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Abstract. We prove the existence of a nodal solution with two nodal domains for the
Dirichlet problem with indefinite nonlinearity

−∆pu = λ|u|p−2u + f (x)|u|γ−2u

in a bounded domain Ω ⊂ Rn, provided λ ∈ (−∞, λ∗1), where λ∗1 is a critical spectral
value. The obtained solution has the least energy among all nodal solutions on the
interval (−∞, min{λ∗1 , λ2}), where λ2 is the second Dirichlet eigenvalue of −∆p in Ω.
Moreover, the obtained solution forms a branch with continuous energy on (−∞, λ∗1).
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1 Introduction and main results

Let Ω ⊂ RN be a bounded domain with the smooth boundary ∂Ω, N ≥ 1. We consider the
Dirichlet boundary value problem{−∆pu = λ|u|p−2u + f (x)|u|γ−2u, x ∈ Ω,

u|∂Ω = 0,
(D)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian, λ, p, γ ∈ R and

1 < p < γ < p∗, where p∗ =

{
pN

N−p if p < N,

+∞ if p ≥ N.
(1.1)

The function f ∈ L∞(Ω) is assumed to be sign-changing and therefore the nonlinearity of (D)
is called indefinite. Hereinafter we denote

Ω+ := {x ∈ Ω : f (x) > 0}.
BEmail: bobkovve@gmail.com
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The questions of existence, nonexistence and multiplicity of positive solutions to the prob-
lems of type (D) have been comprehensively studied under various assumptions on differen-
tial operator, spatial domain, coefficients and structure of nonlinearity, see, e.g., [5, 11, 14, 15].
In particular, in [14] the explicit critical value λ∗ was introduced, such that (D) admits at least
one positive solution for any λ < λ∗ and no positive solutions for λ > λ∗. In spite of plenty
of references, the multiplicity of solutions on a local interval (λ1, λ1 + ε) was proved in [11]
using the fibering method, and this result was extended in [15] to the interval (λ1, λ∗1) (see
Figure 1.1), where

λ∗1 := inf
u∈W1,p

0

{∫
Ω |∇u|p dx∫

Ω |u|p dx
:
∫

Ω
f (x)|u|γ dx ≥ 0

}
. (1.2)

Note that λ∗1 < +∞ if ν(Ω+) > 0, where ν is the n-th Lebesgue measure, and under the
assumption

∫
Ω f (x)|ϕ1|γ dx < 0 one can guarantee that λ∗1 > λ1, whereas λ∗1 = λ1 in the

opposite case. Here by (λ1, ϕ1) we denote the first eigenpair of the operator −∆p on Ω with
zero Dirichlet boundary conditions [3].

At the same time, in the last few decades the questions of existence, multiplicity and
qualitative properties of nodal (sign-changing) solutions to the wide class of elliptic equations
have attracted a lot of attention, cf. [1, 4, 6, 8, 9, 17] and survey [19] for historical overview
and references. Nevertheless, to our best knowledge, there are only few articles concerning
the existence of nodal solutions for the problems of type (D). We can mention [1, 9, 17], where
some of existence and multiplicity results have been proved using different topological and
variational arguments. Note that these works deal mainly with the Laplace operator (p = 2).
Moreover, to the best of our knowledge, the questions of the qualitative properties of nodal
solutions to (D) such as the precise number of nodal domains, property of the least energy
among all nodal solutions, formation of branches, etc., have not been concerned.

λ1 λ2 λ∗1 λ∗

Eλ

positive

nodal

Figure 1.1: Branches of solutions w.r.t the energy Eλ; ν(Ω+) > 0, λ2 < λ∗1 .

In the present article we apply the constructive minimization technique of the Nehari
manifolds with the fibering approach (see, e.g., [4, 8]) for the problem (D), which allows us to
prove the existence of a nodal solution with two nodal domains for any λ ∈ (−∞, λ∗1) and the
least energy among all nodal solutions on (−∞, min{λ∗1 , λ2}) (see Figure 1.1). Here by λ2 we
denote the second eigenvalue of zero Dirichlet −∆p in Ω (see (1.4)).

A similar approach has been used in [6] to obtain the sign-changing solutions with positive
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energy for the elliptic equations with convex-concave nonlinearity{
−∆u = λ|u|q−2u + |u|γ−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

where 1 < q < 2 < γ < 2∗. The method of proof carries over to the corresponding problem
with the p-Laplacian.

Finally, we note that the disadvantage of the Nehari manifolds method consists in the fact
that it cannot be used in proving the existence of nodal solutions with negative energy for (D)
and (1.3), however the existence of such solutions is known [17].

Before introducing our main results let us recall some common notations.
By a weak solution of (D) we mean a critical point u ∈W1,p

0 (Ω) of the energy functional

Eλ(u) :=
1
p

Hλ(u)−
1
γ

F(u),

where
Hλ(u) :=

∫
Ω
|∇u|p dx− λ

∫
Ω
|u|p dx, F(u) :=

∫
Ω

f (x) |u|γ dx.

