in our estimation, a somewhat
easier proof of this result by approximating solutions of (1.1) with appropriate linear equations. In a
groundbreaking paper in 1979, B. Gidas, W. Ni, and L. Nirenberg [2] proved that if Ω is a ball then all
positive solutions of

∆u + f(u) = 0 in Ω

u = 0 on ∂Ω

are spherically symmetric. K. McLeod, W.C. Troy and F.B. Weissler studied the radial solutions of

∆u + f(u) = 0 in Ω

lim
|x|→∞

u(x) = 0

for Ω ∈ RN in [3].

We assume the following hypotheses:
(H1) f is a locally Lipschitz continuous function, f is increasing for large |u| and f(0) = 0.

(H2) lim
|u|→∞

f(u)

u
= ∞ (that is, f is superlinear).

Let F (u) =
∫ u

0
f(s)ds and note that from (H2) it follows that

(1.2) lim
|u|→∞

F (u)

u2
= ∞.

(H3) There exists a k with 0 < k ≤ 1, such that

lim
u→∞

(

u

f(u)

)
N

2
(

NF (ku) − (N − 2)

2
uf(u) − N + 2

2
||g|| |u| − T ||g′|| |u|

)

= ∞

where || || is the supremum norm on [0, T ].
(H3*) There exists a k with 0 < k ≤ 1, such that

lim
u→−∞

(

u

f(u)

)
N

2
(

NF (ku) − (N − 2)

2
uf(u) − N + 2

2
||g|| |u| − T ||g′|| |u|

)

= ∞.
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(H4) There exists an M > 0 such that

NF (u) − N − 2

2
uf(u) − N + 2

2
||g|| |u| − T ||g′|| |u| > −M

for all u.

We assume that u(x) = u(|x|) and let r = |x|. In this case (1.1) becomes the nonlinear ordinary
differential equation

(1.3) u′′ +
N − 1

r
u′ + f(u) = g(r) for 0 < r < T

(1.4) u′(0) = 0, u(T ) = 0.

Main Theorem: If (H1)-(H4) are satisfied then (1.1) has infinitely many radially symmetric solutions
with u(0) > 0. If in place of (H3) we have (H3*) then (1.1) has infinitely many radially symmetric
solutions with u(0) < 0.

2. Preliminaries

The technique used to solve (1.3) - (1.4) is the shooting method. That is, we first look at the initial
value problem

(2.1) u′′ +
N − 1

r
u′ + f(u) = g(r) for 0 < r < T

(2.2) u(0) = d > 0, u′(0) = 0.

By varying d appropriately, we attempt to find a d such that u(r, d) has exactly n zeros on [0, T ) and
u(T ) = 0.

Multiplying (2.1) by rN−1 and integrating on (0, r) gives

(2.3) u′ =
−1

rN−1

∫ r

0

tN−1[f(u) − g(t)]dt

Integrating (2.3) and applying the initial conditions we get

(2.4) u(r) = d −
∫ r

0

1

sN−1

(∫ s

0

tN−1[f(u) − g(t)] dt

)

ds.

Let φ(u) be equal to the right hand side of (2.4). It is straightforward to show that φ(u) is a
contraction mapping on C[0, ε], the set of continuous functions with supremum norm on [0, ε], for some
ε > 0. Then by the contraction mapping principle there exists a u ∈ C[0, ε] such that φ(u) = u. Thus,
u is continuous solution of (2.4). Then by (H1), (2.2), and (2.3), we see that u′ is continuous on [0, ε].

From (H1) and (2.3) it follows that
u′

r
is bounded, that lim

r→0+

u′

r
exists, and so that

u′

r
is continuous

on [0, ε]. Then it follows from (2.1) that u′′ is continuous on [0, ε].
In order to show that u ∈ C2[0, T ], we define the energy equation of (2.1)-(2.2) as

(2.5) E =
u′2

2
+ F (u).

