Three Positive Solutions for p-Laplacian Functional Dynamic Equations on Time Scales

Wen Guan
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China wangdb@lut.cn (W. Guan)

Abstract

In this paper, existence criteria of three positive solutions to the followimg p-Laplacian functional dynamic equation on time scales $$
\left\{\begin{array}{l} {\left[\Phi_{p}\left(u^{\triangle}(t)\right)\right]^{\nabla}+a(t) f(u(t), u(\mu(t)))=0, t \in(0, T),} \\ u_{0}(t)=\varphi(t), t \in[-r, 0], u(0)-B_{0}\left(u^{\triangle}(\eta)\right)=0, u^{\triangle}(T)=0, \end{array}\right.
$$ are established by using the well-known Five Functionals Fixed Point Theorem. Keywords: Time scale; p-Laplacian functional dynamic equation; Boundary value problem; Positive solution; fixed point theorem

MSC: 39K10, 34B15

1 Introduction

The theory of dynamic equations on time scales has been a new important mathematical branch (see, for example, [1-5]) since it was initiated by Hilger [6]. At the same time, boundary value problems (BVPs) for dynamic equation on time scales have received considerable attention [7-15]. However, to the best of our knowledge, few papers can be found in the literature for BVPs of p-Laplacian dynamic equations on time scales, especially for p-Laplacian functional dynamic equations on time scales [12, 14].

Let \mathbf{T} be a time scale, i.e., \mathbf{T} is a nonempty closed subset of R. Let $0, T$ be points in \mathbf{T}, an interval $(0, T)$ denote time scales interval, that is, $(0, T):=(0, T) \cap \mathbf{T}$. Other types of intervals are defined similarly. Some definitions concerning time scales can be found in [2-4].

In this paper, we are concerned with the existence of positive solutions for the p-Laplacian functional dynamic equation on time scale

$$
\left\{\begin{array}{l}
{\left[\Phi_{p}\left(u^{\Delta}(t)\right)\right]^{\nabla}+a(t) f(u(t), u(\mu(t)))=0, t \in(0, T),} \tag{1.1}\\
u_{0}(t)=\varphi(t), t \in[-r, 0], u(0)-B_{0}\left(u^{\Delta}(\eta)\right)=0, u^{\Delta}(T)=0,
\end{array}\right.
$$

where $\Phi_{p}(s)$ is p-Laplacian operator, i.e., $\Phi_{p}(s)=|s|^{p-2} s, p>1,\left(\Phi_{p}\right)^{-1}=\Phi_{q}, \frac{1}{p}+\frac{1}{q}=1$, $\eta \in(0, \rho(T))$ and
$\left(\mathrm{C}_{1}\right) f:\left(R^{+}\right)^{2} \rightarrow R^{+}$is continuous ;
$\left(\mathrm{C}_{2}\right) a: \mathbf{T} \rightarrow R^{+}$is left dense continuous (i.e., $a \in C_{\mathbf{l d}}\left(\mathbf{T}, R^{+}\right)$) and does not vanish identically on any closed subinterval of $[0, T]$, where $C_{\mathbf{l d}}\left(\mathbf{T}, R^{+}\right)$denotes the set of all left dense continuous functions from \mathbf{T} to R^{+};
$\left(\mathrm{C}_{3}\right) \varphi:[-r, 0] \rightarrow R^{+}$is continuous and $r>0$;
$\left(\mathrm{C}_{4}\right) \mu:[0, T] \rightarrow[-r, T]$ is continuous, $\mu(t) \leq 0$ for all t;
$\left(\mathrm{C}_{5}\right) B_{0}: R \rightarrow R$ is continuous and satisfies the condition that there are $A \geq B \geq 0$ such that

$$
B v \leq B_{0}(v) \leq A v, \text { for all } v \geq 0
$$

We note that in [16], Li and Shen studied the problem (1.1) when $\mathbf{T}=R, \varphi(t)=0, t \in[-r, 0]$ and the nonlinear term is not involved $u(\mu(t))$. They imposed conditions on f to yield at least three positive solutions to the problem (1.1), by applying the Five Functionals Fixed Point Theorem [17] (which is a generalization of the Leggett-Williams Fixed-Point Theorem [18]).

