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1 Introduction

We consider the following neutral differential equation with deviated argument in a Banach space
X:







d
dt [u(t) + g(t, u(a(t)))] +A[u(t) + g(t, u(a(t)))]

= f(t, u(t), u[h(u(t), t)]), 0 < t ≤ T <∞,
u(0) = u0,

(1.1)

where −A is the infinitesimal generators of an analytic semigroup. f, g, h and a are suitably
defined functions satisfying certain conditions to be specified later.
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Initial results related to the differential equations with deviated arguments can be found in
some research papers of the last decade but still a complete theory seems to be missing . For the
initial works on existence, uniqueness and stability of various types of solutions of different kind of
differential equations, we refer to [1]-[10] and the references cited in these papers.

Adimy et al [1] have studies the existence and stability of solutions of the following general class
of nonlinear partial neutral functional differential equations:

d

dt
(u(t) − g(t, ut)) = A(u(t) − g(t, ut)) + f(t, ut), t ≥ 0,

u0 = ϕ ∈ C0, (1.2)

where the operator A is the Hille-Yosida operator not necessarily densely defined on the Banach
space B. The functions g and f are continuous from [0,∞) × C0 into B.

In this paper, we use the Banach fixed point theorem and analytic semigroup theory to prove
existence and uniqueness of different kind of solutions to the given problem (1.1). The plan of the
paper is as follows. In Section 3, we prove the existence and uniqueness of local solutions and in
Section 4, the existence of global solution for the problem (1.1) is given. In the last section, we
have given an example.

The results presented in this paper easily can be apply to the same problem (1.1) with nonlocal
condition under some modified assumptions on the function f and operator A.

2 Preliminaries and Assumptions

We note that if −A is the infinitesimal generator of an analytic semigroup then for c > 0 large
enough, −(A + cI) is invertible and generates a bounded analytic semigroup. This allows us to
reduce the general case in which −A is the infinitesimal generator of an analytic semigroup to the
case in which the semigroup is bounded and the generator is invertible. Hence without loss of
generality we suppose that

‖S(t)‖ ≤M for t ≥ 0

and
0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be defined as a closed
linear invertible operator with domain D(Aα) being dense in X. We have Xκ ↪→ Xα for 0 < α < κ
and the embedding is continuous. For more details on the fractional powers of closed linear operators
we refer to Pazy [11]. It can be proved easily that Xα := D(Aα) is a Banach space with norm
‖x‖α = ‖Aαx‖ and it is equivalent to the graph norm of Aα. Also, for each α > 0, we define
X−α = (Xα)∗, the dual space of Xα is a Banach space endowed with the norm ‖x‖−α = ‖A−αx‖.

It can be seen easily that Cα
t = C([0, t];Xα), for all t ∈ [0, T ], is a Banach space endowed with

the supremum norm,
‖ψ‖t,α := sup

0≤η≤t
‖ψ(η)‖α, ψ ∈ Cα

t .
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We set,

Cα−1
T = C([0, T ];Xα−1) = {y ∈ Cα

T : ‖y(t) − y(s)‖α−1 ≤ L|t− s|,∀ t, s ∈ [0, T ]},

where L is a suitable positive constant to be specified later and 0 ≤ α < 1.
We assume the following conditions:

(A1): 0 ∈ ρ(−A) and −A is the infinitesimal generator of an analytic semigroup {S(t) :
t ≥ 0}.

(A2): Let U1 ⊂ Dom(f) be an open subset of R+×Xα×Xα−1 and for each (t, u, v) ∈ U1

there is a neighborhood V1 ⊂ U1 of (t, u, v). The nonlinear map f : R+×Xα×Xα−1 → X
satisfies the following condition,

‖f(t, x, ψ) − f(s, y, ψ̃)‖ ≤ Lf [|t− s|θ1 + ‖x− y‖α + ‖ψ − ψ̃‖α−1],

where 0 < θ1 ≤ 1, 0 ≤ α < 1, Lf > 0 is a positive constant, (t, x, ψ) ∈ V1, and
(s, y, ψ̃) ∈ V1.

(A3): Let U2 ⊂ Dom(h) be an open subset of Xα × R+ and for each (x, t) ∈ U2 there
is a neighborhood V2 ⊂ U2 of (x, t). The map h : Xα × R+ → R+ satisfies the following
condition,

|h(x, t) − h(y, s)| ≤ Lh[‖x− y‖α + |t− s|θ2 ],

where 0 < θ2 ≤ 1, 0 ≤ α < 1, Lh > 0 is a positive constant, (x, t), (y, s) ∈ V2 and
h(., 0) = 0.