Note that from (1.2) there exists a J > 0 such that

(2.6) F (u) ≥ −J

for all u ∈ R.
From (2.5) and (2.6) we see that

(2.7) u′2 ≤ 2(E + J).
EJQTDE, 2008 No. 38, p. 2



Using (2.1) we see that

E′ = −N − 1

r
u′2 − g(r)u′

≤ ||g|||u′| (defined in (H3))

≤ ||g||
√

2
√

E + J (by (2.7)).

Dividing by
√

E + J and integrating gives

1√
2
|u′| ≤

√

E(t) + J ≤
√

F (d) + J + ||g||t ≤
√

F (d) + J + ||g||T.

Thus, from (2.7) it follows that |u′| is uniformly bounded wherever it is defined and since u(0) = d,
thus |u| is uniformly bounded wherever it is defined. It follows from this that u and u′ are defined on
all of [0, T ] and from (2.1) it then follows that u ∈ C2[0, T ].

The next several arguments presented were essentially originally proved in [1] and are included here
for completeness.

Since f(u) > 0 for sufficiently large u > 0 (by (H2)), we see from (2.3) that u′ < 0 on (0, r) for
small r > 0 if d is sufficiently large. Let k be the number given by (H3). Now for sufficiently large d
it follows that u′ < 0 on (0, rkd) where rkd is the smallest positive value of r such that u(rkd) = kd.

Remark 1: First, we want to find a lower bound for rkd. Since f is increasing for large u (by (H1)),
we see from (2.3) that

−rN−1u′ ≤ [f(d) + ||g||]
∫ r

0

tN−1dt

= [f(d) + ||g||]r
N

N
.

Dividing by rN−1 and integrating on [0, rkd] we see that

(1 − k)d =

∫ rkd

0

−u′dt ≤
∫ rkd

0

t[f(d) + ||g||]
N

dt =
t[f(d) + ||g||]

2N
r2
kd.

Thus,

rkd ≥
√

2N(1 − k)d

f(d) + ||g|| .

For sufficiently large d we have ||g|| ≤ f(d) (by (H2)), thus we obtain for sufficiently large d

rkd ≥
√

2N(1 − k)d

2f(d)
.

So,

(2.8) rkd ≥
√

N(1 − k)d

f(d)

for sufficiently large d.
Remark 2: Because of its appearance in Pohozaev’s identity we will see that it will be important to

find a lower bound on

(2.9)

∫ rkd

0

tN−1

(

NF (u) − N − 2

2
u f(u) − N + 2

2
g(t) u − t g′(t) u

)

dt.
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By hypothesis (H2), F ′ = f > 0 for large u. Therefore, F is increasing for large u. Since for large d, u
is decreasing for 0 ≤ t ≤ rkd, and kd ≤ u(t) ≤ d, this implies F (kd) ≤ F (u) ≤ F (d). So on [0, rkd] we
have

(2.10)

∫ rkd

0

tN−1NF (u) dt ≥ F (kd) rN
kd for large d

then by hypothesis (H1), f is increasing for large u and using this we have
∫ rkd

0

tN−1 N − 2

2
u f(u) dt ≤ N − 2

2N
d f(d) rN

kd for large d

so,

(2.11) −
∫ rkd

0

tN−1 N − 2

2
uf(u)dt ≥ −N − 2

2N
df(d)rN

kd.

Now using the estimates in (2.8), (2.10), (2.11) and using the fact that g and g′ are bounded, we
estimate (2.9) as follows:

(2.12)
∫ rkd

0

tN−1

(

NF (u) − N − 2

2
uf(u)− N + 2

2
g(t)u − tg′(t)u

)

dt ≥
(

F (kd) − N − 2

2N
df(d) − N + 2

2N
||g||d − 1

N
T ||g′||d

)

rN
kd

≥
(

NF (kd) − N − 2

2
df(d) − N + 2

2
||g||d − T ||g′||d

)





1

N

(
√

N(1 − k)d

f(d)

)N




= C(N, k)

(

NF (kd) − N − 2

2
df(d) − N + 2

2
||g||d − T ||g′||d

)(

d

f(d)

)
N

2

where C(N, k) = 1
N

[N(1 − k)]
N

2 .