As usual, by W1,p
0 := W1,p

0 (Ω) we denote the standard Sobolev space equipped with the norm

‖u‖ =
(∫

Ω
|∇u|p dx

)1/p

.

By a weak nodal solution of (D) we mean a critical point u ∈ W1,p
0 of Eλ such that u± 6≡ 0

a.e. in Ω, where u+ and u− are the positive and negative parts of u, respectively. Note that
u± ∈ W1,p

0 (Ω) (see, e.g., [16, Corollary A.5, p. 54]). Moreover, using the classical bootstrap
arguments (see, e.g., [10, Lemma 3.2, p. 114]) it is not hard to show that under assumptions
(1.1) and f ∈ L∞(Ω) each weak solution of (D) belongs to L∞(Ω), and therefore to C1,α(Ω),
by [18]. By a nodal domain of a function u ∈ C(Ω) we denote any maximal connected open
subset of {x ∈ Ω : u(x) 6= 0}.

From the definition of a weak solution it follows that any weak solution u ∈ W1,p
0 of (D)

satisfies
Qλ(u) := 〈DEλ(u), u〉 = Hλ(u)− F(u) = 0,

and therefore any nontrivial solution belongs to the so-called Nehari manifold

Nλ := {u ∈W1,p
0 \ {0} : Qλ(u) = 0}.

Clearly, each nodal solution of (D) belongs to the nodal Nehari set

Mλ := {u ∈W1,p
0 : u± ∈ Nλ}.

The Nehari manifolds method [4, 8] enables one to find a nodal solution of (D) as a min-
imum point of the energy functional Eλ on Mλ. However, due to the fact that Eλ possesses
critical points both with positive and nonpositive energy (see Lemma 2.2 below), a minimiza-
tion sequence for Eλ over Mλ will converge, in general, to a positive solution. To overcome
this difficulty, we distinguish critical points with the different signs of energy and seek for a
nodal solution of (D) as a minimum point of Eλ on the following subset ofMλ:

N 1
λ := {u ∈W1,p

0 : u± ∈ Nλ, Eλ(u±) > 0}.

Our main result is the following.
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Theorem 1.1. Assume that (1.1) is satisfied and λ < λ∗1 .

1. If ν(Ω+) > 0, then there exists a weak nodal solution uλ ∈ N 1
λ of the problem (D) with precisely

two nodal domains. Moreover, uλ has the least energy among all weak nodal solutions of (D) on
(−∞, min{λ∗1 , λ2}), i.e.,

−∞ < Eλ(uλ) ≤ Eλ(wλ)

for any weak nodal solution wλ of (D) on this interval.

2. If ν(Ω+) = 0, then there are no weak nodal solutions of the problem (D) for any λ ∈
(−∞, min{λ∗1 , λ2}).

In the proof it will be convenient to use the following variational characterization of the
second eigenvalue λ2 of the zero Dirichlet −∆p in Ω (see [12], p. 195):

λ2 := inf
A∈F2

sup
u∈A

∫
Ω
|∇u|p dx, (1.4)

where

F2 :=
{
A ⊂ S : ∃ h ∈ C(S1,A) : h is odd

}
, S :=

{
u ∈W1,p

0 :
∫

Ω
|u|p dx = 1

}
(1.5)

and S1 represents the unit sphere in R2. By ϕ2 ∈ W1,p
0 we denote the corresponding second

eigenfunction and note that ϕ±2 6= 0.

The second result concerns the formation of branches by the nodal solutions to (D). We
say that the family {uλ} of critical points of Eλ forms a continuous branch on (a, b) (with respect
to levels of Eλ) if the map

E(·)(u(·)) : (a, b) −→ R

is a continuous function.

Theorem 1.2. Assume that (1.1) is satisfied and ν(Ω+) > 0. Then the set of nodal solutions uλ for
(D), given by Theorem 1.1, forms a continuous branch on (−∞, λ∗1).

We note that the Nehari manifolds method leads to the similar results as above for more
general class of problems of type (D):{−∆pu = λg(x)|u|p−2u + f (x)|u|γ−2u, x ∈ Ω,

u|∂Ω = 0,

where g(x) ∈ L∞(Ω) also changes the sign. Nevertheless, we sacrifice this case for simplicity
of exposition.

The paper is organized as follows. In Section 2, we give some auxiliary results concerning
the properties of Eλ. Section 3 contains the proof of the existence of a weak nodal solution
of (D). In Section 4, we show that the obtained solutions have precisely two nodal domains
and the the least energy property. Moreover, in Section 4 we show the nonexistence result. In
Section 5, we prove that the set of such nodal solutions forms a continuous branch.
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2 Auxiliary results

First we show the following lemma.

