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Abstract. The present paper is devoted to the existence of solutions for implicit first or-
der differential systems with nonlocal conditions expressed by continuous linear func-
tionals. The lack of complete continuity of the associated integral operators, due to the
implicit form of the equations, is overcome by using Krasnoselskii’s fixed point theorem
for the sum of two operators. Moreover, a vectorial version of Krasnoselskii’s theorem
and the technique based on vector-valued norms and matrices having the spectral ra-
dius less than one are likely to allow the system nonlinearities to behave independently
as much as possible. In addition, the connection between the support of the nonlocal
conditions and the constants from the growth conditions is highlighted.

Keywords: first order differential system, implicit differential equation, nonlocal con-
dition, fixed point, vector-valued norm, spectral radius of a matrix.

2010 Mathematics Subject Classification: 34A09, 34A12, 34A34, 34B10, 47J25.

1 Introduction and preliminaries

The purpose of this paper is to obtain the existence of solutions to the nonlocal problem for a
class of first order implicit differential systems

x′(t) = g1(t, x(t), y(t)) + h1(t, x′(t), y′(t))

y′(t) = g2(t, x(t), y(t)) + h2(t, x′(t), y′(t))

x(0) = α[x]

y(0) = β[y],

(on [0, 1]) (1.1)

where gi, hi : [0, 1]×R2 → R are continuous functions and α, β : C[0, 1] → R are continuous
linear functionals with α [1] 6= 1 and β [1] 6= 1.

In the recent years much attention has been given to different types of problems with
nonlocal conditions. We refer to the bibliographies of the papers [2–4, 11, 13, 17–19, 25, 31, 32]
for references. The motivation is that such problems arise from the mathematical modeling of
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real processes, such as heat, fluid, chemical or biological flow, where the nonlocal conditions
can be seen as feedback controls, see for example [7] and the recent survey paper [28].

One can distinguish between discrete nonlocal conditions, or multi-point boundary con-
ditions, and continuous conditions given by continuous linear functionals. For both types,
it is important to take into consideration the interval on which a given condition really acts,
that is, the support of that condition. More exactly, the support associated to the condition
x (0) = α [x] , where α : C[0, 1] → R is linear, is the minimal closed subinterval [0, t0] of [0, 1]
with the property

α [x] = α [y] whenever x = y on [0, t0] .

This notion was first introduced in [4] and has become essential for the existence theory of
nonlocal problems. Indeed, as shown in [4, 19, 25], stronger conditions have to be satisfied by
the nonlinear terms of the equations on [0, t0], compared to the hypotheses asked on [t0, 1].
One may assert that the “integral” equation equivalent to a nonlocal problem on the interval
[0, 1], is of Fredholm type on the support [0, t0] of the nonlocal condition, and of Volterra type
on the remaining interval [t0, 1]. In the present paper again we shall exploit this idea, even
pregnantly. We shall do this, by considering a special norm on C [0, 1], namely

|x|∗ = max
{
|x|C[0,t0]

, |x|Cθ [t0,1]

}
,

where |·|C[0,t0]
is the usual max norm on C [0, t0],

|x|C[0,t0]
= max

t∈[0,t0]
|x(t)| ,

while |x|Cθ [t0,1] denotes the Bielecki type norm on C [t0, 1],

|x|Cθ [t0,1] = max
t∈[t0,1]

|x(t)| e−θ(t−η).

Here η < t0 and θ > 0 are given numbers. As we shall see, the joint role of the parameters η

(any fixed number with η < t0) and θ (chosen large enough) is to weaken the assumptions on
g1 (t, x, y) , g2 (t, x, y) when t ∈ [t0, 1].

Note a key property of the functional α in connection with its corresponding support,

|α[x]| ≤ ‖α‖ |x|C[0,t0]
,

for every x ∈ C[0, 1], when normally, for any continuous linear functional α : C[0, 1] → R, we
have |α[x]| ≤ ‖α‖ |x|C[0,1] , where the notation ‖α‖ is used to denote the norm of the continuous
linear functional α.