In [14], Song and Xiao considered the problem (1.1), by using a double fixed-point theorem due to Avery et al. [19] in a cone, and obtained the existence of two positive solutions.

Motivated by [14] and [16], we shall show that the problem (1.1), has at least three positive solutions by means of the Five Functionals Fixed Point Theorem.

Let γ, β, θ be nonnegative, continuous, convex functionals on P and α, ψ be nonnegative, continuous, concave functionals on P. Then, for nonnegative real numbers h, a, b, d and c, we define the convex sets

$$
\begin{aligned}
P(\gamma, c) & =\{x \in P: \gamma(x)<c\} \\
P(\gamma, \alpha, a, c) & =\{x \in P: a \leq \alpha(x), \gamma(x) \leq c\} \\
Q(\gamma, \beta, d, c) & =\{x \in P: \beta(x) \leq d, \gamma(x) \leq c\} \\
P(\gamma, \theta, \alpha, a, b, c) & =\{x \in P: a \leq \alpha(x), \theta(x) \leq b, \gamma(x) \leq c\} \text { and } \\
Q(\gamma, \beta, \psi, h, d, c) & =\{x \in P: h \leq \psi(x), \beta(x) \leq d, \gamma(x) \leq c\}
\end{aligned}
$$

To prove our main results, we need the following Five Functionals Fixed Point Theorem[17].

Theorem 1.1. Let P be a cone in a real Banach space E. Suppose there exist positive numbers c and M, nonnegative, continuous, concave functionals α and ψ on P, and nonnegative, continuous, convex functionals γ, β and θ on P, with

$$
\alpha(x) \leq \beta(x) \text { and }\|x\| \leq M \gamma(x)
$$

for all $x \in \overline{P(\gamma, c)}$. Suppose

$$
F: \overline{P(\gamma, c)} \rightarrow \overline{P(\gamma, c)}
$$

is completely continuous and there exist nonnegative numbers h, a, k, b, with $0<a<b$ such that:
(i) $\{x \in P(\gamma, \theta, \alpha, b, k, c): \alpha(x)>b\} \neq \phi$ and $\alpha(F x)>b$ for $x \in P(\gamma, \theta, \alpha, b, k, c)$;
(ii) $\{x \in Q(\gamma, \beta, \psi, h, a, c): \beta(x)<a\} \neq \phi$ and $\beta(F x)<a$ for $x \in Q(\gamma, \beta, \psi, h, a, c)$;
(iii) $\alpha(F x)>b$ for $x \in P(\gamma, \alpha, b, c)$ with $\theta(F x)>k$;
(iv) $\beta(F x)<a$ for $x \in Q(\gamma, \beta, a, c)$ with $\psi(F x)<h$.

Then F has at least three fixed points $x_{1}, x_{2}, x_{3} \in \overline{P(\gamma, c)}$ such that

$$
\beta\left(x_{1}\right)<a, b<\alpha\left(x_{2}\right), \text { and } a<\beta\left(x_{3}\right) \text { with } \alpha\left(x_{3}\right)<b
$$

2 Existence of Three Positive Solutions

We note that $u(t)$ is a solution of the BVP (1.1) if and only if

$$
u(t)= \begin{cases}B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) & t \in[0, T], \\ +\int_{0}^{t} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \triangle s, & \\ \varphi(t), & t \in[-r, 0]\end{cases}
$$

Let $E=C_{\mathbf{l d}}([0, T], R)$ be endowed with $\|u\|=\sup _{t \in[0, T]}|u(t)|$, so E is a Banach space. Define cone $P \subset E$ by

$$
P=\left\{u \in E: u \text { is concave and nonnegative valued on }[0, T], \text { and } u^{\triangle}(T)=0\right\}
$$

For each $u \in E$, extend $u(t)$ to $[-r, T]$ with $u(t)=\varphi(t)$ for $t \in[-r, 0]$.
Define $F: P \rightarrow E$ by

$$
\begin{aligned}
(F u)(t)= & B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) \\
& +\int_{0}^{t} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \Delta s, t \in[0, T]
\end{aligned}
$$