Lemma 2.1. Assume that (1.1) is satisfied and Qλ(u) = 0 for some u ∈ W1,p
0 . Then the following

equivalences hold:

1. Hλ(u) > 0⇐⇒ F(u) > 0⇐⇒ Eλ(u) > 0;

2. Hλ(u) = 0⇐⇒ F(u) = 0⇐⇒ Eλ(u) = 0;

3. Hλ(u) < 0⇐⇒ F(u) < 0⇐⇒ Eλ(u) < 0.

Proof. Let u ∈W1,p
0 and Qλ(u) = 0. Then

Eλ(u) =
γ− p

γp
Hλ(u). (2.1)

Since 1 < p < γ, all the statements of the lemma are satisfied.

Using this lemma it is easy to see that if λ < λ1, then Eλ(u) > 0 for any nontrivial weak
solution u ∈W1,p

0 , whereas for λ ≥ λ1 the energy Eλ(u) may be either positive, or nonpositive.
Let us consider the fibered version of the functional Eλ, given by

Eλ(tu) =
tp

p
Hλ(u)−

tγ

γ
F(u), t > 0.

The next lemma describes the structure of critical points of Eλ(tu) w.r.t. t > 0.

Lemma 2.2. Assume that (1.1) is satisfied and u ∈W1,p
0 \ {0}.

1. If Hλ(u), F(u) > 0, then there exists only one positive critical point t(u) of Eλ(tu) w.r.t. t > 0,
which is a global maximum point, and Eλ(t(u)u) > 0, Qλ(t(u)u) = 0.

2. If Hλ(u), F(u) < 0, then there exists only one positive critical point t(u) of Eλ(tu) w.r.t. t > 0,
which is a global minimum point, and Eλ(t(u)u) < 0, Qλ(t(u)u) = 0.

3. If Hλ(u) · F(u) ≤ 0 and (Hλ(u), F(u)) 6= (0, 0), then Eλ(tu) has no positive critical points.

Proof. To obtain critical points of Eλ(tu) w.r.t. t > 0, let us find roots of

∂

∂t
Eλ(tu) = tp−1Hλ(u)− tγ−1F(u) = tp−1 (Hλ(u)− tγ−pF(u)

)
= 0.

Hence, if Hλ(u) · F(u) ≤ 0 and (Hλ(u), F(u)) 6= (0, 0), then Eλ(tu) has no positive critical
points, and if Hλ(u) · F(u) > 0, then there exists exactly one positive critical point, given by

t(u) =
(

Hλ(u)
F(u)

) 1
γ−p

> 0. (2.2)

Assume first that Hλ(u), F(u) > 0. Note that

∂

∂t
Eλ(tu) =

1
t

Qλ(tu),
∂2

∂t2 Eλ(tu) =
1
t2 ((p− 1)Hλ(tu)− (γ− 1)F(tu)) .
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Hence, if t(u) > 0 is a critical point of Eλ(tu), then Qλ(t(u)u) = 0 and Lemma 2.1 implies
that Eλ(t(u)u) > 0. Moreover,

∂2

∂t2 Eλ(tu)
∣∣∣∣
t=t(u)

= − (γ− p)
t2(u)

Hλ(t(u)u) < 0.

Therefore, due to the fact that there is at most one critical point of Eλ(tu) w.r.t. t > 0, we
conclude that t(u) is a point of global maximum of Eλ(tu).

The case Hλ(u), F(u) < 0 of statement 2 may be handled in much the same way.

In the next result we provide the criterion for nonemptiness of N 1
λ .

Lemma 2.3. The following statements hold:

1. N 1
λ 6= ∅ for all λ ∈ R, whenever ν(Ω+) > 0;

2. N 1
λ = ∅ for all λ ∈ R, whenever ν(Ω+) = 0.

Proof. 1. Let λ ∈ R and ν(Ω+) > 0. Then we are able to choose two open balls B1, B2 ⊂ Ω
sufficiently small such that B1 ∩ B2 = ∅, λ1(B1), λ1(B2) > λ and ν(B1 ∩Ω+), ν(B2 ∩Ω+) > 0.