Lemma 2.1. If (H1) - (H4) are satisfied, then

(2.13) lim
d→∞

inf
[0,T ]

E(r, d) = ∞.

Proof. Let us suppose 0 ≤ r ≤ T. Consider Pohozaev’s identity which states
[

rNE − rNg(r)u +
N − 2

2
rN−1uu′

]′

= rN−1

[

NF (u) − N − 2

2
uf(u) − N + 2

2
g(r)u − rg′(r)u

]

.

This can be verified by simply differentiating and then using (2.1).
Integrating Pohozaev’s identity on [0, r], and using (H4) and (2.12) gives

rNE(r, d) − rNg(r)u +
N − 2

2
rN−1uu′ =

∫ r

0

tN−1

[

NF (u) − N − 2

2
uf(u) − N + 2

2
g(t)u − tg′(t)u

]

dt

=

∫ rkd

0

tN−1

[

NF (u) − N − 2

2
uf(u) − N + 2

2
g(t)u − tg′(t)u

]

dt

+

∫ r

rkd

tN−1

[

NF (u) − N − 2

2
uf(u) − N + 2

2
g(t)u − tg′(t)u

]

dt

≥ C(N, k)

(

d

f(d)

)
N

2
[

NF (kd) − N − 2

2
df(d) − N + 2

2
||g||d − T ||g′||d

]

− M

(

rN − rN
kd

N

)

.

Ignoring the last term on the right hand side we get
(2.14)

rNE(r, d)−rNg(r)u+
N − 2

2
rN−1uu′ ≥ C(N, k)

(

d

f(d)

)
N

2
[

NF (kd) − N − 2

2
df(d) − N + 2

2
||g||d − T ||g′||d

]

−MT N

N
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Now let us estimate uu′.

First note from (1.2) that there exists a B such that if |u| ≥ B then
u2

F (u)
≤ 1. That is if |u| ≥ B

then u2 ≤ F (u) ≤ F (u)+J. On other hand if |u| ≤ B then u2 ≤ B2. And since F (u)+J ≥ 0 (by (2.6))
we see that for all u we have

(2.15) u2 ≤ F (u) + J + B2.

Using Young’s inequality, (2.5), and (2.15) gives us the following:

uu′ ≤ 1

2
u2 +

1

2
u′2

≤ (F (u) + J + B2) +
1

2
u′2

=

(

1

2
u′2 + F (u)

)

+ J + B2

= E(r, d) + J + B2.

Substituting this into the left hand side of (2.14), rewriting, and estimating we see that

rNE − rNg(r)u +
N − 2

2
rN−1uu′ ≤ T NE + T N ||g|| |u| + N − 2

2
T N−1|uu′|

≤ T NE + T N ||g||2 + T Nu2 +
N − 2

2
T N−1[E + J + B2]

≤ T NE + T N ||g||2 + T N [E + J + B2] +
N − 2

2
T N−1[E + J + B2]

=

(

2T N +
N − 2

2
T N−1

)

E + T N−1

((

T +
N − 2

2

)

(J + B2) + ||g||2
)

= C1E + C2

where C1 > 0 and C2 > 0 depend only on T, N, J, B and ||g||.
Thus, combining the above with (2.14) gives:

C(N, k)

(

d

f(d)

)
N

2
[

NF (kd) − N − 2

2
df(d) − N + 2

2
||g||d − T ||g′||d

]

− MT N

N

≤ C1E + C2.

Thus,

C1E ≥ C(N, k)

(

d

f(d)

)
N

2
[

NF (kd) − N − 2

2
df(d) − N + 2

2
||g||d − T ||g′||d

]

− C3

where C3 depends on T, N, J, B, ||g|| and M.
By assumption the right hand side of the above inequality goes to infinity as d → ∞. Therefore,

lim
d→∞

inf
[0,T ]

E(r, d) = ∞.

�

Lemma 2.2. If d is sufficiently large and u(r0) = 0, then u′(r0) 6= 0.

