EXISTENCE OF Ψ - BOUNDED SOLUTIONS FOR LINEAR DIFFERENCE EQUATIONS ON \mathbb{Z}

Aurel Diamandescu
University of Craiova

Abstract

In this paper ${ }^{1}$, we give a necessary and sufficient condition for the existence of Ψ - bounded solutions for the nonhomogeneous linear difference equation $\mathrm{x}(\mathrm{n}+1)=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})+\mathrm{f}(\mathrm{n})$ on \mathbb{Z}. In addition, we give a result in connection with the asymptotic behavior of the Ψ - bounded solutions of this equation.

1. Introduction

The problem of boundedness of the solutions for the system of ordinary differential equations $\mathrm{x}^{\prime}=\mathrm{A}(\mathrm{t}) \mathrm{x}+\mathrm{f}(\mathrm{t})$ was studied by Coppel in [2]. In [3], [4], [5], the author proposes a novel concept, Ψ - boundedness of solutions (Ψ being a matrix function), which is interesting and useful in some practical cases and presents the existence condition for such solutions. Also, in [1], the author associates this problem with the concept of Ψ - dichotomy on \mathbb{R} of the system $\mathrm{x}^{\prime}=\mathrm{A}(\mathrm{t}) \mathrm{x}$.

Naturally, one wonders whether there are any similar concepts and results on the solutions of difference equations, which can be seen as the discrete version of differential equations.

In [7], the authors extend the concept of Ψ - boundedness to the solutions of difference equation

$$
\begin{equation*}
\mathrm{x}(\mathrm{n}+1)=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})+\mathrm{f}(\mathrm{n}) \tag{1}
\end{equation*}
$$

(via Ψ - bounded sequence) and establish a necessary and sufficient condition for existence of Ψ - bounded solutions for the nonhomogeneous linear difference equation (1) in case f is a Ψ - summable sequence on \mathbb{N}.

In [6], the author proved a necessary and sufficient condition for the existence of Ψ - bounded solutions of (1) in case f is a Ψ - bounded sequence on \mathbb{N}.

Similarly, we can consider solutions of (1) which are bounded not only \mathbb{N} but on the \mathbb{Z}.

In this case, the conditions for the existence of at least one Ψ-bounded solution are rather more complicated, as we will see below.

In this paper, we give a necessary and sufficient condition so that the nonhomogeneous linear difference equation (1) have at least one Ψ-bounded solution on \mathbb{Z} for every Ψ-summable function f on \mathbb{Z}

Here, Ψ is a matrix function. The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the components of the solutions.

[^0]
2. Preliminaries

Let \mathbb{R}^{d} be the Euclidean d -space. For $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{d}}\right)^{\mathrm{T}} \in \mathbb{R}^{\mathrm{d}}$, let $\|\mathrm{x}\|=$ $\max \left\{\left|\mathrm{x}_{\mathrm{i}}\right|,\left|\mathrm{x}_{2}, \ldots\right| \mathrm{x}_{\mathrm{d}}\right\}$ be the norm of x . For a $\mathrm{d} \times \mathrm{d}$ real matrix $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$, the norm $|A|$ is defined by $|A|=\sup _{\|x\| \leq 1}\|A x\|$. It is well-known that $|A|=\max _{1 \leq i \leq d} \sum_{j=1}^{d}\left|a_{i j}\right|$.

Let $\Psi_{\mathrm{i}}: \mathbb{Z} \longrightarrow(0, \infty), \mathrm{i}=1,2, \ldots \mathrm{~d}$ and let the matrix function

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots \Psi_{\mathrm{d}}\right] .
$$

Then, $\Psi(\mathrm{n})$ is invertible for each $\mathrm{n} \in \mathbb{Z}$.
Definition 1. A function $\varphi: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$ is called Ψ - bounded iff the function $\Psi \varphi$ is bounded (i.e. there exists $\mathrm{M}>0$ such that $\|\Psi(\mathrm{n}) \varphi(\mathrm{n})\| \leq \mathrm{M}$ for all $\mathrm{n} \in \mathbb{Z}$).

Definition 2. A function $\varphi: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$ is called $\Psi-$ summable on \mathbb{Z} if $\sum_{\mathrm{n}=-\infty}^{\infty}\|\Psi(\mathrm{n}) \varphi(\mathrm{n})\|$ is convergent (i.e. $\lim _{\substack{\mathrm{p} \rightarrow-\infty \\ \mathrm{q} \rightarrow+\infty}} \sum_{\mathrm{n}=\mathrm{p}}^{\mathrm{q}}\|\Psi(\mathrm{n}) \varphi(\mathrm{n})\|$ is finite).

Consider the nonautonomous difference linear equation

$$
\begin{equation*}
\mathrm{y}(\mathrm{n}+1)=\mathrm{A}(\mathrm{n}) \mathrm{y}(\mathrm{n}) \tag{2}
\end{equation*}
$$

where the $d \times d$ real matrix $A(n)$ is invertible at $n \in \mathbb{Z}$. Let Y be the fundamental matrix of (2) with $Y(0)=I_{d}$ (identity $d \times d$ matrix). It is well-known that
i). $Y(n)=\left\{\begin{array}{ll}A(n-1) A(n-2) \cdots A(1) A(0), & n>0 \\ I_{d}, & n=0 \\ {[A(-1) A(-2) \cdots A(n)]^{-1},} & n<0\end{array}\right.$,
ii). $\mathrm{Y}(\mathrm{n}+1)=\mathrm{A}(\mathrm{n}) \mathrm{Y}(\mathrm{n})$ for all $\mathrm{n} \in \mathbb{Z}$
iii). the solution of (2) with the initial condition $y(0)=y_{0}$ is

$$
\mathrm{y}(\mathrm{n})=\mathrm{Y}(\mathrm{n}) \mathrm{y}_{0}, \mathrm{n} \in \mathbb{Z} ;
$$

iv). Y is invertible for each $n \in \mathbb{Z}$ and

$$
Y^{-1}(n)= \begin{cases}A^{-1}(0) A^{-1}(1) \cdots A^{-1}(n-1), & n>0 \\ I_{d}, & n=0 \\ A(-1) A(-2) \cdots A(n), & n<0\end{cases}
$$

Let the vector space \mathbb{R}^{d} represented as a direct sum of three subspaces $\mathrm{X}_{-}, \mathrm{X}_{0}$, X_{+}such that a solution y of (2) is Ψ - bounded on \mathbb{Z} if and only if $\mathrm{y}(0) \in \mathrm{X}_{0}$ and $\Psi-$ bounded on $\mathbb{Z}_{+}=\{0,1,2, \cdots\}$ if and only if $\mathrm{y}(0) \in \mathrm{X}_{-} \oplus \mathrm{X}_{0}$. Also let $\mathrm{P}_{-}, \mathrm{P}_{0}$, P_{+}denote the corresponding projection of \mathbb{R}^{d} onto $\mathrm{X}_{-}, \mathrm{X}_{0}, \mathrm{X}_{+}$respectively.