Consider now the characteristic function χ(B1 ∩Ω+) of the set B1 ∩Ω+. Since χ(B1 ∩Ω+)

∈ L∞(Ω), χ(B1 ∩Ω+) ≥ 0 and supp χ(B1 ∩Ω+) ⊆ B1, the standard approximation arguments
(see, e.g., [13, Lemma 7.2, p. 148]) imply the existence of uε ∈ C∞

0 (Ω), uε ≥ 0, such that
uε → χ(B1 ∩Ω+) in Lγ(Ω) as ε→ 0, and therefore∫

Ω
f |uε|γ dx →

∫
Ω

f |χ(B1 ∩Ω+)|γ dx ≡
∫

Ω
f χ(B1 ∩Ω+) dx =

∫
B1∩Ω+

f dx > 0,

i.e., F(uε) > 0 for sufficiently small ε > 0. The similar argumentation yields the existence
of vε ∈ C∞

0 (Ω), such that F(vε) > 0 for sufficiently small ε > 0. Moreover, due to the
assumptions B1 ∩ B2 = ∅ and λ1(B1), λ1(B2) > λ, we can take ε > 0 small enough to satisfy
supp uε ∩ supp vε = ∅ and Hλ(uε), Hλ(vε) > 0. Hence, Lemma 2.2 implies the existence of
t(uε), t(vε) > 0 such that

Eλ(t(uε) uε) > 0, Qλ(t(uε) uε) = 0,

Eλ(t(vε) vε) > 0, Qλ(t(vε) vε) = 0.

Thus, t(uε) uε − t(vε) vε ∈ N 1
λ .

2. Let now ν(Ω+) = 0. Then for any u ∈W1,p
0 \ {0} we have F(u) ≤ 0, which is impossible

for functions from N 1
λ in view of Lemma 2.1.

Lemma 2.4. Assume that (1.1) is satisfied, λ < λ∗1 and u ∈ N 1
λ . Then

1. Eλ(u±)→ +∞ as ‖u±‖ → +∞, i.e., Eλ is coercive on N 1
λ ;

2. ‖u±‖ > c1 > 0 and Eλ(u±) > c2 > 0, where the constants c1, c2 do not depend on u.

Proof. 1. Let u ∈ N 1
λ . From Lemma 2.1 it follows that F(u±) > 0. Hence, u± are admissible

functions for the minimization problem (1.2), and

λ∗1 ≤
∫

Ω |∇u±|p dx∫
Ω |u±|p dx

. (2.3)
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Using this fact and (2.1) we get

Eλ(u±) =
γ− p

γp
Hλ(u±) ≥

λ∗1 − λ

λ∗1

γ− p
γp

∫
Ω
|∇u±|p dx, (2.4)

if λ ≥ 0, and

Eλ(u±) =
γ− p

γp
Hλ(u±) ≥

γ− p
γp

∫
Ω
|∇u±|p dx (2.5)

for λ < 0. Therefore, by the assumption λ < λ∗1 , we conclude that Eλ(u±) → +∞ as ‖u±‖ →
+∞.

2. Using (2.3) and the Sobolev embedding theorem we have the following chain for the
case λ ≥ 0:

λ∗1 − λ

λ∗1
‖u±‖p ≤ Hλ(u±) = F(u±) ≤ Cγ‖u±‖γ.

Since γ > p and λ < λ∗1 we get

‖u±‖ ≥
(

λ∗1 − λ

Cγλ∗1

) 1
γ−p

= c1 > 0. (2.6)

Combining this estimation with (2.4) we get the desired result. The case λ < 0 can be handled
in the same way using the estimation (2.5).

3 Existence of nodal solution

In this section we prove the existence of a nodal solution for the problem (D). As noted above,
we seek for a solution of (D) as a minimizer of the problem{

Eλ(w)→ inf,

w ∈ N 1
λ .

(3.1)

Lemma 3.1. Assume that (1.1) is satisfied, ν(Ω+) > 0 and λ < λ∗1 . Then there exists a minimizer
u ∈W1,p

0 of (3.1) and u ∈ N 1
λ .

Proof. Since ν(Ω+) > 0, Lemma 2.3 implies that N 1
λ 6= ∅ for any λ ∈ R and therefore there

exists a minimizing sequence uk ∈ N 1
λ , k ∈N for (3.1). Let us denote

cλ := inf{Eλ(w) : w ∈ N 1
λ}.

We have cλ ∈ (0,+∞), since Eλ > c2 > 0 on N 1
λ by Lemma 2.4. Hence, using the coercivity of

Eλ on N 1
λ , given by Lemma 2.4, we conclude that u±k are bounded in W1,p

0 . Hence, there exist
u, v, w ∈W1,p

0 such that, up to subsequence,

uk → u, u+
k → v, u−k → w,

weakly in W1,p
0 and strongly in Lp∗(Ω).

Let us introduce the map h : Lγ → Lγ by h(u) = u+. From [8, Lemma 2.3, p. 1046] it
follows that h ∈ C(Lγ, Lγ). Hence, u+ = v ≥ 0 and u− = w ≤ 0 in Ω. Moreover, u± 6≡ 0 in Ω.
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Indeed, using Lemma 2.4 and Nehari constraints Qλ(u±k ) = 0 we get

0 < c0 < lim
k→+∞

∫
Ω
|∇u±k |p dx

= lim
k→+∞

(
λ
∫

Ω
|u±k |p dx +

∫
Ω

f |u±k |γ dx
)

= λ
∫

Ω
|u±|p dx +

∫
Ω

f |u±|γ dx.