We seek a point, u_{1}, of F in the cone P. Define

$$
u(t)= \begin{cases}u_{1}(t), & t \in[0, T] \\ \varphi(t), & t \in[-r, 0]\end{cases}
$$

Then $u(t)$ denotes a positive solution of the BVP (1.1).
We have the following results
Lemma 2.1. Let $u \in P$, then
(1) $u(t) \geq \frac{t}{T}\|u\|$ for $t \in[0, T]$, and
(2) $\tau u(\varsigma) \leq \varsigma u(\tau)$ for $0<\tau<\varsigma<T$ and $\tau, \varsigma \in \mathbf{T}$.

Proof. (1) is Lemma 3.1 of [12]. It is easy to conclude that (2) is satisfied by the concavity of u.

Set

$$
Y_{1}=\{t \in[0, T]: \mu(t)<0\} ; Y_{2}=\{t \in[0, T]: \mu(t) \geq 0\} ; Y_{3}=Y_{1} \cap[l, T]
$$

Throughout this paper, we assume $Y_{3} \neq \phi$ and $\int_{Y_{3}} a(r) \nabla r>0$.
Let $l \in \mathbf{T}$ be fixed such that $0<\eta<l<T$, and define the nonnegative, continuous, concave functionals α, ψ and the nonnegative, continuous, convex functionals β, θ, γ on the cone P respectively as

$$
\begin{aligned}
& \gamma(u)=\theta(u)=\max _{t \in[0, \eta]} u(t)=u(\eta), \alpha(u)=\min _{t \in[l, T]} u(t)=u(l) \\
& \beta(u)=\max _{t \in[0, l]} u(t)=u(l), \psi(u)=\min _{t \in[\eta, T]} u(t)=u(\eta)
\end{aligned}
$$

We observe that $\alpha(u)=\beta(u)$ for each $u \in P$.
In addition, by Lemma 2.1, we have $\gamma(u)=u(\eta) \geq \frac{\eta}{T}\|u\|$. Hence $\|u\| \leq \frac{T}{\eta} \gamma(u)$ for all $u \in P$.
For convenience, we define

$$
\begin{gathered}
\mu=(A+\eta) \Phi_{q}\left(\int_{0}^{T} a(r) \nabla r\right), \delta=(B+l) \Phi_{q}\left(\int_{Y_{3}} a(r) \nabla r\right), \\
\lambda=(A+l) \Phi_{q}\left(\int_{0}^{T} a(r) \nabla r\right) .
\end{gathered}
$$

We now state growth conditions on f so that the BVP (1.1) has at least three positive solutions.

Theorem 2.1. Let $0<a<\frac{l}{T} b<\frac{\eta l}{T^{2}} c, \mu b<\delta c$, and suppose that f satisfies the following conditions:
$\left(\mathrm{H}_{1}\right) f(u, \varphi(s))<\Phi_{p}\left(\frac{c}{\mu}\right)$, if $0 \leq u \leq \frac{T}{\eta} c$, uniformly in $s \in[-r, 0]$, and $f\left(u_{1}, u_{2}\right)<\Phi_{p}\left(\frac{c}{\mu}\right)$, if $0 \leq u_{i} \leq \frac{T}{\eta} c, i=1,2$;
$\left(\mathrm{H}_{2}\right) f(u, \varphi(s))>\Phi_{p}\left(\frac{b}{\delta}\right)$, if $b \leq u \leq\left(\frac{T}{\eta}\right)^{2} b$, uniformly in $s \in[-r, 0]$;
$\left(\mathrm{H}_{3}\right) f(u, \varphi(s))<\Phi_{p}\left(\frac{a}{\lambda}\right)$, if $0 \leq u \leq \frac{T}{l} a$, uniformly in $s \in[-r, 0]$, and $f\left(u_{1}, u_{2}\right)<\Phi_{p}\left(\frac{a}{\lambda}\right)$, if $0 \leq u_{i} \leq \frac{T}{T} a, i=1,2$.