3. Main result

The main result of this paper is the following.
Theorem 1. The equation (1) has at least one Ψ - bounded solution on \mathbb{Z} for every Ψ - summable function f on \mathbb{Z} if and only if there is a positive constant K such that

$$
\begin{cases}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right| & \leq \mathrm{K}, \mathrm{k}+1 \leq \min \{0, \mathrm{n}\} \tag{3}\\ \left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right| & \leq \mathrm{K}, \mathrm{n}<\mathrm{k}+1 \leq 0 \\ \left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right| & \leq \mathrm{K}, \quad 0<\mathrm{k}+1 \leq \mathrm{n} \\ \left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right| & \leq \mathrm{K}, \mathrm{k}+1>\max \{0, \mathrm{n}\}\end{cases}
$$

Proof. First, we prove the "only if" part. We define the sets:

$$
\begin{aligned}
& \mathrm{B}_{\Psi}=\left\{\mathrm{x}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}} \mid \mathrm{x} \text { is } \Psi-\text { bounded }\right\}, \\
& \mathrm{B}=\left\{\mathrm{x}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}} \mid \mathrm{x} \text { is } \Psi-\text { summable on } \mathbb{Z}\right\}, \\
& \mathrm{D}=\left\{\mathrm{x}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}} \mid \mathrm{x} \in \mathrm{~B}_{\Psi}, \mathrm{x}(0) \in \mathrm{X}_{-} \oplus \mathrm{X}_{+},(\mathrm{x}(\mathrm{n}+1)-\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})) \in \mathrm{B}\right\}
\end{aligned}
$$

Obviously, $\mathrm{B}_{\Psi}, \mathrm{B}$ and D are vector spaces over \mathbb{R} and the functionals

$$
\begin{aligned}
& \mathrm{x} \longmapsto\|\mathrm{x}\|_{\mathrm{B}_{\Psi}}=\sup _{\mathrm{n} \in \mathbb{Z}}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|, \\
& \mathrm{x} \longmapsto\|\mathrm{x}\|_{\mathrm{B}}=\sum_{\mathrm{n}=-\infty}^{\infty}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|, \\
& \mathrm{x} \longmapsto\|\mathrm{x}\|_{\mathrm{D}}=\|\mathrm{x}\|_{\mathrm{B}_{\Psi}}+\|\mathrm{x}(\mathrm{n}+1)-\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})\|_{\mathrm{B}}
\end{aligned}
$$

are norms on $\mathrm{B}_{\Psi}, \mathrm{B}$ and D respectively.
Step 1. It is a simple exercise that $\left(\mathrm{B}_{\Psi},\|\cdot\|_{\mathrm{B}_{\Psi}}\right)$ and $\left(\mathrm{B},\|\cdot\|_{\mathrm{B}}\right)$ are Banach spaces.

Step 2. ($\mathrm{D},\|\cdot\|_{\mathrm{D}}$) is a Banach space.
Let $\left(x_{p}\right)_{p \in \mathbb{N}}$ be a fundamental sequence in D. Then, $\left(x_{p}\right)_{p \in \mathbb{N}}$ is a fundamental sequence in B_{Ψ}. Therefore, there exists a Ψ - bounded function $\mathrm{x}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$ such that $\lim _{\mathrm{p} \rightarrow \infty} \Psi(\mathrm{n}) \mathrm{x}_{\mathrm{p}}(\mathrm{n})=\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})$, uniformly on \mathbb{Z}. From

$$
\left\|\mathrm{x}_{\mathrm{p}}(\mathrm{n})-\mathrm{x}(\mathrm{n})\right\| \leq\left|\Psi^{-1}(\mathrm{n})\right|\left\|\Psi(\mathrm{n})\left(\mathrm{x}_{\mathrm{p}}(\mathrm{n})-\mathrm{x}(\mathrm{n})\right)\right\|,
$$

it follows that the sequence $\left(x_{p}\right)_{p \in \mathbb{N}}$ is almost uniformly convergent to function x on \mathbb{Z}. Because $\mathrm{x}_{\mathrm{p}}(0) \in \mathrm{X}_{-} \oplus \mathrm{X}_{+}, \mathrm{p} \in \mathbb{N}$, it follows that $\mathrm{x}(0) \in \mathrm{X}_{-} \oplus \mathrm{X}_{+}$.

On the other hand, the sequence $\left(f_{p}\right)_{p \in \mathbb{N}}, f_{p}(n)=x_{p}(n+1)-A(n) x_{p}(n), n \in \mathbb{Z}$, is a fundamental sequence in B. Therefore, there exists a function $f \in B$ such that

$$
\sum_{\mathrm{n}=-\infty}^{\infty}\left\|\Psi(\mathrm{n}) \mathrm{f}_{\mathrm{p}}(\mathrm{n})-\Psi(\mathrm{n}) \mathrm{f}(\mathrm{n})\right\| \longrightarrow 0 \text { as } \mathrm{p} \longrightarrow \infty
$$

It follows that $\Psi(n) f_{p}(n) \longrightarrow \Psi(n) f(n)$ and $f_{p}(n) \longrightarrow f(n)$ for each $n \in \mathbb{Z}$.
For a fixed but arbitrary $n \in \mathbb{Z}, \mathrm{n}>0$, we have

$$
\begin{aligned}
& x(n+1)-x(0)=\lim _{p \rightarrow \infty}\left[x_{p}(n+1)-x_{p}(0)\right]= \\
& =\lim _{p \rightarrow \infty} \sum_{i=0}^{n}\left[x_{p}(i+1)-x_{p}(i)\right]= \\
& =\lim _{p \rightarrow \infty} \sum_{i=0}^{n}\left[x_{p}(i+1)-A(i) x_{p}(i)+A(i) x_{p}(i)-x_{p}(i)\right]= \\
& =\lim _{p \rightarrow \infty} \sum_{i=0}^{n}\left[f_{p}(i)-f(i)+f(i)+A(i) x_{p}(i)-x_{p}(i)\right]=
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{i=0 \\
n}}^{n}[f(i)+A(i) x(i)-x(i)]= \\
& =\sum_{i=0}^{1}[f(i)+A(i) x(i)-x(i)]+f(n)+A(n) x(n)-x(n)= \\
& =x(n)-x(0)+f(n)+A(n) x(n)-x(n)=A(n) x(n)+f(n)-x(0) .
\end{aligned}
$$