Now we show that u±k → u± strongly in W1,p
0 . For this end note that F(u±) > 0. Indeed, since

F(u±k ) > 0, u± are admissible functions for (1.2). Combining this fact with the weak lower
semi-continuity of the norm in W1,p

0 , we get

0 < (λ∗1 − λ)
∫

Ω
|u±|p dx ≤

∫
Ω
|∇u±|p dx− λ

∫
Ω
|u±|p dx

≤ lim inf
k→+∞

(∫
Ω
|∇u±k |p dx− λ

∫
Ω
|u±k |p dx

)
=
∫

Ω
f |u±|γ dx.

From here it follows also that Hλ(u±) > 0.
Suppose now, by contradiction to the strong convergence in W1,p

0 , without loss of general-
ity, that ‖u+‖ < lim infk→+∞ ‖u+

k ‖. Since F(u+) > 0 and Hλ(u+) > 0, Lemma 2.2 implies the
existence of exactly one critical point t(u+) > 0 of Eλ(tu+) w.r.t. t > 0, such that

Eλ(t(u+)u+) > 0, Qλ(t(u+)u+) = 0.

By the same reason there exists t(u−) > 0, possibly equals to 1, such that

Eλ(t(u−)u−) > 0, Qλ(t(u−)u−) = 0.

Therefore, t(u+)u+ + t(u−)u− ∈ N 1
λ , and since uk ∈ N 1

λ , we get

Eλ(t(u+)u+ + t(u−)u−) < lim inf
k→+∞

(
Eλ(t(u+)u+

k ) + Eλ(t(u−)u+
k )
)

≤ lim inf
k→+∞

(
Eλ(u+

k ) + Eλ(u+
k )
)
= inf{Eλ(w) : w ∈ N 1

λ} = cλ.

Thus, we get a contradiction. Consequently, u±k → u± strongly in W1,p
0 and u ∈ N 1

λ .

Now we adapt the proof of [4, Proposition 3.1, p. 8] to show that the minimizer u ∈ N 1
λ of

(3.1) is, in fact, a solution of (D).

Lemma 3.2. Assume that (1.1) is satisfied. If u ∈ N 1
λ is a solution of (3.1), then DEλ(u) = 0 in

W−1,p′(Ω), i.e., u is a critical point of Eλ in W1,p
0 .

Proof. Let u ∈ N 1
λ is a solution of (3.1), i.e.,

Eλ(u) = cλ := inf{Eλ(w) : w ∈ N 1
λ} > 0.

By Lemma 2.2, t(u±) = 1 are the global maximum points of Eλ(tu±) w.r.t. t > 0 and hence

Eλ(ru+ + su−) = Eλ(ru+) + Eλ(su−) < Eλ(u+) + Eλ(u−) = Eλ(u) (3.2)
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for all (r, s) ∈ R2
+ \ {(1, 1)}. Moreover, due to the fact that Eλ(u±) > 0, we are able to choose

κ > 0 small enough, such that
min

t∈[1−κ,1+κ]
Eλ(tu±) > 0. (3.3)

Consider now the function

g : A := (1− κ, 1 + κ)2 ⊂ R2 →W1,p
0 , g(r, s) = ru+ + su−.

Hence, from (3.3) and (3.2) it follows that

0 < c0 := max
(r,s)∈∂A

Eλ(g(r, s)) < cλ.

Assume now, by contradiction, that DEλ(u) 6= 0. Hence, using the continuity of DEλ we con-
clude, that there exist some constants α, δ > 0, such that ‖DEλ(v)‖ ≥ α for all v ∈ U3δ(u) :=
{w ∈W1,p

0 : ‖u− w‖ < 3δ}.
Let us take some ε < min

{ cλ−c0
2 , αδ

8

}
and denote Sδ := U2δ(u). Then the deformation

lemma (see [20, Lemma 2.3, Parts (i), (v), (vi), p. 38]) implies the existence of homotopy
η ∈ C([0, 1]×W1,p

0 , W1,p
0 ), such that

1) η(t, v) = v for all t ∈ [0, 1], if Eλ(v) < cλ − 2ε,

2) Eλ(η(t, v)) ≤ Eλ(v) for all v ∈W1,p
0 and t ∈ [0, 1];

3) Eλ(η(t, v)) < cλ for all v ∈ {w ∈ Sδ : Eλ(w) ≤ c} and t ∈ (0, 1].

From 3) it follows that

max
{(r,s)∈A: g(r,s)∈Sδ}

Eλ(η(t, g(r, s))) < cλ, ∀t ∈ (0, 1]. (3.4)

On the other hand, 2) and (3.2) imply that for all t ∈ [0, 1]

max
{(r,s)∈A: g(r,s) 6∈Sδ}

Eλ(η(t, g(r, s))) ≤ max
{(r,s)∈A: g(r,s) 6∈Sδ}

Eλ(g(r, s)) < cλ. (3.5)

Furthermore, from 1) it follows that η(t, g(r, s)) = g(r, s) for (r, s) ∈ ∂A and all t ∈ [0, 1], since
c0 < cλ − 2ε.