(A4): Let U3 ⊂ Dom(g) be an open subset of [0, T ] × Xα−1 and for each (t, x) ∈ U3

there is a neighborhood V3 ⊂ U3 of (x, t). The function g : [0, T ] × Xα−1 → Xα is
continuous for (t, u) ∈ [0, T ] ×Xα−1 such that

‖Aαg(t, x) −Aαg(s, y)‖ ≤ Lg{|t− s| + ‖x− y‖α−1},

where 0 ≤ α < 1, Lg > 0 is a positive constant and (x, t), (y, s) ∈ V3.

(A5): The function a : [0, T ] → [0, T ] satisfies the following two conditions:

(i) a satisfies the delay property a(t) ≤ t for all t ∈ [0, T ];

(ii) The function a is Lipschitz continuous; that is, there exist a positive constant La

such that

|a(t) − a(s)| ≤ La|t− s|, for all t, s ∈ [0, T ] and 1 > ‖A−1‖La.
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Definition 2.1 A continuous function u ∈ Cα−1
T ∩ Cα

T is said to be a mild solution of equation (1.1)
if u is the solution of the following integral equation

u(t) = S(t)[u(0) + g(0, u0)] − g(t, u(a(t)))

+

∫ t

0
S(t− s)f(s, u(s), u[h(u(s), s)])ds, t ∈ [0, T ] (2.1)

and satisfies the initial condition u(0) = u0.

Definition 2.2 By a solution of the problem (1.1), we mean a function u : [0, T ] → Xα satisfying
the following four conditions:

(i) u(.) + g(., u(a(.))) ∈ Cα−1
T ∩ C1((0, T ),X) ∩ C([0, T ],X),

(ii) u(t) ∈ D(A), and (t, u(t), u[h(u(t), t)]) ∈ U1,

(iii) d
dt [u(t) + g(t, u(a(t)))] +A[u(t) + g(t, u(a(t)))] = f(t, u(t), u[h(u(t), t)]) for all t ∈ (0, T ],

(iv) u(0) = u0.

3 Existence of Local Solutions

We can prove that assumptions (A2)–(A3), for 0 ≤ α < 1, 0 < T0 ≤ T, and u ∈ Cα
T0

imply that
f(s, u(s), u[h(u(s), s)]) is continuous on [0, T0]. Therefore, we can show that there exists a positive
constant N such that

‖f(s, u(s), u[h(u(s), s)])‖ ≤ N= Lf [T0
θ1 + δ(1 + LLh) + LLhT

θ2

0 ] +N0,

where N0 = ‖f(0, u0, u0)‖. Similarly with the help of the assumptions (A4)–(A5), we can show
easily that ‖Aαg(t, u(a(t)))‖ ≤ Lg[T0 + δ] + ‖g(0, u0)‖α = N1. Also, we denote ‖A−1‖ = M2 and
‖A−α‖ = M3.

Theorem 3.1 Let us assume that the assumptions (A1)-(A5) are hold and u0 ∈ D(Aα) for 0 ≤
α < 1. Then, the differential equation (1.1) has a unique local mild solution if

(

Lg +CαLf [2 + LLh]
T 1−α

0

1 − α

)

< 1. (3.1)

Proof. Now for a fixed δ > 0, we choose 0 < T0 ≤ T such that

‖(S(t) − I)Aα[u0 + g(0, u0)]‖ + Lg[T0 + δ] ≤ δ

2
, for all t ∈ [0, T0] (3.2)

and

CαN
T 1−α

0

1 − α
≤ δ

2
. (3.3)
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We set
W = {u ∈ Cα

T0
∩ Cα−1

T0
: u(0) = u0, ‖u− u0‖T0,α ≤ δ}.

Clearly, W is a closed and bounded subset of Cα−1
T .

We define a map F : W → W given by

(Fu)(t) = S(t)[u0 + g(0, u0)] − g(t, u(a(t)))

+

∫ t

0
S(t− s)f(s, u(s), u[h(u(s), s)])ds, t ∈ [0, T ]. (3.4)

In order to proved this theorem first we need to show that Fu ∈ Cα−1
T0

for any u ∈ Cα−1
T0

. Clearly,
F : Cα

T → Cα
T .