Similarly, we have

$$
\mathrm{x}(1)-\mathrm{x}(0)=\mathrm{A}(0) \mathrm{x}(0)+\mathrm{f}(0)-\mathrm{x}(0)
$$

and, for $\mathrm{n} \in \mathbb{Z}, \mathrm{n}<0$,

$$
\begin{aligned}
& x(n)-x(0)=\lim _{p \rightarrow \infty}\left[x_{p}(n)-x_{p}(0)\right]=\lim _{p \rightarrow \infty} \sum_{i=n}^{-1}\left[x_{p}(i)-x_{p}(i+1)\right]= \\
& =\lim _{p \rightarrow \infty} \sum_{i=n}^{-1}\left[x_{p}(i)-A(i) x_{p}(i)+A(i) x_{p}(i)-x_{p}(i+1)\right]= \\
& =\lim _{p \rightarrow \infty} \sum_{i=n}^{-1}\left[x_{p}(i)-A(i) x_{p}(i)-f_{p}(i)\right]= \\
& =\sum_{i=n}^{-1}[x(i)-A(i) x(i)-f(i)]= \\
& =\sum_{i=n+1}^{-1}[x(i)-A(i) x(i)-f(i)]+x(n)-A(n) x(n)-f(n)= \\
& =x(n+1)-x(0)+x(n)-A(n) x(n)-f(n) .
\end{aligned}
$$

By the above relations, we have that

$$
\mathrm{x}(\mathrm{n}+1)-\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})=\mathrm{f}(\mathrm{n}), \mathrm{n} \in \mathbb{Z}
$$

It follows that $\mathrm{x} \in \mathrm{D}$.
Now, from the relations

$$
\begin{aligned}
& \sum_{\substack{n \\
\| x_{\mathrm{p}}-x}}^{\infty} \| \Psi\left(\mathrm{n} \|_{\mathrm{B}_{\Psi}} \longrightarrow 0 \text { as } \mathrm{p} \longrightarrow \mathrm{x}\right)(\mathrm{n}+1)-\Psi(\mathrm{n}) \mathrm{A}(\mathrm{n})\left(\mathrm{x}_{\mathrm{p}}-\mathrm{x}\right)(\mathrm{n}) \| \longrightarrow 0 \text { as } \mathrm{p} \longrightarrow \infty
\end{aligned}
$$ it follows that $\left\|x_{p}-x\right\|_{D} \longrightarrow 0$ as $p \longrightarrow+\infty$.

Thus, $\left(\mathrm{D},\|\cdot\|_{\mathrm{D}}\right)$ is a Banach space.
Step 3. There exists a positive constant K such that, for every $f \in B$ and for corresponding solution $\mathrm{x} \in \mathrm{D}$ of (1), we have

$$
\begin{equation*}
\|\mathrm{x}\|_{\mathrm{B}_{\Psi}} \leq \mathrm{K} \cdot\|\mathrm{f}\|_{\mathrm{B}} . \tag{4}
\end{equation*}
$$

We define the operator $\mathrm{T}: \mathrm{D} \longrightarrow \mathrm{B},(\mathrm{Tx})(\mathrm{n})=\mathrm{x}(\mathrm{n}+1)-\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n}), \mathrm{n} \in \mathbb{Z}$.
Clearly, T is linear and bounded, with $\|\mathrm{T}\| \leq 1$. Let $\mathrm{Tx}=0$ be. Then, $\mathrm{x} \in \mathrm{D}$ and $\mathrm{x}(\mathrm{n}+1)=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})$. This shows that x is a $\Psi-$ bounded solution of (2) with $x(0) \in X_{-} \oplus X_{+}$. From the Definition of X_{0}, we have $x(0) \in X_{0}$. Thus, $\mathrm{x}(0) \in \mathrm{X}_{0} \cap\left(\mathrm{X}_{-} \oplus \mathrm{X}_{+}\right)=\{0\}$. It follows that $\mathrm{x}=0$. This means that the operator T is one-to-one.

Now, for $f \in B$, let x be a Ψ - bounded solution of the equation (1). Let z be the solution of the Cauchy problem

$$
\mathrm{z}(\mathrm{n}+1)=\mathrm{A}(\mathrm{n}) \mathrm{z}(\mathrm{n})+\mathrm{f}(\mathrm{n}), \mathrm{z}(0)=\left(\mathrm{P}_{-}+\mathrm{P}_{+}\right) \mathrm{x}(0)
$$

Then, the function $u=x-z$ is a solution of the equation (2) with

$$
u(0)=x(0)-z(0)=P_{0} x(0) \in X_{0} .
$$

It follows that the function u is $\Psi-$ bounded on \mathbb{Z}. Thus, the function z is $\Psi-$ bounded on \mathbb{Z}. It follows that $\mathrm{z} \in \mathrm{D}$ and $\mathrm{Tz}=\mathrm{f}$. Consequently, T is onto.

From a fundamental result of Banach "If T is a bounded one-to-one linear operator from a Banach space onto another, then the inverse operator T^{-1} is also bounded", we have that
$\left\|\mathrm{T}^{-1} \mathrm{f}\right\|_{\mathrm{D}} \leq\left\|\mathrm{T}^{-1}\right\|\|\mathrm{f}\|_{\mathrm{B}}$, for $\mathrm{f} \in \mathrm{B}$.
Denoting $\mathrm{T}^{-1} \mathrm{f}=\mathrm{x}$, we have $\|\mathrm{x}\|_{\mathrm{D}}=\|\mathrm{x}\|_{\mathrm{B}_{\Psi}}+\|\mathrm{f}\|_{\mathrm{B}} \leq\left\|\mathrm{T}^{-1}\right\|\|\mathrm{f}\|_{\mathrm{B}}$ and then $\|\mathrm{x}\|_{\mathrm{B}_{\Psi}} \leq\left(\left\|\mathrm{T}^{-1}\right\|-1\right)\|\mathrm{f}\|_{\mathrm{B}}$.
Thus, we have (4), where $\mathrm{K}=\left\|\mathrm{T}^{-1}\right\|-1$.
Step 4. The end of the proof.
For a fixed but arbitrary $\mathrm{k} \in \mathbb{Z}, \xi \in \mathbb{R}^{\mathrm{d}}$, we consider the function $\mathrm{f}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$ defined by

$$
\mathrm{f}(\mathrm{n})= \begin{cases}\Psi^{-1}(\mathrm{n}) \xi, & \text { if } \mathrm{n}=\mathrm{k} \\ 0, & \text { elsewhere }\end{cases}
$$

Obviously, $\mathrm{f} \in \mathrm{B}$ and $\|\mathrm{f}\|_{\mathrm{B}}=\|\xi\|$. The corresponding solution $\mathrm{x} \in \mathrm{D}$ of (1) is $\mathrm{x}(\mathrm{n})=\mathrm{G}(\mathrm{n}, \mathrm{k}+1) \mathrm{f}(\mathrm{k})$, where

$$
G(n, k)=\left\{\begin{array}{ll}
Y(n) P_{-} Y^{-1}(k) & k \leq \min \{0, n\} \\
-Y(n)\left(P_{0}+P_{+}\right) Y^{-1}(k) & n<k \leq 0 \\
Y(n)\left(P_{0}+P_{-}\right) Y^{-1}(k) & 0<k \leq n \\
-Y(n) P_{+} Y^{-1}(k) & k>\max \{0, n\}
\end{array} .\right.
$$