Proof. By Lemma 2.1, if d is sufficiently large then inf
[0,T ]

E(r, d) > 0. So if u(r0) = 0 then we have

1
2u′(r0)

2 = E(r0) ≥ inf
[0,T ]

E(r, d) > 0. �
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Lemma 2.3. For d sufficiently large u has a finite number of zeros on [0, T ].

Proof. Suppose there exists 0 < z1 < z2 < ... < zn < ... < T and u(zi) = 0. Then by the mean value
theorem there exists m1 < m2 < ... such that u′(mk) = 0 and where zk < mk < zk+1 < T. So there
exists z = lim

n→∞
zn and by continuity u(z) = 0. Also, lim

k→∞
mk = z and u′(z) = 0 but by the above

Lemma 2.2, this cannot happen for sufficiently large d. �

3. Finding zeros

Now we want to show that if d is sufficiently large then u(r, d) will have lots of zeros on [0, T ].
From (1.2) we know that F (u) → ∞ as |u| → ∞. Therefore, since lim

d→∞
inf
[0,T ]

E(r, d) = ∞ (by Lemma

2.1), and since F (u) is increasing for large u and decreasing when u is a large negative number, then

for sufficiently large d there are exactly two solutions of F (u) =
1

2
inf
[0,T ]

E(r, d) which we denote as

h2(d) < 0 < h1(d). For d > 0 sufficiently large we see from (H2) that u′′(0) =
−f(d) + g(0)

N
< 0 and

u′(0) = 0 so u is initially decreasing on (0, r). Note that h1(d) → ∞ as d → ∞. From (2.3) we see that
u will be decreasing as long as f(u) ≥ ||g||. So we see that there is a smallest r > 0, r1(d), such that
u(r1(d)) = h1(d) and d ≥ u > h1(d) on [0, r1(d)).

Let

(3.1) C(d) =
1

2
min

r∈[0,r1(d)]

f(u)

u
=

1

2
min

u∈[h1(d),d]

f(u)

u
.

Then by (H2) we see that C(d) → ∞ as d → ∞.

Lemma 3.1. r1(d) → 0 as d → ∞.

Proof. To show this we compare

(3.2) u′′ +
N − 1

r
u′ +

f(u)

u
u = g(r)

with initial conditions u(0) = d > 0 and u′(0) = 0 with

(3.3) v′′ +
N − 1

r
v′ + C(d)v = 0

with initial conditions v(0) = d and v′(0) = 0. Note from (3.1) that

(3.4)
f(u)

u
≥ 2C(d) > C(d) on [0, r1(d)].

Claim: u < v on (0, r1(d)] for sufficiently large d.
Proof of the Claim: Since

u(0) = d = v(0)

u′(0) = 0 = v′(0)

then for large d we see from (3.4) that

u′′(0) =
−f(d)

N
+

g(0)

N
< −C(d)

N
d = v′′(0).

Thus, u < v on (0, ε) for some ε > 0.
Multiplying (3.2) by rN−1v, (3.3) by rN−1u, and then taking the difference of the resultant equations

gives

(rN−1(u′v − uv′))′ + rN−1uv

(

f(u)

u
− g(r)

u
− C(d)

)

= 0.
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Since g is bounded, for sufficiently large d we see from (3.4) that

f(u)

u
− g(r)

u
− C(d) ≥ 2C(d) − ||g||

u
− C(d) on [0, r1(d)]

= C(d) − ||g||
u

≥ C(d) − ||g||
h1(d)

> 0 (since C(d) → ∞ as d → ∞ and h1(d) → ∞ as d → ∞).

Now integrating this from 0 to r where 0 < r ≤ r1(d) and using u(0) = v(0) = d and u′(0) = v′(0) = 0
gives

u′(r)v(r) − v′(r)u(r) < 0 on (0, r1(d)].

Suppose now there is a first r0 with 0 < r0 ≤ r1(d) such that 0 < u(r0) = v(r0) and u < v on (0, r0).
Then we see from the above inequality that u′(r0) < v′(r0). On other hand, u(r) < v(r) on (0, r0) and
u(r0) = v(r0). So

u(r) − u(r0) < v(r) − v(r0) on (0, r1(d)].