A standard technique for nonlocal problems, as like for boundary value problems in gen-
eral, is the reduction of the problem to a fixed point problem for a suitable integral type
operator. Then a fixed point theorem guarantees the existence of a solution. Topological fixed
point theorems, as well as index theory, are essentially based on compactness, which in case
of explicit equations usually holds, while for implicit equations it becomes a problem. In or-
der to overcome this difficulty, one may think to use Krasnoselskii’s fixed point theorem for
a sum of two operators, a contraction and a completely continuous mapping. Krasnoselskii’s
theorem [14,15] (see also [10]) has become a basic result of the nonlinear analysis with a large
number of applications to nonlinear operator, integral, and differential equations. Combining
Banach’s contraction principle and Schauder’s fixed point theorem, it can be considered a
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bridge between metrical and topological fixed point theories. There is a rich literature con-
cerning different generalizations and applications of this theorem. Here are some of them:
[1, 5, 6, 9, 12, 20, 21, 27, 30].

Nonlocal problems for implicit differential equations have been, by our knowledge, less
investigated. We just mention the paper [16] on the monotone iterative technique for an
implicit first order equation subject to a two-point boundary condition, and the paper [8]
whose aim is to obtain a Carathéodory solution for an implicit first order equation under
a nonlocal condition, via Schauder’s fixed point theorem and Kolmogorov’s compactness
criterion in L1.

Since we are interested here in systems of equations, we have opted for a vectorial ap-
proach based on the use of vector-valued norms, inverse-positive matrices and of a vectorial
version of Krasnoselskii’s fixed point theorem for sums of two operators. The vectorial ap-
proach allows the system nonlinearities to behave independently as much as possible.

We recall now some basic notions which are involved in our vectorial setting. By a vector-
valued metric on a set X we mean a mapping d : X × X → Rn

+ such that (i) d(x, y) = 0 if and
only if x = y; (ii) d(x, y) = d(y, x) for all x, y ∈ X and (iii) d(x, y) ≤ d(x, z) + d(z, y) for all
x, y, z ∈ X. Here by ≤ we mean the natural componentwise order relation of Rn, more exactly,
if r, s ∈ Rn, r = (r1, r2, . . . , rn), s = (s1, s2, . . . , sn), then by r ≤ s one means that ri ≤ si for
i = 1, 2, . . . , n.

A set X together with a vector-valued metric d is called a generalized metric space. For such
a space, the notions of Cauchy sequence, convergence, completeness, open and closed set are
similar to those in usual metric spaces.

Similarly, we speak about a vector-valued norm on a linear space X, as being a mapping
‖·‖ : X → Rn

+ with ‖x‖ = 0 only for x = 0; ‖λx‖ = |λ| ‖x‖ for x ∈ X, λ ∈ R, and ‖x + y‖ ≤
‖x‖ + ‖y‖ for every x, y ∈ X. To any vector-valued norm ‖·‖ one can associate the vector-
valued metric d (x, y) := ‖x− y‖ , and one says that (X, ‖·‖) is a generalized Banach space if X
is complete with respect to d.

If (X, d) is a generalized metric space and T : X → X is any mapping, we say that T is a
generalized contraction (in Perov’s sense) provided that a matrix M ∈ Mn×n (R+) exists such
that its powers Mk tend to the zero matrix 0 as k→ ∞, and

d(T(x), T(y)) ≤ Md(x, y) for all x, y ∈ X.

Here and throughout the paper, the vectors in Rn are seen as column matrices.
There are several characterizations known of the matrices M with Mk → 0 as k → ∞ (see

[23] and [29, pp. 12, 88]). More exactly, for a matrix M ∈ Mn×n (R+) , the following statements
are equivalent:

(a) Mk → 0 as k→ ∞;

(b) I −M is nonsingular and (I −M)−1 = I + M + M2 + · · · (where I stands for the unit
matrix of the same order as M);

(c) the eigenvalues of M are located inside the unit disc of the complex plane, i.e. ρ (M) < 1,
where ρ (M) is the spectral radius of M;

(d) I −M is nonsingular and inverse-positive, i.e. (I −M)−1 has nonnegative entries.