Now, due to the continuity of η and Eλ, (3.3) implies the existence of t0 ∈ (0, 1], such that
Eλ(η

±(t, g(r, s))) > 0 for all t ∈ [0, t0] and (r, s) ∈ A.
Let us denote for simplicity

h(r, s) := η(t0, g(r, s)),

and consider the maps

ψ1 : A→ R2, ψ1(r, s) :=
(
Qλ(h+(r, s)), Qλ(h−(r, s))

)
,

ψ2 : A→ R2, ψ2(r, s) :=
(
Qλ(ru+), Qλ(su−)

)
.

Note that ψ1(r, s) = (0, 0) if and only if h±(r, s) ∈ Nλ. On the one hand, deg(ψ2, 0, A) = 1,
since there exists only one point (r, s) = (1, 1) ∈ A such that Qλ(ru+), Qλ(su−) = 0 and the
Jacobian determinant

det Jψ2(1,1) =
∂Q(ru+)

∂r

∣∣∣∣
r=1
· ∂Q(su−)

∂s

∣∣∣∣
s=1

> 0.
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On the other hand, since h(r, s) = g(r, s) for all (r, s) ∈ ∂A, we get

ψ1(r, s) ≡ ψ2(r, s), (r, s) ∈ ∂A.

Consequently, using the homotopy invariance property of the degree (see [2, Theorem 3,
(iv), p. 190 and Remark 7, (a), p. 192]), we get deg(ψ1, 0, A) = deg(ψ2, 0, A) = 1. Hence,
there exists (r0, s0) ∈ A such that Qλ(h±(r0, s0)) = 0. Furthermore, from the fact that
Eλ(η

±(t0, g(r0, s0))) > 0, we conclude that h(r0, s0) ∈ N 1
λ .

Finally, from (3.4) and (3.5) we obtain

Eλ(h(r0, s0)) < cλ = inf{Eλ(w) : w ∈ N 1
λ},

but it is a contradiction. Thus, DEλ(u) = 0 in W−1,p′ , i.e., u ∈ N 1
λ is a critical point of Eλ on

W1,p
0 .

4 Least energy and number of nodal domains

Let us consider other subsets of the nodal Nehari setMλ:

N 2
λ = {u ∈W1,p

0 : u± ∈ Nλ, Eλ(u+) · Eλ(u−) ≤ 0},
N 3

λ = {u ∈W1,p
0 : u± ∈ Nλ, Eλ(u±) < 0}.

It is easy to see thatMλ = N 1
λ ∪N 2

λ ∪N 3
λ .

Lemma 4.1. N 2
λ = ∅ for all λ < λ∗1 and N 3

λ = ∅ for all λ < λ2.

Proof. 1. First we show that N 2
λ = ∅ for λ < λ∗1 . Assume, contrary to our claim, that for some

λ < λ∗1 there exists w ∈ N 2
λ . Suppose first that Eλ(w+) · Eλ(w−) < 0. From Lemma 2.1 it

follows that F(w+) · F(w−) < 0. Therefore, there exists t > 0, such that

F(tw+ + w−) = tγF(w+) + F(w−) = 0.

This implies that tw+ + w− is an admissible function for minimization problem (1.2), which
yields a contradiction, since λ < λ∗1 .

Suppose now, without loss of generality, that Eλ(w+) = 0. Lemma 2.1 implies that
F(w+) = 0, and consequently w+ is also an admissible function for (1.2), a contradiction.

2. Let us show that N 3
λ = ∅ for λ < λ2. For this end we consider the critical point

µ2 := inf
u∈W1,p

0 (Ω)
u± 6≡0

[
max

{∫ |∇u+|p dx∫
|u+|p dx

,

∫
|∇u−|p dx∫
|u−|p dx

}]
. (4.1)

Proposition 4.2. µ2 = λ2.

Proof. Note first that µ2 ≤ λ2. Indeed, using the second eigenfunction ϕ2 ∈ W1,p
0 , which

corresponds to λ2, as an admissible function for (4.1), we get

µ2 ≤ max
{∫ |∇ϕ+

2 |p dx∫
|ϕ+

2 |p dx
,

∫
|∇ϕ−2 |p dx∫
|ϕ−2 |p dx

}
=

∫
|∇ϕ±2 |p dx∫
|ϕ±2 |p dx

= λ2.
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Now we show that λ2 ≤ µ2. Arguing as in the proof of [7, Proposition 4.2, p. 8] it is not
hard to obtain a nonzero minimizer ψ2 ∈ W1,p

0 of (4.1), such that ψ±2 6= 0 and, due to the
homogeneity of (4.1),

∫
Ω |ψ2|p dx = 1. Consider the set

A :=
{

u ∈W1,p
0 : u = sψ+

2 + tψ−2 , where s, t ∈ R, such that
∫

Ω
|sψ+

2 + tψ−2 |p dx = 1
}

.