If u ∈ Cα−1
T0

, T > t2 > t1 > 0, and 0 ≤ α < 1, then we get

‖(Fu)(t2) − (Fu)(t1)‖α−1

≤ ‖(S(t2) − S(t1))(u0 + g(0, u0))‖α−1

+‖A−1‖‖Aαg(t2, u(a(t2))) −Aαg(t1, u(a(t1)))‖

+

∫ t1

0
‖(S(t2 − s) − S(t1 − s))Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds

+

∫ t2

t1

‖S(t2 − s)Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds. (3.5)

We have,

‖(S(t2) − S(t1))(u0 + g(0, u0))‖α−1 ≤
∫ t2

t1

‖Aα−1S′(s)(u0 + g(0, u0))‖ds

=

∫ t2

t1

‖AαS(s)(u0 + g(0, u0))‖ds

≤
∫ t2

t1

‖S(s)‖[‖u0‖α + ‖g(0, u0)‖α]ds

≤ C1(t2 − t1), (3.6)

where C1 = [‖u0‖α + ‖g(0, u0)‖α]M.
Also, we can see that

‖Aα−1g(t2, u(a(t2))) −Aα−1g(t1, u(a(t1)))‖
≤ ‖A−1‖‖Aαg(t2, u(a(t2))) −Aαg(t1, u(a(t1)))‖
≤ ‖A−1‖Lg[(t2 − t1) + ‖u(a(t2)) − u(a(t1))‖α−1]

≤ ‖A−1‖[Lg + LLa](t2 − t1). (3.7)

We observe that,

‖(S(t2 − s) − S(t1 − s))‖α−1 ≤
∫ t2−t1

0
‖Aα−1S′(l)S(t1 − s)‖dl
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≤
∫ t2−t1

0
‖S(l)AαS(t1 − s)‖dl

≤ MCα(t2 − t1)(t1 − s)−α. (3.8)

Now we use the inequality (3.8) to get the inequality given below,

∫ t1

0
‖(S(t2 − s) − S(t1 − s))Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds ≤ C2(t2 − t1), (3.9)

where C2 = NMCα
T 1−α

0

1−α .
Similarly,

∫ t2

t1

‖S(t2 − s)Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds ≤ C3(t2 − t1), (3.10)

where C3 = ‖Aα−1‖MN.
We use the inequalities (3.6) (3.7) (3.9) and (3.10) in inequality (3.5) and get the following

inequality,

‖(Fu)(t2) − (Fu)(t1)‖α−1 ≤ L|t2 − t1|, (3.11)

where, L =
C1+C2+C3+‖A−1‖Lg

1−‖A−1‖La

. Hence, F : Cα−1
T0

→ Cα−1
T0

.

Our next task is to show that F : W → W. Now, for t ∈ (0, T0] and u ∈ W, we have

‖(Fu)(t) − u0‖α

≤ ‖(S(t) − I)Aα[u0 + g(0, u0)]‖
+ ‖Aαg(s, u(a(s))) −Aαg(0, u(a(0)))‖

+

∫ t

0
‖S(t− s)Aα‖‖f(s, u(s), u[h(u(s), s)])‖ds

≤ ‖(S(t) − I)Aα[u0 + g(0, u0)]‖ + Lg[T0 + δ] + CαN
T 1−α

0

1 − α
.

Hence, from inequalities (3.2) and (3.3), we get

‖Fu− u0‖T0,α ≤ δ.

Therefore, F : W → W.
Now, if t ∈ (0, T0] and u, v ∈ W, then

‖(Fu)(t) − (Fv)(t)‖α

≤ ‖Aαg(t, u(a(t))) −Aαg(t, v(a(t)))‖

+

∫ t

0
‖S(t− s)Aα‖‖f(s, u(s), u[h(u(s), s)]) − f(s, v(s), v[h(u(s), s)])‖ds. (3.12)
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We have the following inequalities,

‖Aαg(t, u(a(t))) −Aαg(t, v(a(t)))‖ ≤ Lg‖A−1‖‖u− v‖T0,α, (3.13)

‖f(s, u(s), u[h(u(s), s)]) − f(s, v(s), v[h(v(s), s)])‖ ≤ Lf [2 + LLh]‖u− v‖T0,α. (3.14)

We use the inequalities (3.13) and (3.14) in the inequality (3.12) and get

‖(Fu)(t) − (Fv)(t)‖α ≤
(

Lg‖A−1‖ + CαLf [2 + LLh]
T 1−α

0

1 − α

)

‖u− v‖T0,α. (3.15)

Hence from inequality (3.1), we get the following inequality given below

‖Fu−Fv‖T0,α < ‖u− v‖T0,α.