4 O. Bolojan and R. Precup

Let us note that for a square matrix M ∈ M2×2 (R+) of order 2,

M =

[
a b
c d

]
,

one has ρ (M) < 1 if and only if

a + d < min {2, 1 + ad− bc} . (1.2)

The following almost obvious lemma will be used in the sequel.

Lemma 1.1. If A ∈ Mn×n (R+) is a matrix with ρ (A) < 1, then ρ (A + B) < 1 for every matrix
B ∈ Mn×n (R+) whose elements are small enough.

The role of matrices with spectral radius less than one in the study of semilinear operator
systems was pointed out in [24], in connection with several abstract results from nonlinear
functional analysis. Thus, Banach’s contraction principle admits a vectorial version in terms
of generalized contractions in Perov’s sense.

Following Perov’s approach, in [30] (see also [22]) the following vectorial version of Kras-
noselskii’s fixed point theorem for a sum of two operators was obtained.

Theorem 1.2 ([30]). Let (X, ‖·‖) be a generalized Banach space, D a nonempty closed bounded convex
subset of X and T : D → X such that:

(i) T = G + H with G : D → X completely continuous and H : D → X a generalized contraction,
i.e. there exists a matrix M ∈ Mn×n (R+) with ρ (M) < 1, such that ‖H(x)− H(y)‖ ≤
M ‖x− y‖ for all x, y ∈ D;

(ii) G(x) + H(y) ∈ D for all x, y ∈ D.

Then T has at least one fixed point in D.

The proofs of the vectorial versions of the Banach and Krasnoselskii theorems follow the
same ideas as for the original results. However, for applications to systems, these versions
allow nonlinearities to behave independently one to each other, and differently with respect
to the system variables.

2 Main result

In order to obtain the equivalent integral form of the problem (1.1), denote

u (t) = x′(t), v (t) = y′(t).

Then, using the nonlocal conditions we obtain

x(t) =
1

1− α[1]
α

[∫ ·
0

u(s) ds
]
+
∫ t

0
u(s) ds,

y(t) =
1

1− β[1]
β

[∫ ·
0

v(s) ds
]
+
∫ t

0
v(s) ds.
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Let

G1(u, v)(t) = g1

(
t,

1
1− α[1]

α

[∫ ·
0

u(s) ds
]
+
∫ t

0
u(s) ds,

1
1− β[1]

β

[∫ ·
0

v(s)ds
]
+
∫ t

0
v(s) ds

)
,

G2(u, v)(t) = g1

(
t,

1
1− α[1]

α

[∫ ·
0

u(s) ds
]
+
∫ t

0
u(s) ds,

1
1− β[1]

β

[∫ ·
0

v(s) ds
]
+
∫ t

0
v(s) ds

)
.

Also define

H1(u, v)(t) = h1(t, u(t), v(t)),

H2(u, v)(t) = h2(t, u(t), v(t)).

Then the problem (1.1) is equivalent to the system{
u = G1(u, v) + H1(u, v)

v = G2(u, v) + H2(u, v).
(2.1)

Note that we look for solutions with x, y ∈ C1 [0, 1], i.e. (x, y) ∈ C1 ([0, 1] , R2) , and so u, v ∈
C [0, 1] , that is (u, v) ∈ C

(
[0, 1] , R2) . The system (2.1) appears as a fixed point problem for

the operator
T : C

(
[0, 1] , R2)→ C

(
[0, 1] , R2) , T = (T1, T2) ,

where T1, T2 are given by

T1(u, v) = G1(u, v) + H1(u, v),

T2(u, v) = G2(u, v) + H2(u, v).
(2.2)

We can rewrite (2.2) in a vectorial form, as a sum of two operators, namely

T(u, v) = G(u, v) + H(u, v),

where

T(u, v) =
[

T1(u, v)
T2(u, v)

]
, G(u, v) =

[
G1(u, v)
G2(u, v)

]
, H(u, v) =

[
H1(u, v)
H2(u, v)

]
.