Indeed, we prove this in more cases:
Case $\mathrm{k} \leq-1$. a). for $\mathrm{k}+1 \leq \mathrm{n} \leq 0$,
$\mathrm{x}(\mathrm{n}+1)=\mathrm{G}(\mathrm{n}+1, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{Y}(\mathrm{n}+1) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=$
$=A(n) Y(n) P_{-} Y^{-1}(k+1) f(k)=A(n) x(n)=A(n) x(n)+f(n)($ because $f(n)=0)$;
b). for $\mathrm{n}=\mathrm{k}$,
$\mathrm{x}(\mathrm{n}+1)=\mathrm{G}(\mathrm{n}+1, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{Y}(\mathrm{n}+1) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=$
$=Y(k+1)\left(I-P_{0}-P_{+}\right) \cdot Y^{-1}(k+1) f(k)=f(k)-A(k) Y(k)\left(P_{0}+P_{+}\right) Y^{-1}(k+1) f(k)=$
$=\mathrm{f}(\mathrm{k})+\mathrm{A}(\mathrm{k}) \mathrm{G}(\mathrm{k}, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})+\mathrm{f}(\mathrm{n})$;
c). for $\mathrm{n}<\mathrm{k}$,
$\mathrm{x}(\mathrm{n}+1)=\mathrm{G}(\mathrm{n}+1, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=-\mathrm{Y}(\mathrm{n}+1)\left(\mathrm{P}_{0}+\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=$
$=-\mathrm{A}(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})+\mathrm{f}(\mathrm{n}) ;$
d). for $\mathrm{n}>0$,
$\mathrm{x}(\mathrm{n}+1)=\mathrm{G}(\mathrm{n}+1, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{Y}(\mathrm{n}+1) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=$
$=A(n) Y(n) P_{-} Y^{-1}(k+1) f(k)=A(n) x(n)=A(n) x(n)+f(n) ;$
Case $\mathrm{k}>-1 . \alpha)$. for $\mathrm{n}<0$,
$\mathrm{x}(\mathrm{n}+1)=\mathrm{G}(\mathrm{n}+1, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=-\mathrm{Y}(\mathrm{n}+1) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=$
$=-\mathrm{A}(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})=\mathrm{A}(\mathrm{n}) \mathrm{x}(\mathrm{n})+\mathrm{f}(\mathrm{n})$;
β). for $\mathrm{n}=0$ and $\mathrm{k}=0$,
$\mathrm{x}(1)=\mathrm{G}(1,1) \mathrm{f}(0)=\mathrm{Y}(1)\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right) \mathrm{Y}^{-1}(1) \mathrm{f}(0)=\mathrm{Y}(1)\left(\mathrm{I}-\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(1) \mathrm{f}(0)=$ $=\mathrm{f}(0)-\mathrm{A}(0) \mathrm{Y}(0) \mathrm{P}_{+} \mathrm{Y}^{-1}(1) \mathrm{f}(0)=\mathrm{A}(0) \mathrm{x}(0)+\mathrm{f}(0)$;
$\gamma) . \mathrm{n}=0$ and $\mathrm{k}>0$,
$x(1)=G(1, k+1) f(k)=-Y(1) P_{+} Y^{-1}(k+1) f(k)=-A(0) Y(0) P_{+} Y^{-1}(k+1) f(k)=$
$=\mathrm{A}(0) \mathrm{G}(0, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{A}(0) \mathrm{x}(0)+\mathrm{f}(0)$;
$\delta)$. for $0<\mathrm{n}=\mathrm{k}$,
$\mathrm{x}(\mathrm{n}+1)=\mathrm{G}(\mathrm{k}+1, \mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{Y}(\mathrm{k}+1)\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=$
$=\mathrm{Y}(\mathrm{k}+1)\left(\mathrm{I}-\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=\mathrm{f}(\mathrm{k})-\mathrm{A}(\mathrm{k}) \mathrm{Y}(\mathrm{k}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})=$

$$
\begin{aligned}
& =A(n) x(n)+f(n) \\
& \varepsilon) \text {. for } 0<n<k \\
& x(n+1)=G(n+1, k+1) f(k)=-Y(n+1) P_{+} Y^{-1}(k+1) f(k)= \\
& =-A(n) Y(n) P_{+} Y^{-1}(k+1) f(k)=A(n) x(n)=A(n) x(n)+f(n) \\
& \zeta) . \text { for } n \geq k+1 \\
& x(n+1)=G(n+1, k+1) f(k)=Y(n+1)\left(P_{0}+P_{-}\right) Y^{-1}(k+1) f(k)= \\
& =A(n) Y(n)\left(P_{0}+P_{-}\right) Y^{-1}(k+1) f(k)=A(n) x(n)=A(n) x(n)+f(n) .
\end{aligned}
$$

On the other hand, $x(0) \in X_{-} \oplus X_{+}$, because

$$
x(0)=G(0, k+1) f(k)=\left\{\begin{array}{ll}
+P_{-} Y^{-1}(k+1) f(k), & k+1 \leq 0 \\
-P_{+} Y^{-1}(k+1) f(k), & k+1>0
\end{array} .\right.
$$

Finally, we have
$x(n)=G(n, k+1) f(k)=\left\{\begin{array}{ll}-Y(n)\left(P_{0}+P_{+}\right) Y^{-1}(k+1) f(k), & n<k+1 \leq 0 \\ Y(n)\left(P_{0}+P_{-}\right) Y^{-1}(k+1) f(k), & n \geq k+1 \geq 0\end{array}\right.$.
From the Definitions of $\mathrm{X}_{-}, \mathrm{X}_{0}$ and X_{+}, it follows that the function x is $\Psi-$ bounded on \mathbb{Z}_{-}and \mathbb{N}. Thus, x is the solution of (1) in D .

Now, we have, $\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|=\|\Psi(\mathrm{n}) \mathrm{G}(\mathrm{n}, \mathrm{k}+1) \mathrm{f}(\mathrm{k})\|=\left\|\Psi(\mathrm{n}) \mathrm{G}(\mathrm{n}, \mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \xi\right\|$.
The inequality (4) becomes

$$
\left\|\Psi(\mathrm{n}) \mathrm{G}(\mathrm{n}, \mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \xi\right\| \leq \mathrm{K}\|\xi\| \text {, for all } \mathrm{k}, \mathrm{n} \in \mathbb{Z}, \xi \in \mathbb{R} \mathrm{~d}^{\mathrm{d}}
$$

It follows that $\left|\Psi(\mathrm{n}) \mathrm{G}(\mathrm{n}, \mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right| \leq \mathrm{K}$, for all $\mathrm{k}, \mathrm{n} \in \mathbb{Z}$, which is equivalent with (3).