Therefore, the map F has a unique fixed point u ∈ W which is given by,

u(t) = S(t)[u0 + g(0, u0)] − g(t, u(a(t)))

+

∫ t

0
S(t− s)f(s, u(s), u[h(u(s), s)])ds, t ∈ [0, T0]. (3.16)

Hence, the mild solution u of equation (1.1) is given by the equation (3.16) and belong to Cα
T0

∩ Cα−1
T0

.

Theorem 3.2 Let us assume that the assumptions (A1)-(A5) are hold and u0 ∈ D(Aα) for 0 ≤ α <
1. Then, the differential equation (1.1) has a unique local solution in the sense of the Definition 2.2.

Proof. In order to prove this theorem, we first need to prove that the mild solution u is Hölder
continuous on (0, T0]. From Theorem 2.6.13 in Pazy [11], it follows that for every 0 < β < 1 − α,
t > s > 0 and every 0 < h < 1, we have

‖(S(h) − I)AαS(t− s)‖ ≤ Cβh
β‖Aα+βS(t− s)‖

≤ Chβ(t− s)−(α+β), (3.17)

where C = CβCα+β.
For 0 < t < t+ h ≤ T0, we have

‖u(t+ h) − u(t)‖α

≤ ‖((S(h) − I)S(t)(u0 + g(0, u0))‖α

+‖Aαg(t2, u(a(t2))) −Aαg(t1, u(a(t1)))‖

+

∫ t

0
‖(S(h) − I)AαS(t− s)‖‖f(s, u(s), u[h(u(s), s)])‖ds

+

∫ t+h

t
‖S(t+ h− s)Aα‖‖f(s, u(s), u[h(u(s), s)])‖ds. (3.18)
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We calculate the first term of the above inequality (3.18) as follows;

‖(S(h) − I)S(t)Aα(u0 + g(0, u0))‖ ≤ Ct−(α+β){‖u0‖ + ‖g(0, u0)‖}hβ

≤ M1h
β, (3.19)

where M1 = Ct−(α+β){‖u0‖ + ‖g(0, u0)‖} depends on t and blows up as t decreases to zero.
Second term of the above inequality (3.18) we calculate as follows,

‖Aαg(t+ h, u(a(t + h))) −Aαg(t, u(a(t)))‖
≤ ‖Aαg(t+ h, u(a(t + h))) −Aαg(t, u(a(t)))‖
≤ Lg[h+ ‖A‖‖u(a(t + h)) − u(a(t))‖α−1]

≤ Lg[h+ ‖A‖LLah]

≤M2h, (3.20)

where M2 = Lg[1 + ‖A‖LLa] is a constant independent of t.
Third and the fourth term of the inequality (3.18) can be calculated as follows:

∫ t

0
‖(S(h) − I)AαS(t− s)‖‖f(s, u(s), u[h(u(s), s)])‖ds

≤ ChβN

∫ t

0
(t− s)−(α+β)ds

≤M3h
β, (3.21)

∫ t+h

t
‖AαS(t+ h− s)‖‖f(s, u(s), u[h(u(s), s)])‖ds, ≤ CαN

∫ t+h

t
(t+ h− s)−αds

≤ M4h
β, (3.22)

where M3 and M4 can be chosen to be independent of t.
Therefore,

‖u(t+ h) − u(t)‖α ≤ C
′

hβ ,

where C
′

is a positive constant. Thus, u is locally Hölder continuous on (0, T0].
Hence,

‖f(t, u(t), u[h(u(t), t)]) − f(s, u(s), u[h(u(s), s)])‖
≤ Lf{|t− s|θ1 + ‖u(t) − u(s)‖α + L|h(u(t), t) − h(u(s), s)|}
≤ Lf{|t− s|θ1 + ‖u(t) − u(s)‖α + LLh[|t− s|θ2 + ‖u(t) − u(s)‖α]}
≤ Lf{|t− s|θ1 + C

′ |t− s|β + LLh[|t− s|θ2 + C
′ |t− s|β]}. (3.23)

Hence, the map t 7→ f(t, u(t), u[h(u(t), t)]) is locally Hölder continuous. Therefore,

f(t, u(t), u[h(u(t), t)]) ∈ C([0, T ],X) ∩ Cβ
′

((0, T ],X),

where 0 < β
′

< min{θ1, β, θ2}. Similarly, we can prove that u(.) + g(., u(a(.))) is also Hölder
continuous on (0, T0]. Therefore from Theorem 3.1 pp. 110 and Corollary 3.3, pp. 113, Pazy [11], the
function u(.) + g(., u(a(.))) ∈ Cα−1