We shall assume that the nonlocal conditions expressed by the functionals α, β have the
same support [0, t0] , and that the growth of g1 (t, u, v) , g2 (t, u, v) with respect to u and v is at
most linear, on each of the two subintervals [0, t0] and [t0, 1] , that is

|g1(t, u, v)| ≤
{

a1 |u|+ b1 |v|+ c1 for t ∈ [0, t0)

A1 |u|+ B1 |v|+ C1 for t ∈ [t0, 1]

|g2(t, u, v)| ≤
{

a2 |u|+ b2 |v|+ c2 for t ∈ [0, t0)

A2 |u|+ B2 |v|+ C2 for t ∈ [t0, 1],

(2.3)

for all (u, v) ∈ R2, and the functions h1, h2 satisfy the Lipschitz conditions

|h1(t, u, v)− h1(t, u, v)| ≤ a1 |u− u|+ b1 |v− v|
|h2(t, u, v)− h2(t, u, v)| ≤ a2 |u− u|+ b2 |v− v| ,

(2.4)
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for all (u, v) , (u, v) ∈ R2 and t ∈ [0, 1]. Here, for i = 1, 2, ai, bi, ci > 0 and Ai, Bi, Ci, ai, bi are
nonnegative numbers.

Denote

Aα =
‖α‖

|1− α[1]| + 1, Bβ =
‖β‖

|1− β[1]| + 1,

and consider the matrices

M0 =

[
a1t0Aα b1t0Bβ

a2t0Aα b2t0Bβ

]
, M1 =

[
a1 b1

a2 b2

]
.

With those notations, we can state and prove our main existence result.

Theorem 2.1. Assume that g1, g2 satisfy (2.3) and h1, h2 satisfy (2.4). If the spectral radius of the
matrix M0 + M1 is less than one, then problem (2.1) has at least one solution (x, y) ∈ C1( [0, 1] , R2).
Proof. We shall apply the vectorial version of Krasnoselskii’s fixed point theorem to the space
X = C

(
[0, 1] , R2), endowed with the vector-valued norm ‖·‖C([0,1],R2) defined by

‖w‖C([0,1],R2) =

[
|x|∗
|y|∗

]
,

for w = (x, y) ∈ C
(
[0, 1] , R2).

Step 1. The operator G is completely continuous. This follows from the continuity of g1, g2

and the fact that the terms
∫ t

0 u(s) ds,
∫ t

0 v(s) ds guarantee the equicontinuity in the Arzelà–
Ascoli theorem.

Step 2. The operator H is a generalized contraction. To show this, let (u, v), (u, v) ∈
C
(
[0, 1] , R2) be arbitrary. Using the assumption (2.4), for t ∈ [0, t0], we deduce that

|H1(u, v)(t)− H1(u, v)(t)| = |h1(t, u(t), v(t))− h1(t, u(t), v(t))|
≤ a1 |u(t)− u(t)|+ b1 |v(t)− v(t)|
≤ a1 |u− u|C[0,t0]

+ b1 |v− v|C[0,t0]

and taking the supremum for t ∈ [0, t0] , we obtain

|H1(u, v)− H1(u, v)|C[0,t0]
≤ a1 |u− u|C[0,t0]

+ b1 |v− v|C[0,t0]
. (2.5)

Next, for t ∈ [t0, 1], we obtain

|H1(u, v)(t)− H1(u, v)(t)|
≤ a1 |u(t)− u(t)|+ b1 |v(t)− v(t)|
= a1 |u(t)− u(t)| e−θ(t−η)eθ(t−η) + b1 |v(t)− v(t)| e−θ(t−η)eθ(t−η)

≤ a1eθ(t−η) |u− u|Cθ [t0,1] + b1eθ(t−η) |v− v|Cθ [t0,1] .