Now, we prove the "if" part.
For a given Ψ - summable function $\mathrm{f}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$, consider $u: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$ defined by

$$
u(n)=\left\{\begin{array}{cl}
\sum_{k=-\infty}^{n-1} Y(n) P_{-} Y^{-1}(k+1) f(k)-\sum_{k=n}^{-1} Y(n) P_{0} Y^{-1}(k+1) f(k)- & n<0 \\
-\sum_{k=n}^{\infty} Y(n) P_{+} Y^{-1}(k+1) f(k), & n=0 \\
\sum_{k=-\infty}^{-1} Y(0) P_{-} Y^{-1}(k+1) f(k)-\sum_{k=0}^{\infty} Y(0) P_{+} Y^{-1}(k+1) f(k), & \\
\sum_{k=-\infty}^{n-1} Y(n) P_{-} Y^{-1}(k+1) f(k)+\sum_{k=0}^{n-1} Y(n) P_{0} Y^{-1}(k+1) f(k)- & n>0 \\
-\sum_{k=n}^{\infty} Y(n) P_{+} Y^{-1}(k+1) f(k), &
\end{array}\right.
$$

Step 5. The function u is well-defined.
For $\mathrm{p}, \mathrm{q} \in \mathbb{Z}, \mathrm{q}<0<\mathrm{p}$, we have

$$
\begin{aligned}
& \sum_{k=q}^{-1}\left\|Y(0) P_{-} Y^{-1}(k+1) f(k)\right\|+\sum_{k=0}^{p}\left\|Y(0) P_{+} Y^{-1}(k+1) f(k)\right\| \leq \\
& \leq\left|\Psi^{-1}(0)\right| \sum_{k=q}^{-1}\left|\Psi(0) Y(0) P_{-} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\|+ \\
& +\left|\Psi^{-1}(0)\right| \sum_{k=0}^{p}\left|\Psi(0) Y(0) P_{+} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\| \leq \\
& \leq K\left|\Psi^{-1}(0)\right|\left(\sum_{k=q}^{p}\|\Psi(k) f(k)\|\right),
\end{aligned}
$$

and then, $\sum_{k=-\infty}^{-1} Y(0) P_{-} Y^{-1}(k+1) f(k)$ and $\sum_{k=0}^{\infty} Y(0) P_{+} Y^{-1}(k+1) f(k)$ are absolutely convergent series. Thus, $u(0)$ is well-defined.

For $m, n \in \mathbb{Z}, m \geq n>0$, we have

$$
\begin{aligned}
& \sum_{k=n}^{m}\left\|Y(n) P_{+} Y^{-1}(k+1) f(k)\right\|= \\
& =\sum_{k=n}^{m}\left\|\Psi^{-1}(n)\left(\Psi(n) Y(n) P_{+} Y^{-1}(k+1) \Psi^{-1}(k)\right)(\Psi(k) f(k))\right\| \leq \\
& \leq\left|\Psi^{-1}(n)\right| \sum_{k=n}^{m}\left|\Psi(n) Y(n) P_{+} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\| \leq \\
& \leq K\left|\Psi^{-1}(n)\right|\left(\sum_{k=n}^{m}\|\Psi(k) f(k)\|\right),
\end{aligned}
$$

and then, $\sum_{k=n}^{\infty} Y(n) P_{+} Y^{-1}(k+1) f(k)$ is an absolutely convergent series for $n>0$.
For $m \in \mathbb{Z}, n \in \mathbb{N}, m<n-1$, we have

$$
\begin{aligned}
& \sum_{\mathrm{k}=\mathrm{m}}^{\mathrm{n}-1}\left\|Y(\mathrm{n}) P_{-} Y^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})\right\|= \\
& =\sum_{\mathrm{k}=\mathrm{m}}^{\mathrm{n}-1}\left\|\Psi^{-1}(\mathrm{n})\left(\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} Y^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right)(\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k}))\right\| \\
& \leq\left|\Psi^{-1}(\mathrm{n})\right| \sum_{\mathrm{k}=\mathrm{m}}^{\mathrm{n}-1}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} Y^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right|\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\| \leq \\
& \leq \mathrm{K}\left|\Psi^{-1}(\mathrm{n})\right| \sum_{\mathrm{k}=\mathrm{m}}^{\mathrm{n}-1}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|
\end{aligned}
$$

and then, $\sum_{k=-\infty}^{n-1} Y(n) P_{-} Y^{-1}(k+1) f(k)$ is an absolutely convergent series for $n>0$.
Thus, the function u is well defined for $n \geq 0$.
Similarly, the function u is well defined for $n<0$.
Step 6. The function u is a solution of the equation (1).
Indeed, using the expresion of the function u, we obtain:

$$
\begin{aligned}
& \text { - } u(1)=\sum_{k=-\infty}^{0} Y(1) P_{-} Y^{-1}(k+1) f(k)+Y(1) P_{0} Y^{-1}(1) f(0)- \\
& -\sum_{k=1}^{\infty} Y(1) P_{+} Y^{-1}(k+1) f(k)=A(0)\left[\sum_{k=-\infty}^{0} Y(0) P_{-} Y^{-1}(k+1) f(k)+\right. \\
& \left.+Y(0) P_{0} Y^{-1}(1) f(0)-\sum_{k=1}^{\infty} Y(0) P_{+} Y^{-1}(k+1) f(k)\right]= \\
& =A(0)\left[\sum_{k=-\infty}^{-1} Y(0) P_{-} Y^{-1}(k+1) f(k)+Y(0) P_{-} Y^{-1}(1) f(0)+Y(0) P_{0} Y^{-1}(1) f(0)\right. \\
& \left.-\sum_{k=0}^{\infty} Y(0) P_{+} Y^{-1}(k+1) f(k)+Y(0) P_{+} Y^{-1}(1) f(0)\right]= \\
& =A(0) u(0)+A(0) Y(0)\left(P_{-}+P_{0}+P_{+}\right) Y^{-1}(1) f(0)=A(0) u(0)+f(0) ; \\
& \text { - for } n>0, u(n+1)=\sum_{k=-\infty}^{n} Y(n+1) P_{-} Y^{-1}(k+1) f(k)+ \\
& +\sum_{k=0}^{n} Y(n+1) P_{0} Y^{-1}(k+1) f(k)-\sum_{k=n+1}^{\infty} Y(n+1) P_{+} Y^{-1}(k+1) f(k)=
\end{aligned}
$$