By construction, A ⊂ S , where S is defined in (1.5). Moreover, taking

h(x, y) := |x| 2
p−1x

ψ+
2(∫

|ψ+
2 |p dx

) 1
p
+ |y| 2

p−1y
ψ−2(∫
|ψ−2 |p dx

) 1
p

,

we conclude that h : S1 → A is continuous and odd, and consequently A ∈ F2. Therefore,

λ2 ≤ sup
u∈A

∫
Ω
|∇u|p dx = sup

s,t∈R:∫
Ω |sψ+

2 +tψ−2 |p dx=1

(
|s|p

∫
Ω
|∇ψ+

2 |p dx + |t|p
∫

Ω
|∇ψ−2 |p dx

)

≤ µ2 sup
s,t∈R:∫

Ω |sψ+
2 +tψ−2 |p dx=1

(
|s|p

∫
Ω
|ψ+

2 |p dx + |t|p
∫

Ω
|ψ−2 |p dx

)
= µ2.

Hence, µ2 = λ2.

To finish the proof of Lemma 4.1 suppose a contradiction, i.e., there exists w ∈ N 3
λ for

some λ < λ2. Lemma 2.1 implies that Hλ(w±) < 0, and therefore∫
|∇w±|p dx∫
|w±|p dx

< λ < λ2 = µ2 ≤ max
[∫ |∇w+|p dx∫
|w+|p dx

,

∫
|∇w−|p dx∫
|w−|p dx

]
,

which is impossible.

The property of the least energy is given in the following lemma.

Lemma 4.3. Assume that (1.1) is satisfied, ν(Ω+) > 0 and uλ ∈ N 1
λ is a nodal solution of (D) given

by Lemma 3.2. Then uλ has the least energy among all nodal solutions of (D) on (−∞, min{λ∗1 , λ2}),
i.e.,

−∞ < Eλ(uλ) ≤ Eλ(wλ),

for any nodal solution wλ of (D) on this interval.

Proof. Lemma 4.1 implies that N 2
λ ,N 3

λ = ∅ for λ < min{λ∗1 , λ2}. Therefore, Mλ = N 1
λ 6= ∅

for such λ, due to Lemma 2.3, and thus any nodal solution of (D) belongs to N 1
λ . Since uλ is

obtained by minimization of Eλ over N 1
λ , we get the desired result.

In the next lemma we prove nonexistence result for (D).

Lemma 4.4. If ν(Ω+) = 0, then there are no weak nodal solutions of the problem (D) for any λ ∈
(−∞, min{λ∗1 , λ2}).

Proof. From the proof of Lemma 4.3 it follows that Mλ = N 1
λ . However, Lemma 2.3 implies

that N 1
λ = ∅ for any λ ∈ R, whenever ν(Ω+) = 0. Thus, Mλ = ∅, which implies the

nonexistence of weak nodal solutions for (D) on (−∞, min{λ∗1 , λ2}).
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The next result gives the information about the precise number of nodal domains for
solutions of (3.1).

Lemma 4.5. Assume that (1.1) is satisfied and λ < λ∗1 . Then any solution u ∈ N 1
λ of (3.1) has

precisely two nodal domains.

Proof. Let u ∈ N 1
λ be a solution of (3.1) and consequently a solution of (D). Recall that any

solution of (D) is, in fact, of class C1,α(Ω), α ∈ (0, 1) (see Section 1). Suppose, by contradiction,
that there exist three nodal domains Di, i = 1..3, and, without loss of generality, u > 0 in D1

and D3. We denote u = u1 + u2 + u3, where

ui(x) =

{
u(x) if x ∈ Di,

0 if x ∈ Ω\Di,
i = 1..3.

Hence, ui ∈ C1,α(Ω) and u1, u3 > 0, u2 < 0 in their supports. Moreover, testing (D) by ui one
can get Qλ(ui) = 0 for all i = 1..3.

Assume first that Eλ(ui) > 0, i = 1..3. However, u1 + u2 ∈ N 1
λ and Eλ(u1 + u2) < Eλ(u) =

cλ. Hence, we get a contradiction.
Suppose now, without loss of generality, that Eλ(u1) ≤ 0. Since Eλ(u2) > 0, we conclude

that u1 + u2 ∈ N 2
λ , which contradicts Lemma 4.1.