Dividing by eθ(t−η) and taking the supremum when t ∈ [t0, 1] , we have

|H1(u, v)− H1(u, v)|Cθ [t0,1] ≤ a1 |u− u|Cθ [t0,1] + b1 |v− v|Cθ [t0,1] . (2.6)

Taking into consideration (2.5) and (2.6), we see that

|H1(u, v)− H1(u, v)|∗ ≤ a1 |u− u|∗ + b1 |v− v|∗ . (2.7)
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Similarly,

|H2(u, v)− H2(u, v)|∗ ≤ a2 |u− u|∗ + b2 |v− v|∗ . (2.8)

The inequalities (2.7) and (2.8) can be put together under the vectorial form

[
|H1(u, v)− H1(u, v)|∗
|H2(u, v)− H2(u, v)|∗

]
≤ M1

[
|u− u|∗
|v− v|∗

]

or equivalently,

‖H(z)− H(z)‖C([0,1],R2) ≤ M1 ‖z− z‖C([0,1],R2) , (2.9)

for z = (u, v), z = (u, v). Since by our assumption, (M0 + M1)
k → 0 as k → ∞, and M1 ≤

M0 + M1, one also has that Mk
1 → 0 as k→ ∞. Hence H is a generalized contraction in Perov’s

sense.
Step 3. In what follows, we look for a nonempty, bounded, closed and convex subset D of

C
(
[0, 1] , R2) such that G(D) + H(D) ⊂ D. To this end, we shall first estimate G. Let (u, v) be

any element of C
(
[0, 1] , R2). For t ∈ [0, t0], using (2.3) we obtain

|G1(u, v)(t)|

=

∣∣∣∣g1

(
t,

1
1− α[1]

α

[∫ ·
0

u(s) ds
]
+
∫ t

0
u(s) ds,

1
1− β[1]

β

[∫ ·
0

v(s) ds
]
+
∫ t

0
v(s) ds

)∣∣∣∣
≤ a1

∣∣∣∣ 1
1− α[1]

α

[∫ ·
0

u(s) ds
]
+
∫ t

0
u(s) ds

∣∣∣∣+ b1

∣∣∣∣ 1
1− β[1]

β

[∫ ·
0

v(s) ds
]
+
∫ t

0
v(s) ds

∣∣∣∣+ c1

≤ a1

(
‖α‖

|1− α[1]| + 1
) ∫ t0

0
|u(s)| ds + b1

(
‖β‖

|1− β[1]| + 1
) ∫ t0

0
|v(s)| ds + c1

≤ a1t0Aα |u|C[0,t0]
+ b1t0Bβ |v|C[0,t0]

+ c1.

Taking the supremum, we have

|G1(u, v)|C[0,t0]
≤ a1t0Aα |u|C[0,t0]

+ b1t0Bβ |v|C[0,t0]
+ c1. (2.10)

Furthermore, for t ∈ [t0, 1], we have that

|G1(u, v)(t)|

≤ A1

∣∣∣∣ 1
1− α[1]

α

[∫ ·
0

u(s) ds
]
+
∫ t

0
u(s) ds

∣∣∣∣
+ B1

∣∣∣∣ 1
1− β[1]

β

[∫ ·
0

v(s) ds
]
+
∫ t

0
v(s) ds

∣∣∣∣+ C1

≤ A1

∣∣∣∣ 1
1− α[1]

α

[∫ ·
0

u(s) ds
]
+
∫ t0

0
u(s) ds

∣∣∣∣
+ B1

∣∣∣∣ 1
1− β[1]

β

[∫ ·
0

v(s) ds
]
+
∫ t0

0
v(s) ds

∣∣∣∣+ C1

+ A1

∣∣∣∣∫ t

t0

u(s) ds
∣∣∣∣+ B1

∣∣∣∣∫ t

t0

v(s) ds
∣∣∣∣ .
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Then

|G1(u, v)(t)|
≤ A1t0Aα |u|C[0,t0]

+ B1t0Bβ |v|C[0,t0]
+ C1

+ A1

∫ t

t0

|u(s)| e−θ(s−η)eθ(s−η) ds + B1

∫ t

t0

|v(s)| e−θ(s−η)eθ(s−η) ds

≤ A1t0Aα |u|C[0,t0]
+ B1t0Bβ |v|C[0,t0]

+ C1

+
A1

θ
eθ(t−η) |u|Cθ [t0,1] +

B1

θ
eθ(t−η) |v|Cθ [t0,1] .