$$
\begin{aligned}
& =A(n)\left[\sum_{k=-\infty}^{n-1} Y(n) P_{-} Y^{-1}(k+1) f(k)+Y(n) P_{-} Y^{-1}(n+1) f(n)+\right. \\
& +\sum_{k=0}^{n-1} Y(n) P_{0} Y^{-1}(k+1) f(k)+Y(n) P_{0} Y^{-1}(n+1) f(n)- \\
& \left.-\sum_{k=n}^{\infty} Y(n) P_{+} Y^{-1}(k+1) f(k)+Y(n) P_{+} Y^{-1}(n+1) f(n)\right]= \\
& =A(n) u(n)+Y(n+1)\left(P_{-}+P_{0}+P_{+}\right) Y^{-1}(n+1) f(n)=A(n) u(n)+f(n) ; \\
& -u(0)=\sum_{k=-\infty}^{-1} Y(0) P_{-} Y^{-1}(k+1) f(k)-\sum_{k=0}^{\infty} Y(0) P_{+} Y^{-1}(k+1) f(k)= \\
& =A(-1)\left[\sum_{k=-\infty}^{-1} Y(-1) P_{-} Y^{-1}(k+1) f(k)-\sum_{k=0}^{\infty} Y(-1) P_{+} Y^{-1}(k+1) f(k)\right]= \\
& =A(-1)\left[\sum_{k=-\infty}^{-2} Y(-1) P_{-} Y^{-1}(k+1) f(k)+Y(-1) P_{-} Y^{-1}(0) f(-1)-\right. \\
& -\sum_{k=-1}^{-1} Y(-1) P_{0} Y^{-1}(k+1) f(k)+Y(-1) P_{0} Y^{-1}(0) f(-1)- \\
& \left.-\sum_{k=-1}^{\infty} Y(-1) P_{+} Y^{-1}(k+1) f(k)+Y(-1) P_{+} Y^{-1}(0) f(-1)\right]= \\
& =A(-1) u(-1)+Y(0)\left(P_{-}+P_{0}+P_{+}\right) Y^{-1}(0) f(-1)= \\
& =A(-1) u(-1)+f(-1) ;
\end{aligned}
$$

$$
\text { - for } \mathrm{n}<-1, \mathrm{u}(\mathrm{n}+1)=\sum_{\mathrm{k}=-\infty}^{\mathrm{n}} \mathrm{Y}(\mathrm{n}+1) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})-
$$

$$
-\sum_{k=n+1}^{-1} Y(n+1) P_{0} Y^{-1}(k+1) f(k)-\sum_{k=n+1}^{\infty} Y(n+1) P_{+} Y^{-1}(k+1) f(k)=
$$

$$
=A(n)\left[\sum_{k=-\infty}^{n-1} Y(n) P_{-} Y^{-1}(k+1) f(k)+Y(n) P_{-} Y^{-1}(n+1) f(n)-\right.
$$

$$
-\sum_{\substack{\mathrm{k}=\mathrm{n} \\ \infty}}^{-1} \mathrm{Y}(\mathrm{n}) \mathrm{P}_{0} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})+\mathrm{Y}(\mathrm{n}) \mathrm{P}_{0} \mathrm{Y}^{-1}(\mathrm{n}+1) \mathrm{f}(\mathrm{n})-
$$

$$
\left.-\sum_{k=n}^{\infty} \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})+\mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{n}+1) \mathrm{f}(\mathrm{n})\right]=
$$

$$
=\mathrm{A}(\mathrm{n}) \mathrm{u}(\mathrm{n})+\mathrm{Y}(\mathrm{n}+1)\left(\mathrm{P}_{-}+\mathrm{P}_{0}+\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(\mathrm{n}+1) \mathrm{f}(\mathrm{n})=\mathrm{A}(\mathrm{n}) \mathrm{u}(\mathrm{n})+\mathrm{f}(\mathrm{n})
$$

These relations show that the function u is a solution of the equation (1).
Step 7. The function u is $\Psi-$ bounded on \mathbb{Z}.
Indeed, for $\mathrm{n}>0$ we have

$$
\begin{aligned}
& \|\Psi(n) \mathrm{u}(\mathrm{n})\|=\| \sum_{\mathrm{k}=-\infty}^{\mathrm{n}-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})+ \\
& +\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{0} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})- \\
& -\sum_{\mathrm{k}=\mathrm{n}}^{\infty} \Psi(\mathrm{n}) Y(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k}) \|= \\
& =\| \sum_{\mathrm{k}=-\infty}^{-1} \Psi(\mathrm{n}) Y(\mathrm{Y}) \mathrm{P}_{-} Y^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})+ \\
& +\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+P_{-}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})-
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{k=n}^{\infty} \Psi(n) Y(n) P_{+} Y^{-1}(k+1) \Psi^{-1}(k) \Psi(k) f(k) \| \leq \\
& \leq \sum_{k=-\infty}^{-1}\left|\Psi(n) Y(n) P_{-} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\|+ \\
& +\sum_{k=0}^{\mathrm{n}-1}\left|\Psi(n) Y(n)\left(P_{0}+P_{-}\right) Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\|+ \\
& +\sum_{k=n}^{\infty}\left|\Psi(n) Y(n) P_{+} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\| \leq \\
& \leq K\left(\sum_{k=-\infty}^{-1}\|\Psi(k) f(k)\|+\sum_{k=0}^{n-1}\|\Psi(k) f(k)\|+\sum_{k=n}^{\infty}\|\Psi(k) f(k)\|\right)= \\
& =K \sum_{k=-\infty}^{+\infty}\|\Psi(k) f(k)\|=K\|f\|_{B} .
\end{aligned}
$$

For $\mathrm{n}<0$, we have

$$
\begin{aligned}
& \|\Psi(n) \mathrm{u}(\mathrm{n})\|=\| \sum_{\mathrm{k}=-\infty}^{\mathrm{n}-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})- \\
& -\sum_{\mathrm{k}=\mathrm{n}}^{-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{0} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})- \\
& -\sum_{\mathrm{k}=\mathrm{n}}^{\infty} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k}) \|= \\
& =\| \sum_{\mathrm{k}=-\infty}^{\mathrm{n}-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})- \\
& -\sum_{\mathrm{k}=\mathrm{n}}^{-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})- \\
& -\sum_{\mathrm{k}=0}^{\infty} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k}) \| \leq \\
& \leq \sum_{\mathrm{k}=-\infty}^{\mathrm{n}-1}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right|\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+ \\
& +\sum_{\mathrm{k}=\mathrm{n}}^{-1}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{+}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right|\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+ \\
& +\sum_{\mathrm{k}=0}^{\infty}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right|\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\| \leq \\
& \leq \mathrm{K}\left(\sum_{\mathrm{k}=-\infty}^{\mathrm{n}-1}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+\sum_{\mathrm{k}=\mathrm{n}}^{-1}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+\sum_{\mathrm{k}=0}^{\infty}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|\right)= \\
& =\mathrm{K} \sum_{\mathrm{k}=-\infty}^{+\infty}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|=\mathrm{K}\|\mathrm{f}\|_{\mathrm{B}} .
\end{aligned}
$$

Similarly, $\|\Psi(0) \mathrm{u}(0)\| \leq \mathrm{K}\|\mathrm{f}\|_{\mathrm{B}}$.
Therefore, $\|\Psi(\mathrm{n}) \mathrm{u}(\mathrm{n})\| \leq \mathrm{K}\|\mathrm{f}\|_{\mathrm{B}}$, for all $\mathrm{n} \in \mathbb{Z}$.
Thus, the solution u of the equation (1) is $\Psi-$ bounded on \mathbb{Z}.
The proof is now complete.
Corollary 1. If the homogeneous equation (2) has no nontrivial Ψ - bounded solution on \mathbb{Z}, then, the equation (1) has a unique Ψ - bounded solution on \mathbb{Z} for every Ψ - summable function f on \mathbb{Z} if and only if there exists a positive constant K such that, for $\mathrm{k}, \mathrm{n} \in \mathbb{Z}$,

$$
\left\{\begin{array}{l}
\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right| \leq \mathrm{K}, \text { for } \mathrm{k}+1 \leq \mathrm{n} \tag{5}\\
\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right| \leq \mathrm{K}, \text { for } \mathrm{n}<\mathrm{k}+1
\end{array}\right.
$$

Proof. Indeed, in this case, $\mathrm{P}_{0}=0$. Now, the Corollary follows from the above Theorem.