Thus, for r < r0 we have

lim
r→r

−

0

u(r) − u(r0)

r − r0
≥ lim

r→r
−

0

v(r) − v(r0)

r − r0

which gives
u′(r0) ≥ v′(r0).

This is a contradiction since u′(r0) < v′(r0). Hence this proves the claim.

Now let z(r) =
(

r/
√

C(d)
)

N−2

2

v
(

r/
√

C(d)
)

. Then

(3.5) z′′ +
z′

r
+

(

1 −
(

N−2
2

)2

r2

)

z = 0.

The above equation is Bessel’s equation of order
N − 2

2
. Thus, z(r) = A1JN−2

2

(r) + A2YN−2

2

(r) for

constants A1 and A2 and where JN−2

2

is the Bessel function of order N−2
2 which is bounded at r = 0

and YN−2

2

is unbounded at r = 0. Since z is bounded at r = 0 and YN−2

2

is not, it must be that

z(r) = A1JN−2

2

(r), and A1 is a positive constant.

Denoting βN−2

2
,1 as the first positive zero of JN−2

2

(r), we see that the first positive zero of v is
βN−2

2
,1

√

C(d)
and since u < v on [0, r1(d)] (by the Claim) we see that

r1(d) <
βN−2

2
,1

√

C(d)
.

Since C(d) → ∞ as d → ∞ (as mentioned after (3.1)) it then follows that lim
d→∞

r1(d) = 0. �

Lemma 3.2. For large d, u has a first positive zero, z1(d), and z1(d) → 0 as d → ∞.

Proof. First we show that u has a zero. We prove this by contradiction. Suppose u > 0 on [0, T ]
and consider r > r1(d). Then 0 < u < u(r1(d)) = h1(d) so F (u) < F (h1(d)). Also since F (h1(d)) =
1

2
inf
[0,T ]

E(r, d) we obtain

u′2

2
+ F (h1(d)) >

u′2

2
+ F (u) ≥ inf

[0,T ]
E(r, d) = 2F (h1(d))
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for r > r1(d).
Thus,

u′2 ≥ 2F (h1(d)) for r > r1(d)

and thus

−
∫ r

r1(d)

u′(t)dt ≥
∫ r

r1(d)

√

2F (h1(d))dt

and since u is decreasing and u(r1(d)) = h1(d) this gives

(3.6) h1(d) − u(r) = u(r1(d)) − u(r) ≥
√

2F (h1(d))(r − r1(d))

so,

h1(d) −
√

2F (h1(d))(r − r1(d)) ≥ u(r) > 0.

Thus,

(3.7)
h1(d)

√

2F (h1(d))
≥ r − r1(d).

Evaluating at r = T gives

T − r1(d) ≤ h1(d)
√

2F (h1(d))

for large d.
Since h1(d) → ∞ as d → ∞, taking the limit of the above, using Lemma 3.1 and (1.2) we see that

0 < T = lim
d→∞

[T − r1(d)] ≤ lim
d→∞

h1(d)
√

2F (h1(d))
= 0.

This is impossible. Thus u has a first zero, z1(d). Then repeating the above argument on [0, z1(d)] and
letting r = z1(d) in (3.7) we get

0 ≤ z1(d) − r1(d) ≤ h1(d)
√

2F (h1(d))
→ 0

as d → ∞. Also, since r1(d) → 0 as d → ∞ (by Lemma 3.1) we see that z1(d) → 0 as d → ∞. �

We next show for sufficiently large d that u attains the value h2(d) at some r2(d) where z1(d) <
r2(d) < T. So we suppose u′ < 0 on a maximal interval (z1(d), r). Here h2(d) < u < 0 and this implies
F (u) ≤ F (h2(d)) for sufficiently large d. Then as in the beginning of the proof of Lemma 3.2

1

2
u′2 + F (h2(d)) ≥ 1

2
u′2 + F (u) ≥ inf

[0,T ]
E(r, d) = 2F (h2(d))

so,
u′2 ≥ 2F (h2(d)) on (z1(d), r).