Dividing by eθ(t−η) and taking the supremum when t ∈ [t0, 1], we obtain

|G1(u, v)|Cθ [t0,1] ≤
(

A1t0Aα |u|C[0,t0]
+ B1t0Bβ |v|C[0,t0]

+ C1

)
e−θ(t0−η)

+
A1

θ
|u|Cθ [t0,1] +

B1

θ
|v|Cθ [t0,1] .

(2.11)

Now we can take advantage from the special choice of the norm |·|Cθ [t0,1], more exactly from
the choice of η < t0, to assume (choosing large enough θ > 0) that

A1e−θ(t0−η) ≤ a1, B1e−θ(t0−η) ≤ b1 and C1e−θ(t0−η) ≤ c1, (2.12)

and this way to eliminate from the first part of our estimation the growth constants A1, B1, C1.
Indeed, (2.11) and (2.12) give

|G1(u, v)|Cθ [t0,1] ≤ a1t0Aα |u|C[0,t0]
+ b1t0Bβ |v|C[0,t0]

+ c1 +
A1

θ
|u|Cθ [t0,1] +

B1

θ
|v|Cθ [t0,1] . (2.13)

Now, (2.10) and (2.13) imply that

|G1(u, v)|∗ ≤
(

a1t0Aα +
A1

θ

)
|u|∗ +

(
b1t0Bβ +

B1

θ

)
|u|∗ + c1. (2.14)

Similarly,

|G2(u, v)|∗ ≤
(

a2t0Aα +
A2

θ

)
|u|∗ +

(
b2t0Bβ +

B2

θ

)
|u|∗ + c2. (2.15)

The inequalities (2.14) and (2.15) can be put under the vectorial form[
|G1(u, v)|∗
|G2(u, v)|∗

]
≤ Mθ

[
|u|∗
|v|∗

]
+

[
c1

c2

]
or, using the vector-valued norm, equivalently,

‖G(u, v)‖C([0,1],R2) ≤ Mθ ‖(u, v)‖C([0,1],R2) + c, (2.16)

where c :=
[

c1

c2

]
and

Mθ :=

[
a1t0Aα +

A1
θ b1t0Bβ +

B1
θ

a2t0Aα +
A2
θ b2t0Bβ +

B2
θ

]
.

Clearly Mθ = M0 + M2, where

M2 =

[
A1
θ

B1
θ

A2
θ

B2
θ

]
.
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On the other hand, from (2.9), we deduce that

‖H(u, v)‖C([0,1],R2) ≤ M1 ‖(u, v)‖C([0,1],R2) + d, (2.17)

for every (u, v) ∈ C
(
[0, 1] , R2), where

d = ‖H (0, 0)‖C([0,1],R2) .

Now we look for the set

D =
{
(u, v) ∈ C

(
[0, 1] , R2) : ‖(u, v)‖C([0,1],R2) ≤ R

}
,

with R =
[

R1
R2

]
, R1 ≥ 0, R2 ≥ 0. According to the estimations (2.16) and (2.17), the condition

G (D) + H (D) ⊂ D is satisfied provided that

(Mθ + M1) R + c + d ≤ R,

equivalently
c + d ≤ (I −Mθ −M1) R. (2.18)

Since Mθ + M1 = M0 + M1 + M2, ρ (M0 + M1) < 1 and the entries of M2 are as small as
desired for large enough θ > 0, from Lemma 1.1, we can choose θ such that

ρ (Mθ + M1) < 1.

Then, according to the property (d) of matrices with spectral radius less than one, the inequal-
ity (2.18) is equivalent to

R ≥ (I −Mθ −M1)
−1 (c + d) .

This proves the existence of radii R1, R2 ≥ 0 for which the inwardness condition G (D) +

H (D) ⊂ D is satisfied. Thus Theorem 1.2 applies and guarantees the existence in D of at least
one fixed point for T.

Remark 2.2. It is worth to underline the exclusive contribution to the matrix M0 + M1 of the
growth constants a1, a2, b1, b2 corresponding to the support interval [0, t0] , in contrast to the
constants A1, A2, B1, B2 which are not involved in any conditions.