T0
∩ C1((0, T0),X) ∩ C([0, T0],X) and u(.) is the unique solution

of the problem (1.1) in the sense of Definition 2.2. This completes the proof of the Theorem. �
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4 Existence of Global Solutions

Theorem 4.1 Suppose that 0 ∈ ρ(−A) and the operator −A generates the analytic semigroup S(t)
with ‖S(t)‖ ≤ M , for t ≥ 0, the conditions (A1)–(A4) are satisfied and u0 ∈ D(Aα). If there are
continuous nondecreasing real valued function k1(t), k2(t) and k3(t) such that

‖f(t, x, y)‖ ≤ k1(t)(1 + ‖x‖α + ‖y‖α−1), for all t ≥ 0, x ∈ Xα, y ∈ Xα−1, (4.1)

|h(z, t)| ≤ k2(t)(1 + ‖z‖α), for all t ≥ 0, z ∈ Xα, (4.2)

‖g(t, v)‖α ≤ k3(t)(1 + ‖v‖α−1), for all t ≥ 0, v ∈ Xα−1, (4.3)

then the initial value problem (1.1) has a unique solution which exists for all t ∈ [0, T ].

Proof: By theorem (3.1) we can continue the solution of equation (1.1) as long as ‖u(t)‖α stays
bounded. It is therefore sufficient to show that if u exists on [0, T [ then ‖u(t)‖α is bounded as t ↑ T.

We have the following inequality,

‖u[h(u(s), s)]‖α−1 ≤ ‖u[h(u(s), s)] − u(0)‖α−1 + ‖u0‖α−1

≤ L|h(u(s), s)| + ‖u0‖α−1

≤ Lk2(T ) + Lk2(T )‖u‖s,α] + ‖u0‖α−1. (4.4)

For t ∈ [0, T [, we have

‖u(t)‖α ≤ ‖S(t)Aα[u0 + g(0, u0)]‖ + ‖g(t, u(a(t)))‖α

+

∫ t

0
‖AαS(t− s)‖‖f(s, u(s), u[h(u(s), s)])‖ds

≤ M [‖u0‖α + k3(T ){1 + ‖u0‖α}] + k3(T )[1 + ‖A−1‖‖u‖t,α]

+ Cα

∫ t

0
(t− s)−αk1(T )[1 + ‖u‖s,α + ‖u[h(u(s), s)]‖α−1 ]ds,

≤ M [‖u0‖α + k3(T ){1 + ‖u0‖α}] + k3(T ) + k3(T )‖A−1‖‖u‖t,α

+ k1(T )Cα

∫ t

0
(t− s)−αds+ k1(T )Cα

∫ t

0
(t− s)−α‖u‖s,αds

+ Lk2(T )k1(T )Cα

∫ t

0
(t− s)−αds+ ‖u0‖α−1Lk2(T )k1(T )Cα

∫ t

0
(t− s)−αds

+ Lk2(T )k1(T )Cα

∫ t

0
(t− s)−α‖u‖s,αds.

Hence,

‖u‖t,α ≤ C1 + C2

∫ t

0
(t− s)−α‖u‖s,αds, (4.5)

where C1 = M
1−k3(T ) [‖u0‖α + k3(T ){1 + ‖u0‖α}] + k3(T )

1−k3(T ) + k1(T )CαT 1−α

(1−k3(T ))(1−α) + Lk2(T )k1(T )CαT 1−α

(1−k3(T ))(1−α)

+ ‖u0‖α−1
Lk2(T )k1(T )CαT 1−α

(1−k3(T ))(1−α) and C2 = k1(T )Cα [1+Lk2(T )]
1−k3(T ) . Hence by applying the Gronwall’s lemma

to the above inequality (4.5), we get the required results. This completes the proof of the theorem.
�
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5 Examples

Let X = L2(0, 1). We consider the following partial differential equations with deviated argument,















∂t[w(t, x) + ∂xf1(t, w(a(t), x))] − ∂2
x[w(t, x) + f1(t, w(a(t), x))]

= f2(x,w(t, x)) + f3(t, x, w(t, x)), x ∈ (0, 1), t > 0,
w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,
w(0, x) = u0, x ∈ (0, 1),

(5.1)

where

f2(x,w(t, x)) =

∫ x

0
K(x, s)w(s, h(t)(a1|w(s, t)| + b1|ws(s, t)|))ds.

The function f3 : R+ × [0, 1] × R → R is measurable in x, locally Hölder continuous in t, locally
Lipschitz continuous in w and uniformly in x. Further we assume that a1, b1 ≥ 0, (a1, b1) 6= (0, 0),
h : R+ → R+ is locally Hölder continuous in t with h(0) = 0 and K : [0, 1] × [0, 1] → R. The
function f1 : R+ × R → R is locally Hölder continuous in t, locally Lipschitz continuous in w.