Finally, we give a result in which we will see that the asymptotic behavior of Ψ - bounded solutions of (1) is determined completely by the asymptotic behavior of the fundamental matrix Y of (2).

Theorem 2. Suppose that:
1°. the fundamental matrix Y of (2) satisfies the conditions (3) for some $\mathrm{K}>0$ and the conditions
i). $\lim _{\mathrm{n} \rightarrow \pm \infty}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{0}\right|=0$;
ii). $\lim _{\mathrm{n} \rightarrow+\infty}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-}\right|=0$;
iii). $\lim _{n \rightarrow-\infty}\left|\Psi(n) Y(n) P_{+}\right|=0$.
2°. the function $\mathrm{f}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$ is Ψ - summable on \mathbb{Z}.
Then, every Ψ - bounded solution x of (1) satisfies the condition

$$
\lim _{\mathrm{n} \rightarrow \pm \infty}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|=0
$$

Proof. Let x be a Ψ - bounded solution of (1). Let u be the $\Psi-$ bounded solution of (1) from the proof of Theorem 1 ("if" part).

Let the function $y(n)=x(n)-u(n)-Y(n) P_{0}(x(0)-u(0)), n \in \mathbb{Z}$.
It is easy to see that y is a Ψ - bounded solution of (2) and then $\mathrm{y}(0) \in \mathrm{X}_{0}$.
On the other hand,

$$
\mathrm{y}(0)=\left(\mathrm{I}-\mathrm{P}_{0}\right)(\mathrm{x}(0)-\mathrm{u}(0))=\left(\mathrm{P}_{-}+\mathrm{P}_{+}\right)(\mathrm{x}(0)-\mathrm{u}(0)) \in \mathrm{X}_{-} \oplus \mathrm{X}_{+} .
$$

Thus, $\mathrm{y}(0) \in\left(\mathrm{X}_{-} \oplus \mathrm{X}_{+}\right) \cap \mathrm{X}_{0}=\{0\}$. It follows that $\mathrm{y}=0$ and then

$$
\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n})+\mathrm{Y}(\mathrm{n}) \mathrm{P}_{0}(\mathrm{x}(0)-\mathrm{u}(0)), \mathrm{n} \in \mathbb{Z}
$$

Now, we prove that $\lim _{\mathrm{n} \rightarrow \pm \infty}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|=0$.
For $\mathrm{n}>0$, we have

$$
\begin{aligned}
& x(n)=Y(n) P_{0}(x(0)-u(0))+\sum_{k=-\infty}^{n-1} Y(n) P_{-} Y^{-1}(k+1) f(k)+ \\
& +\sum_{k=0}^{n-1} Y(n) P_{0} Y^{-1}(k+1) f(k)-\sum_{k=n}^{\infty} Y(n) P_{+} Y^{-1}(k+1) f(k)
\end{aligned}
$$

and then

$$
\begin{aligned}
& \Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})=\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{0}(\mathrm{x}(0)-\mathrm{u}(0))+ \\
& +\sum_{\mathrm{k}=-\infty}^{-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})+ \\
& +\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})- \\
& -\sum_{\mathrm{k}=\mathrm{n}}^{\infty} \Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k}) \Psi(\mathrm{k}) \mathrm{f}(\mathrm{k}) .
\end{aligned}
$$

By the hypotheses, for a given $\varepsilon>0$, there exist:

- $\mathrm{n}_{1} \in \mathbb{N}$ such that, for $\mathrm{n} \geq \mathrm{n}_{1}$,

$$
\sum_{\mathrm{k}=-\infty}^{-\mathrm{n}}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|<\frac{\varepsilon}{5 \mathrm{~K}} \text { and } \sum_{\mathrm{k}=\mathrm{n}}^{\infty}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|<\frac{\varepsilon}{5 \mathrm{~K}}
$$

- $\mathrm{n}_{2} \in \mathbb{N}, \mathrm{n}_{2}>\mathrm{n}_{1}$, such that, for $\mathrm{n} \geq \mathrm{n}_{2}$,

$$
\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-}\right|<\frac{\varepsilon}{5}\left(1+\sum_{\mathrm{k}=-\mathrm{n}_{1}+1}^{-1}\left\|\mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})\right\|\right)^{-1}
$$

- $\mathrm{n}_{3} \in \mathbb{N}, \mathrm{n}_{3}>\mathrm{n}_{2}$, such that, for $\mathrm{n} \geq \mathrm{n}_{3}$,

$$
\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{0}\right|<\frac{\varepsilon}{5}(1+\|\mathrm{x}(0)-\mathrm{u}(0)\|)^{-1}
$$

- $\mathrm{n}_{4} \in \mathbb{N}, \mathrm{n}_{4}>\mathrm{n}_{3}$, such that, for $\mathrm{n} \geq \mathrm{n}_{4}$,

$$
\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right)\right|<\frac{\varepsilon}{5}\left(1+\sum_{\mathrm{k}=0}^{\mathrm{n}_{1}}\left\|\mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})\right\|\right)^{-1}
$$