Remark 2.3. In view of (1.2), the spectral radius of the matrix M0 + M1 is less than one if the
following inequality holds:

a1t0 Aα + a1 + b2t0Bβ + b2

< min
{

2, 1 + (a1t0Aα + a1)
(

b2t0Bβ + b2

)
−
(

b1t0Bβ + b1

)
(a2t0Aα + a2)

}
.

We note that Theorem 2.1 can be easily extended to general n-dimensional systems. In that
case, the assumption about the spectral radius of the corresponding matrix of order n can be
checked using computer algebra programs such as Maple and Mathematica.

We conclude this paper by an example illustrating our main result.
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Example 2.4. Consider the problem
x′ = a (t) x sin (x + y) + b (t) y cos (x− y) + m (t) sin x′ + n (t) y′ + f1(t)

y′ = c (t) x cos (x + y) + d (t) y sin (x− y) + cos(p (t) x′ + q (t) y′) + f2(t)

x(0) =
∫ 1/2

0
x(s) ds, y(0) =

∫ 1/2

0
y(s) ds

(2.19)

where a, b, c, d, m, n, p, q, f1, f2 ∈ C[0, 1]. In this case,

g1(t, u, v) = a (t) u sin (u + v) + b (t) v cos (u− v) + f1(t)

g2(t, u, v) = c (t) u cos (u + v) + d (t) v sin (u− v) + f2(t)

h1(t, u, v) = m (t) sin u + n (t) v

h2(t, u, v) = cos(p (t) u + q (t) v)

and we have t0 = 1/2 and g1, g2 satisfy (2.3) with

a1 = |a|C[0,1/2] , b1 = |b|C[0,1/2] , c1 = | f1|C[0,1/2] ,

a2 = |c|C[0,1/2] , b2 = |d|C[0,1/2] , c2 = | f2|C[0,1/2] ,

A1 = |a|C[1/2,1] , B1 = |b|C[1/2,1] , C1 = | f1|C[1/2,1] ,

A2 = |c|C[1/2,1] , B2 = |d|C[1/2,1] , C2 = | f2|C[1/2,1] .

Also, h1, h2 satisfy (2.4) with

a1 = |m|C[0,1] , b1 = |n|C[0,1] , a2 = |p|C[0,1] , b2 = |q|C[0,1] .

In addition,
‖α‖ = ‖β‖ = α[1] = β [1] = 1/2.

For this example

M0 + M1 =

[
a1 + a1 b1 + b1

a2 + a2 b2 + b2

]
=

[
|a|C[0,1/2] + |m|C[0,1] |b|C[0,1/2] + |n|C[0,1]
|c|C[0,1/2] + |p|C[0,1] |d|C[0,1/2] + |q|C[0,1]

]
.

Therefore, according to Theorem 2.1 and Remark 2.3, if

a1 + a1 + b2 + b2 < min
{

2, 1 + (a1 + a1)
(

b2 + b2

)
− (a2 + a2)

(
b1 + b1

)}
, (2.20)

then the problem (2.19) has at least one solution.
Here are three particular cases:

(10) Assume that a1 = a2, a1 = a2 and b1 = b2, b1 = b2. Then the sufficient condition of
existence (2.20) reduces to

a1 + a1 + b1 + b1 < 1,

that is
|a|C[0,1/2] + |b|C[0,1/2] + |m|C[0,1] + |n|C[0,1] < 1.
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(20) Assume that a1 = b2, a1 = b2 and b1 = a2, b1 = a2. Then (2.20) becomes

a1 + a1 + b1 + b1 < 1,

that is
|a|C[0,1/2] + |b|C[0,1/2] + |m|C[0,1] + |n|C[0,1] < 1.

(30) Assume that a1 = b1 = b2 and a1 = b1 = b2. Then (2.20) is equivalent to

a1 + a1 +
√
(a1 + a1) (a2 + a2) < 1,

or more explicitly

|a|C[0,1/2] + |m|C[0,1] +

√(
|a|C[0,1/2] + |m|C[0,1]

) (
|c|C[0,1/2] + |p|C[0,1]

)
< 1.
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