Then
∫ r

z1(d)

−u′dt =

∫ r

z1(d)

|u′|dt ≥
∫ r

z1(d)

√

2F (h2(d))dt

and since u(z1(d)) = 0 this leads to

−u(r) ≥
√

2F (h2(d))(r − z1(d))

and therefore

(3.8) u(r) ≤ −
√

2
√

F (h2(d))(r − z1(d)).

Now suppose by the way of contradiction that u > h2(d) on (z1(d), T ). Then from (3.8) we see that

h2(d) ≤ u(r) ≤ −
√

2
√

F (h2(d))(r − z1(d))
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−h2(d) ≥
√

2
√

F (h2(d))(r − z1(d)).

Evaluating this at r = T gives

T − z1(d) ≤ −h2(d)√
2
√

F (h2(d))

and now taking the limit, using Lemma 3.2, and (1.2) we see that

0 < T = lim
d→∞

[T − z1(d)] ≤ lim
d→∞

−h2(d)√
2
√

F (h2(d))
= 0.

And again this is impossible. Therefore, there exists a smallest value of r, r2(d), such that z1(d) <
r2(d) < T with u(r2(d)) = h2(d) and u > h2(d) on [0, r2(d)). Now evaluating (3.8) at r = r2(d) and
using that u(r2(d)) = h2(d) we obtain

h2(d) = u(r2(d)) ≤ −
√

2
√

F (h2(d))(r2(d) − z1(d))

now taking the limit as d → ∞ and (1.2) gives

lim
d→∞

√
2[r2(d) − z1(d)] ≤ lim

d→∞

−h2(d)
√

F (h2(d))
= 0.

Hence r2(d) − z1(d) → 0 as d → ∞ and since z1(d) → 0 as d → ∞ (from Lemma 3.2) it follows that

(3.9) r2(d) → 0 as d → ∞.

We next want to show that u has a minimum on (r2(d), T ). Suppose again by contradiction that u
is decreasing on (r2(d), T ). We want to show that there exists an extremum of u at r where r > r2(d).

Let C(d) = 1
2 min

(−∞,h2(d)]

f(u)

u
. Note that C(d) → ∞ as d → ∞ by (H2). Now as in the proof of

Lemma 3.1 we compare

(3.10) u′′ +
N − 1

r
u′ +

f(u)

u
u = g(r)

with

(3.11) v′′ +
N − 1

r
v′ + C(d)v = 0

with initial conditions v(r2(d)) = u(r2(d)) and v′(r2(d)) = u′(r2(d)). With an argument similar to
the Claim in Lemma 3.1 we can show that u > v on (r2(d), T ) for sufficiently large d. Let z(r) =
(

r/
√

C(d)
)

N−2

2

v
(

r/
√

C(d)
)

. Then again as earlier z solves Bessel’s equation

(3.12) z′′ +
z′

r
+

(

1 −
(

N−2
2

)2

r2

)

z = 0

of order
N − 2

2
.

Now it is a well known fact about Bessel functions (see [4], Page 165, Theorem C) that there exists
a constant K such that every interval of length K has at least one zero of z(r). This implies that every

interval of length
K

√

C(d)
has a zero of v. Thus for large d, we see that v must have a zero on (r2(d), T ).

And since u > v on (r2(d), T ) we see that u gets positive which contradicts that u is decreasing on
(r2(d), T ). Thus we see that there exists an m1(d) with r2(d) < m1(d) < T such that u decreases on
(r2(d), m1(d)) and m1(d) is a local minimum of u. Also we see that

m1(d) − r2(d) ≤ K
√

C(d)
→ 0
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as d → ∞. And since r2(d) → 0 as d → ∞ (by (3.9)) we see that m1(d) → 0 as d → ∞. Also,
F (u(m1)) = E(m1(d)) ≥ inf

[0,T ]
E(r, d) → ∞ as d → ∞ (by Lemma 2.1). In a similar way we can show

that for large d, u has a second zero, z2(d), with m1(d) < z2(d) < T and z2(d) → 0 as d → ∞ and u
has a second extremum, m2(d), with z2(d) < m2(d) < T and m2(d) → 0 as d → ∞. Continuing in this
way we can get as many zeros of u(r, d) as desired on (0, T ) for large enough d.