5 Continuous branch

Let uλ ∈ N 1
λ be a nodal solution of the problem (D) given by a minimizer of (3.1). First we

show that for any λ ∈ (−∞, λ∗1) and for any sequence ∆λ → 0, the corresponding sequence
of solutions uλ+∆λ ∈ N 1

λ+∆λ converges strongly in W1,p
0 , up to subsequence, to some u0 ∈ N 1

λ .
It is not hard to see that for the sequence uλ+∆λ we have

Eλ+∆λ(uλ+∆λ)→ c and DEλ+∆λ(uλ+∆λ) = 0.

Moreover, using Lemma 2.4 it is not hard to show that there exist constants K1, K2, such
that for all sufficiently small ∆λ it holds 0 < K1 < ‖uλ+∆λ‖ < K2 < ∞. Hence, Sobolev’s
embedding theorem and the Eberlein–Smulian theorem imply the existence of u0 ∈W1,p

0 such
that, up to subsequence, uλ+∆λ → u0 strongly in Lp∗(Ω) and uλ+∆λ ⇀ u0 weakly in W1,p

0 .
Since DEλ+∆λ(uλ+∆λ) = 0 for any ∆λ small enough, we have

〈DEλ+∆λ(uλ+∆λ), u0 − uλ+∆λ〉 =
∫

Ω
|∇uλ+∆λ|p−2∇uλ+∆λ∇(u0 − uλ+∆λ) dx

− (λ + ∆λ)
∫

Ω
|uλ+∆λ|p−2uλ+∆λ(u0 − uλ+∆λ) dx

−
∫

Ω
f |uλ+∆λ|γ−2uλ+∆λ(u0 − uλ+∆λ) dx = 0.

From here, using the strong convergence uλ+∆λ → u0 in Lp∗(Ω), we obtain∫
Ω
|∇uλ+∆λ|p−2∇uλ+∆λ∇u0 dx−

∫
Ω
|∇uλ+∆λ|p dx → 0,

which implies that uk → u0 strongly in W1,p
0 . Moreover, since

Eλ(u0) = lim
∆λ→0

Eλ+∆λ(uλ+∆λ) > c2 > 0, Qλ(u0) = lim
∆λ→0

Qλ+∆λ(uλ+∆λ) = 0,
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we conclude that u0 ∈ N 1
λ . Obviously, u0 is a critical point of Eλ.

Let us prove now that u0 is also a solution of (3.1). Recall the definition cλ := Eλ(uλ) and
define, additionally, c±λ := Eλ(u±λ ). Note that cλ, c±λ ∈ (0,+∞). Assume, by contradiction, that
cλ < Eλ(u0). Hence, we have δ+ + δ− > 0, where

δ+ := Eλ(u+
0 )− c+λ , δ− := Eλ(u−0 )− c−λ .

Note first that the continuity of Hλ+∆λ w.r.t. ∆λ implies that for sufficiently small ∆λ the
sign of Hλ+∆λ(u±λ ) is positive, and at the same time F(u±λ ) > 0. Hence, Lemma 2.2 yields
the existence of points of global maximum t±λ+∆λ := tλ+∆λ(u±λ ) of Eλ+∆λ(tu±λ ) w.r.t. t > 0.
Moreover, t±λ+∆λ tends to 1 as ∆λ→ 0. Indeed, using (2.2) we obtain

t±λ+∆λ =

(
Hλ+∆λ(u±λ )

F(u±λ )

) 1
γ−p

=

(
Hλ(u±λ )− ∆λ

∫
|u±λ |p dx

F(u±λ )

) 1
γ−p

=

(
1− ∆λ

∫
|u±λ |p dx
F(u±λ )

) 1
γ−p

→ 1 as ∆λ→ 0.

Using this fact and strong convergence uλ+∆λ → u0 in W1,p
0 it is not hard to see that for any

ε > 0 there exists δ > 0, such that for all |∆λ| < δ we have

|Eλ+∆λ(t±λ+∆λu±λ )− Eλ(u±λ )| < ε,

|Eλ(u±0 )− Eλ+∆λ(u±λ+∆λ)| < ε.

From these estimations we get

Eλ+∆λ(t+λ+∆λu+
λ ) < Eλ+∆λ(u+

λ+∆λ) + 2ε− δ+, (5.1)

Eλ+∆λ(t−λ+∆λu−λ ) < Eλ+∆λ(u−λ+∆λ) + 2ε− δ−. (5.2)

Combining (5.1) and (5.2) with the assumption δ+ + δ− > 0 we conclude that for vλ+∆λ =

t+λ+∆λu+
λ + t−λ+∆λu−λ and sufficiently small ε > 0 the inequality

Eλ+∆λ(vλ+∆λ) < Eλ+∆λ(uλ+∆λ)

holds. However, by construction, vλ+∆λ ∈ N 1
λ+∆λ, which implies a contradiction, since uλ+∆λ

is a minimizer of Eλ+∆λ over N 1
λ+∆λ.
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