Then the BVP (1.1) has at least three positive solutions of the form

$$
u(t)= \begin{cases}u_{i}(t), & t \in[0, T], i=1,2,3, \\ \varphi(t), & t \in[-r, 0],\end{cases}
$$

where $\max _{t \in[0, l]} u_{1}(t)<a, \min _{t \in[l, T]} u_{2}(t)>b$, and $a<\max _{t \in[0, l]} u_{3}(t)$ with $\min _{t \in[l, T]} u_{3}(t)<b$.
Proof. By [12], it is known that $F: P \rightarrow P$ is completely continuous.
Let $u \in \overline{P(\gamma, c)}$, then $\gamma(u)=\max _{t \in[0, \eta]} u(t)=u(\eta) \leq c$, consequently, $0 \leq u(t) \leq c$ for $t \in[0, \eta]$. Since $u(\eta) \geq \frac{\eta}{T} u(T)$, so $\|u\|=u(T) \leq \frac{T}{\eta} u(\eta) \leq \frac{T}{\eta} c$, this implies

$$
0 \leq u(t) \leq \frac{T}{\eta} c, \text { for } t \in[0, T] .
$$

From $\left(\mathrm{H}_{1}\right)$, we have

$$
\begin{aligned}
\gamma(F u) & =(F u)(\eta) \\
& =B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right)+\int_{0}^{\eta} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \Delta s \\
& \leq A \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)+\eta \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
& \left.=(A+\eta) \Phi_{q}\left[\int_{Y_{1}} a(r) f(u(r), \varphi(\mu(r))) \nabla r+\int_{Y_{2}} a(r) f u(r), u(\mu(r))\right) \nabla r\right] \\
& <(A+\eta) \Phi_{q}\left(\int_{0}^{T} a(r) \nabla r\right) \frac{c}{\mu} \\
& =c .
\end{aligned}
$$

Therefore

$$
F u \in \overline{P(\gamma, c)}
$$

We now turn to property (i) of Theorem 1.1. Choosing $u \equiv \frac{T}{\eta} b, k=\frac{T}{\eta} b$, it follows that

$$
\alpha(u)=u(l)=\frac{T}{\eta} b>b, \theta(u)=u(\eta)=\frac{T}{\eta} b=k, \gamma(u)=u(\eta)=\frac{T}{\eta} b<c
$$

which shows that $\{u \in P(\gamma, \theta, \alpha, b, k, c): \alpha(u)>b\} \neq \phi$, and for $u \in P\left(\gamma, \theta, \alpha, b, \frac{T}{\eta} b, c\right)$, we have

$$
b \leq u(t) \leq\left(\frac{T}{\eta}\right)^{2} b, \text { for } t \in[l, T]
$$

From $\left(\mathrm{H}_{2}\right)$, we have

$$
\begin{aligned}
\alpha(F u) & =(F u)(l) \\
& =B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right)+\int_{0}^{l} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \Delta s \\
& \geq B \Phi_{q}\left(\int_{l}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)+l \Phi_{q}\left(\int_{l}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
& \geq(B+l) \Phi_{q}\left(\int_{Y_{3}} a(r) f(u(r), \varphi(\mu(r))) \nabla r\right) \\
& >(B+l) \Phi_{q}\left(\int_{Y_{3}} a(r) \nabla r\right) \frac{b}{\delta} \\
& =b
\end{aligned}
$$

We conclude that (i) of Theorem 1.1 is satisfied.
We next address (ii) of Theorem 1.1. If we take $u \equiv \frac{\eta}{T} a, h=\frac{\eta}{T} a$, then

$$
\gamma(u)=u(\eta)=\frac{\eta}{T} a<c, \psi(u)=u(\eta)=\frac{\eta}{T} a=h, \beta(u)=u(l)=\frac{\eta}{T} a<a
$$