We define an operator A, as follows,

Au = −u′′ with u ∈ D(A) = {u ∈ H1
0 (0, 1) ∩H2(0, 1) : u′′ ∈ X}. (5.2)

Here clearly the operator A is self-adjoint with compact resolvent and is the infinitesimal generator
of an analytic semigroup S(t). Now we take α = 1/2, D(A1/2) = H1

0 (0, 1) is the Banach space
endowed with the norm,

‖x‖1/2 := ‖A1/2x‖, x ∈ D(A1/2)

and we denote this space by X1/2. Also, for t ∈ [0, T ], we denote

C
1/2
t = C([0, t];D(A1/2)),

endowed with the sup norm

‖ψ‖t,1/2 := sup
0≤η≤t

‖ψ(η)‖α, ψ ∈ C1/2
t .

We observe some properties of the operators A and A1/2 defined by (5.2). For u ∈ D(A) and
λ ∈ R, with Au = −u′′ = λu, we have 〈Au, u〉 = 〈λu, u〉; that is,

〈

−u′′, u
〉

= |u′|2L2 = λ|u|2L2

so λ > 0. A solution u of Au = λu is of the form

u(x) = C cos(
√
λx) +D sin(

√
λx)

and the conditions u(0) = u(1) = 0 imply that C = 0 and λ = λn = n2π2, n ∈ N. Thus, for each
n ∈ N, the corresponding solution is given by

un(x) = D sin(
√

λnx).
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We have 〈un, um〉 = 0 for n 6= m and 〈un, un〉 = 1 and hence D =
√

2. For u ∈ D(A), there exists
a sequence of real numbers {αn} such that

u(x) =
∑

n∈N

αnun(x),
∑

n∈N

(αn)2 < +∞ and
∑

n∈N

(λn)2(αn)2 < +∞.

We have
A1/2u(x) =

∑

n∈N

√

λn αn un(x)

with u ∈ D(A1/2); that is,
∑

n∈N
λn(αn)2 < +∞. X− 1

2

= H1(0, 1) is a Sobolev space of negative

index with the equivalent norm ‖.‖− 1

2

=
∑∞

n=1 |〈., un〉|2. For more details on the Sobolev space of

negative index, we refer to Gal [6].
The equation (5.1) can be reformulated as the following abstract equation in X = L2(0, 1):

d

dt
[u(t) + g(t, u(a(t)))] +A[u(t) + g(t, u(a(t)))] = f(t, u(t), u[h(u(t), t)]) t > 0,

u(0) = u0, (5.3)

where u(t) = w(t, .) that is u(t)(x) = w(t, x), x ∈ (0, 1). The function g : R+ × X1/2 → X, such
that g(t, u(a(t)))(x) = ∂xf1(t, w(a(t), x)) and the operator A is same as in equation (5.2).

The function f : R+ ×X1/2 ×X−1/2 → X, is given by

f(t, ψ, ξ)(x) = f2(x, ξ) + f3(t, x, ψ), (5.4)

where f2 : [0, 1] ×X → H1
0 (0, 1) is given by

f2(t, ξ) =

∫ x

0
K(x, y)ξ(y)dy, (5.5)

and

‖f3(t, x, ψ)‖ ≤ Q(x, t)(1 + ‖ψ‖H2(0,1)) (5.6)

with Q(., t) ∈ X and Q is continuous in its second argument. We can easily verify that the function
f satisfies the assumptions (H1)-(H4). For more details see [6].

For the function a we can take

(i) a(t) = kt, where t ∈ [0, T ] and 0 < k ≤ 1.

(ii) a(t) = ktn for t ∈ I = [0, 1] k ∈ (0, 1] and n ∈ N;

(iii) a(t) = k sin t for t ∈ I = [0, π
2 ], and k ∈ (0, 1].
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