4. Proof of the Main Theorem

To prove the Main Theorem we construct the following sets.

Let Sk = { d | u(r, d) has exactly k zeros for all r ∈ [0, T ) and inf
[0,T ]

E > 0 }.

Let us denote k0 ≥ 0 as the smallest value of k such that Sk 6= ∅. Also, as we saw at the end of section
3, u(r, d) has more and more zeros on (0, T ) provided d is chosen large enough. And also inf

[0,T ]
E > 0 if

d is chosen large enough (by Lemma 2.1). Hence it follows that Sk0
is bounded above and nonempty.

Let dk0
= supSk0

.

Lemma 4.1. u(r, dk0
) has exactly k0 zeros on [0, T ).

Proof. By definition of k0, u(r, dk0
) has at least k0 zeros on [0, T ). Suppose u(r, dk0

) has more than k0

zeros on [0, T ). Then for d close to dk0
and d < dk0

, by continuity with respect to initial conditions
and by Lemma 2.2, u(r, d) also has more than k0 zeros on [0, T ). However, if d ∈ Sk0

, then u(r, d) has
exactly k0 zeros on [0, T ). This is a contradiction to the definition of dk0

. Thus, u(r, dk0
) has exactly k0

zeros on [0, T ). �

Lemma 4.2. u(T, dk0
) = 0.

Proof. If u(T, dk0
) 6= 0 then by continuity with respect to initial conditions and Lemma 2.2, u(r, d) has

the same number of zeros as u(r, dk0
) for d close to dk0

. But if d > dk0
then d /∈ Sk0

so u(r, d) cannot
have the same number of zeros as u(r, dk0

). This is a contradiction. Thus, u(T, dk0
) = 0. �

Let Sk0+1 = { d > dk0
| u(r, d) has exactly k0 + 1 zeros on [0, T ) and inf

[0,T ]
E > 0 }.

Lemma 4.3. Sk0+1 6= ∅ and Sk0+1 is bounded above.

Proof. By continuity with respect to initial conditions and Lemma 2.2, if d > dk0
and d close to dk0

then u(r, d) has at most k0 + 1 zeros on [0, T ). Also, if d > dk0
then d /∈ Sk0

so u(r, d) does not have
exactly k0 zeros on [0, T ). Now u(r, d) cannot have less than k0 zeros because this would imply that
Sk0

= ∅ for some value of k smaller than k0 which contradicts the definition of k0. Thus, u(r, d) has at
least k0 + 1 zeros on [0, T ). Since we already showed that u(r, d) for d > dk0

and d close to dk0
has at

most k0 + 1 zeros on [0, T ) therefore, for d > dk0
and d close to dk0

, u(r, d) has exactly k0 + 1 zeros on
[0, T ). Hence Sk0+1 is nonempty. Then by remarks at the end of section 3, Sk0+1 is bounded above. �

Define dk0+1 = supSk0+1.

As above we can show that u(r, dk0+1) has exactly k0 + 1 zeros on [0, T ) and u(T, dk0+1) = 0.
Proceeding inductively, we can find solutions that tend to zero at infinity and with any prescribed
number, n, of zeros on [0, T ) where n ≥ k0. Hence, this completes the proof of the Main Theorem if
(H3) holds.

If (H3*) holds instead of (H3) let v(r) = −u(r). Then v satisfies

(4.1) v′′ +
N − 1

r
v′ + f2(v) = g2(r)

(4.2) v(0) = −d
EJQTDE, 2008 No. 38, p. 10



(4.3) v′(0) = 0

where

f2(v) = −f(−v)

g2(r) = −g(r)

F2(v) =

∫ v

0

f2(u)du =

∫ v

0

−f(−u)du = F (−v).