From this we know that $\{u \in Q(\gamma, \beta, \psi, h, a, c): \beta(u)<a\} \neq \phi$. If $u \in Q\left(\gamma, \beta, \psi, \frac{\eta}{T} a, a, c\right)$, then

$$
0 \leq u(t) \leq \frac{T}{l} a, \text { for } t \in[0, T]
$$

From $\left(\mathrm{H}_{3}\right)$, we have

$$
\begin{aligned}
\beta(F u) & =(F u)(l) \\
& =B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right)+\int_{0}^{l} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \Delta s \\
& \leq A \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)+l \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
& =(A+l) \Phi_{q}\left[\int_{Y_{1}} a(r) f(u(r), \varphi(\mu(r))) \nabla r+\int_{Y_{2}} a(r) f(u(r), u(\mu(r))) \nabla r\right] \\
& <(A+l) \Phi_{q}\left(\int_{0}^{T} a(r) \nabla r\right) \frac{a}{\lambda} \\
& =a
\end{aligned}
$$

Now we show that (iii) of Theorem 1.1 is satisfied. If $u \in P(\gamma, \alpha, b, c)$ and $\theta(F u)=F u(\eta)>$ $\frac{T}{\eta} b$, then

$$
\alpha(F u) \geq(F u)(l)=\frac{l}{T} F u(l) \geq \frac{l}{T} F u(\eta)>\frac{l}{\eta} b>b
$$

Finally, if $u \in Q(\alpha, \beta, a, c)$ and $\psi(F u)=F u(\eta)<\frac{\eta}{T} a$, then from (2) of the Lemma 2.1 we have

$$
\beta(F u)=F u(l) \leq \frac{T}{l} F u(l) \leq \frac{T}{\eta} F u(\eta)<a .
$$

which shows that condition (iv) of Theorem 1.1 is fulfilled.
Thus, all the conditions of Theorem 1.1 are satisfied. Hence, F has at least three fixed points u_{1}, u_{2}, u_{3} satisfying

$$
\beta\left(u_{1}\right)<a, b<\alpha\left(u_{2}\right), \text { and } a<\beta\left(u_{3}\right) \text { with } \alpha\left(u_{3}\right)<b
$$

Let

$$
u(t)= \begin{cases}u_{i}(t), & t \in[0, T], i=1,2,3 \\ \varphi(t), & t \in[-r, 0]\end{cases}
$$

which are three positive solutions of the BVP (1.1).

References

[1] R. P. Agarwal, M. Bohner, Quadratic functionals for second order matrix equations on time scales, Nonlinear Anal.TMA, 33(1998)675-692.
[2] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Result Math., 35(1999)3-22.
[3] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
[4] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
[5] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996
[6] S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Result Math., 18(1990)18-56.
[7] R. P. Agarwal, M. Bohner, P. J. Y. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 99(1999)153-166.
[8] D. R. Anderson, Solutions to second-order three-point problems on time scales, J. Difference. Equations Appl., 8(2002)673-688.
[9] C. J. Chyan, J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl., 245(2000)547-559.
[10] L. H. Erbe, A. Peterson, Positive solutions for a nonlinear differential equations on a measure chain, Math. Comput. Modelling., 32(5-6)(2000)571-585.
[11] J. Henderson, Multiple solutions for 2 mth -order Sturm-Liouville boundary value problems on a measure chain, J. Difference Equations. Appl., 6(2000)417-429.
[12] Z. M. He, Double positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales, J. Comput. Appl. Math., 182(2005)304-315.
[13] E. R. Kaufmann, Y. N. Raffoul, Positive solutions of nonlinear functional dynamic equations on a time scales, Nonlinear Anal., 62(2005)1267-1276.
[14] C. X. Song, C. T. Xiao, Positive solutions for p-Laplacian functional dynamic equations on time scales, Nonlinear Anal., 66(2007)1989-1998.
[15] J. P. Sun, A new existence theorem for right focal boundary value problems on a measure chain, Appl. Math. Letters., 18(2005)41-47.
[16] J. L. Li, J. H. Shen, Existence of three positive solutions for boundary value problems with p-Laplacian, J. Math. Anal. Appl., 311(2005)457-465.
[17] R. I. Avery, J. Henderson, Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian, J. Math. Anal. Appl., 277(2003)395-404.
[18] R. W. Leggett, L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28(1979)673-688.
[19] R. I. Avery, C. J. Chyan, J. Henderson, Twin solutions of boundary value problems for ordinary differential equations and finite difference equation, Comput. Math. Appl., 42(2001)695-704.
(Received June 9, 2008)