Then, for $\mathrm{n} \geq \mathrm{n}_{4}$ we have

$$
\begin{aligned}
& \|\Psi(\mathrm{n}) \overline{\mathrm{x}}(\mathrm{n})\| \leq\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{0}\right|\|\mathrm{x}(0)-\mathrm{u}(0)\|+ \\
& +\sum_{\mathrm{k}=-\infty}^{-\mathrm{n}_{1}}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right|\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+ \\
& +\sum_{\mathrm{k}=-\mathrm{n}_{1}+1}^{-1}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-}\right|\left\|\mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})\right\|+ \\
& +\sum_{\mathrm{k}=0}^{\mathrm{n}_{1}}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right)\right|\left\|\mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})\right\|+ \\
& +\sum_{\mathrm{k}=\mathrm{n}_{1}+1}^{\mathrm{n}-1}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right) \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right|\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+ \\
& +\sum_{\mathrm{k}=\mathrm{n}}^{\infty}\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{+} \mathrm{Y}^{-1}(\mathrm{k}+1) \Psi^{-1}(\mathrm{k})\right|\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|< \\
& <\frac{\varepsilon}{5}(1+\|\mathrm{x}(0)-\mathrm{u}(0)\|)^{-1}\|\mathrm{x}(0)-\mathrm{u}(0)\|+ \\
& +\mathrm{K} \sum_{\mathrm{k}=-\infty}^{-\mathrm{n}_{1}}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n}) \mathrm{P}_{-}\right| \sum_{\mathrm{k}=-\mathrm{n}_{1}+1}^{-1}\left\|\mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})\right\|+ \\
& +\left|\Psi(\mathrm{n}) \mathrm{Y}(\mathrm{n})\left(\mathrm{P}_{0}+\mathrm{P}_{-}\right)\right| \sum_{\mathrm{k}=0}^{\mathrm{n}_{1}}\left\|\mathrm{Y}^{-1}(\mathrm{k}+1) \mathrm{f}(\mathrm{k})\right\|+ \\
& +\mathrm{K} \sum_{\mathrm{k}=\mathrm{n}_{1}+1}^{\mathrm{n}-1}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|+\mathrm{K}_{\mathrm{k}=\mathrm{n}}^{\infty}\|\Psi(\mathrm{k}) \mathrm{f}(\mathrm{k})\|< \\
& <\frac{\varepsilon}{5}+\mathrm{K} \frac{\varepsilon}{5 \mathrm{~K}}+\frac{\varepsilon}{5}+\frac{\varepsilon}{5}+\mathrm{K}_{5 \mathrm{E}}^{\varepsilon}=\varepsilon .
\end{aligned}
$$

This shows that $\lim _{\mathrm{n} \rightarrow+\infty}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|=0$.
Similarly, $\lim _{\mathrm{n} \rightarrow-\infty}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|=0$.
The proof is now complete.

Corollary 2. Suppose that:
1°. the homogeneous equation (2) has no nontrivial Ψ - bounded solution on \mathbb{Z};
2°. the fundamental matrix Y of (2) satisfies:
a). the conditions (5) for some $\mathrm{K}>0$;
b). the conditions:

$$
\begin{aligned}
& \text { i). } \lim _{n \rightarrow+\infty}\left|\Psi(n) Y(n) P_{-}\right|=0 \\
& \text { ii). } \lim _{n \rightarrow-\infty}\left|\Psi(n) Y(n) P_{+}\right|=0 .
\end{aligned}
$$

2°. the function $\mathrm{f}: \mathbb{Z} \longrightarrow \mathbb{R}^{\mathrm{d}}$ is Ψ - summable on \mathbb{Z}.
Then, the equation (1) has a unique solution x on \mathbb{Z} such that

$$
\lim _{\mathrm{n} \rightarrow \pm \infty}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|=0
$$

Proof. It results from the above Corollary and Theorem 2.
Note that the Theorem 2 (and the Corollary 2) is no longer true if we require that the function f be Ψ - bounded on \mathbb{Z}, instead of the condition 2° of the Theorem. This is shown by the next

Example 1. Consider the system (1) with

$$
\mathrm{A}(\mathrm{n})=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 2
\end{array}\right)
$$

and

$$
\mathrm{f}(\mathrm{n})=\left\{\begin{array}{ll}
\binom{1}{0}, & \mathrm{n}=0,1,2, \ldots \\
\binom{0}{0}, & \mathrm{n}=-1,-2 \ldots
\end{array} .\right.
$$

Then, $\mathrm{Y}(\mathrm{n})=\left(\begin{array}{ll}2^{-\mathrm{n}} & 0 \\ 0 & 2^{\mathrm{n}}\end{array}\right)$ is the fundamental matrix of (2) with $\mathrm{Y}(0)=\mathrm{I}_{2}$.
Consider $\Psi(\mathrm{n})=\left(\begin{array}{ll}1 & 0 \\ 0 & 3^{-\mathrm{n}}\end{array}\right), \mathrm{n} \in \mathbb{Z}$.
The first hypothesis of the Theorem 2 is satisfied with

$$
\mathrm{P}_{0}=\mathrm{O}_{2}, \mathrm{P}_{-}=\mathrm{I}_{2}, \mathrm{P}_{+}=\mathrm{O}_{2} \text { and } \mathrm{K}=1
$$

In addition, we have $\|\Psi(\mathrm{n}) \mathrm{f}(\mathrm{n})\|=1$ for $\mathrm{n} \geq 0$ and $\|\Psi(\mathrm{n}) \mathrm{f}(\mathrm{n})\|=0$ for $\mathrm{n}<0$. The function f is not Ψ - summable on \mathbb{Z}, but it is Ψ - bounded on \mathbb{Z}.

On the other hand, the solutions on \mathbb{Z} of the system (1) are

$$
x(n)=\left\{\begin{array}{ll}
\binom{2^{-n} c_{1}}{2^{n} c_{2}}, & \text { for } n<0, \\
\binom{2^{-n} c_{1}+2-2^{1-n}}{2^{n} c_{2}}, & \text { for } n \geq 0
\end{array} \quad, c_{1}, c_{2} \in \mathbb{R}\right.
$$

It results from this that there is no solution x for $\lim _{\mathrm{n} \rightarrow \pm \infty}\|\Psi(\mathrm{n}) \mathrm{x}(\mathrm{n})\|=0$.
Acknowledgment. The author would like to thank the anonymous referee for his/her valuable comments and suggestions.

References.

[1]. P. N. Boi - Existence of $\Psi-$ bounded solutions on R for nonhomogeneous linear differential equations, Electronic Journal of Differential Equations, Vol. 2007(2007), No. 52, pp. 1-10.
[2]. W. A. Coppel - Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[3]. A. Diamandescu - Existence of Ψ - bounded solutions for a system of differential equations, Electronic Journal of Differential Equations, Vol. 2004(2004), No. 63, pp. 1-6,
[4]. A. Diamandescu - Note on the Ψ - boundedness of the solutions of a system of differential equations, Acta. Math. Univ. Comenianae, Vol. LXXIII, 2(2004), pp. 223-233
[5]. A. Diamandescu - A Note on the $\Psi-$ boundedness for differential systems, Bull. Math. Soc. Sc. math. Roumanie, Tome 48(96), No. 1, 2005, 33-43.
[6]. A. Diamandescu - Existence of $\Psi-$ bounded solutions for nonhomogeneous linear difference equations, to appear.
[7]. Y. Han, J. Hong - Existence of Ψ - bounded solutions for linear difference equations, Applied Mathematics Letters, 20(2007) 301-305.

Author's address
Aurel Diamandescu
University of Craiova,
Department of Applied Mathematics,
13, "Al. I. Cuza" st., 200585 Craiova, România.
E-mail: adiamandescu@central.ucv.ro

(Received June 5, 2008)

[^0]: ${ }^{1} 2000$ Mathematics Subject Classification: 39A11, 39A10
 Keywords: difference equations, $\Psi-$ bounded solutions on \mathbb{Z}.