And, now we look for solutions of (4.1)-(4.3) with −d > 0 (that is d < 0) along with v(T ) = 0. It is
straightforward to show that (H1), (H2) and (H4) are satisfied by f2 (and F2).

Then by (H3*)

∞ = lim
u→−∞

(

u

f(u)

)
N

2
(

NF (ku) − (N − 2)

2
uf(u)− N + 2

2
||g|| |u| − T ||g′|| |u|

)

= lim
u→∞

( −u

f(−u)

)
N

2
(

NF (−ku) − (N − 2)

2
(−u)f(−u)− N + 2

2
||g|| |u| − T ||g′|| |u|

)

= lim
u→∞

(

u

f2(u)

)
N

2
(

NF2(ku) − (N − 2)

2
uf2(u) − N + 2

2
||g2|| |u| − T ||g′2|| |u|

)

.

Thus (H3) is satisfied by g2 and f2 (and F2).
Also defining

E2(r, d) =
1

2
v′2 + F2(v)

we see that

E2(r, d) =
1

2
u′2 + F2(−u)

=
1

2
u′2 + F (u)

= E(r, d).

Therefore, (H1)-(H4) are satisfied by f2 (and F2) and so by the first part of the theorem we see
that there are an infinite number of solutions of (4.1)-(4.3) with v(0) = −d > 0 and v(T ) = 0. Thus,
u(r) = −v(r) satisfies (1.3)-(1.4) with u(0) = −v(0) = d < 0. This completes the proof of the Main
Theorem.

Here is an example of a u that satisfies the hypotheses (H1)-(H4):

(4.4) u′′ +
2

r
u′ + u3 − u = 0

where N = 3, f(u) = u3 − u and g(r) = 0.
Here are some graphs of solutions of (4.4) for different values of d, all graphs are generated numerically

using Mathematica:
(a) Solution that remains positive when d = 4

1 2 3 4 5 6

-4

-2

2

4
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(b) Solution with exactly one zero when d = 4.5

1 2 3 4 5 6

-4

-2

2

4

(c) Solution with exactly two zeros when d = 15

1 2 3 4 5 6

-5

-2.5

2.5

5

7.5

10

12.5

15

(d) Solution with exactly three zeros when d = 35

1 2 3 4 5 6
-5

5

10

15

20

25

30

35

Now let us consider another example, here u satisfies the hypotheses (H1)-(H4):

(4.5) u′′ +
2

r
u′ + u3 − u =

1

r2 + 1

where N = 3, f(u) = u3 − u and g(r) =
1

r2 + 1
.

Here are some graphs of solutions of (4.5) for different values of d, as above all graphs are generated
numerically using Mathematica:

(a) Solution that remains positive when d = 5

1 2 3 4 5 6

-4

-2

2

4
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(b) Solution with exactly one zero when d = 6

1 2 3 4 5 6

-4

-2

2

4

6

(c) Solution with exactly three zeros when d = 50

1 2 3 4 5 6

-10

10

20

30

40

50

�

References

[1] A. Castro and A. Kurepa, Infinitely Many Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball,
Proceedings of American Mathematical Society, Volume 101, Number 1, Sept 1987.

[2] B. Gidas and W.M. Ni and L. Nirenberg, Symmetry and Related Properties via the Maximum Principle, Comm.
Math. Phys., Volume 68, 209-243(1979)

[3] K. McLeod and W.C. Troy and F.B. Weissler, Radial solutions of ∆u + f(u) = 0 with Prescribed Numbers of Zeros,
Journal of Differential Equations, Volume 83, 368-378(1990)

[4] G.F. Simmons, Differential Equations with Applications and Historical Notes, 2nd edition, McGraw-Hill Sci-
ence/Engineering/Math(1991)

(Received August 8, 2008)

*Department of Mathematics, University of North Texas, Denton, Texas, **Department of Mathematics,

Augsburg College, Minneapolis, MN

E-mail address: iaia@unt.edu, sridevi.pudipeddi@gmail.com

EJQTDE, 2008 No. 38, p. 13


