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1 Introduction

Fractional differential equations have recently been proved to be valuable tools in the mod-
eling of many phenomena in various fields of engineering, physics, economics and science.
We can find numerous applications in viscoelasticity, electrochemistry, control, porous media,
electromagnetic, etc. [26, 27, 35, 37]. In recent years, there has been a significant development
in fractional differential equations. One can see the monographs of Abbas et al. [1, 2], Kilbas
et al. [31], Lakshmikantham et al. [32], Miller and Ross [38], Podlubny [40], Zhou [46], and the
papers [3–5, 10, 17–20, 24, 34, 41, 42] and the references therein.

On the other hand, the most important qualitative behavior of a dynamical system is
controllability. It is well known that the issue of controllability plays an important role in
control theory and engineering [7, 8, 12, 15] because they have close connections to pole as-
signment, structural decomposition, quadratic optimal control and observer design etc. In
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recent years, the problem of controllability for various kinds of fractional differential and
integro-differential equations have been discussed in [6, 16, 44].

El-Sayed and Ibrahim initiated the study of fractional differential inclusions in [25]. Re-
cently several qualitative results for fractional differential inclusion were obtained in [11, 14,
39]. Recently, Benchohra et al. [9] studied the existence and controllability results for fractional
order integro-differential inclusions with state-dependent delay in Fréchet spaces. Wang and
Zhou [45] investigated the existence and controllability results for fractional semilinear differ-
ential inclusions.

Motivated by the papers cited above, in this paper, we consider the controllability results
for fractional order integro-differential inclusions with infinite delay described by the form

Dq
t x(t) ∈ Ax(t) + Bu(t) +

∫ t

0
a(t, s)F(s, xs, x(s)) ds, t ∈ J = [0, T],

x0 = φ ∈ B, t ∈ (−∞, 0],
(1.1)

where Dq
t is the Caputo fractional derivative of order 0 < q < 1, A generates a compact and

uniformly bounded linear semigroup S(·) on X, F : J×B×X −→ P(X) is a multivalued map
(P(X) is the family of all nonempty subsets of X), a : D → R (D = {(t, s) ∈ [0, T]× [0, T] :
t ≥ s}), φ ∈ B where B is called phase space to be defined in Section 2. B is a bounded linear
operator from X into X, the control u ∈ L2(J; X), the Banach space of admissible controls. For
any function x defined on (−∞, T] and any t ∈ J, we denote by xt the element of B defined by

xt(θ) = x(t + θ), θ ∈ (−∞, 0].

Here xt represents the history of the state up to the present time t.
Our results are based on the Dhage fixed point theorem and the semigroup theory. To our

knowledge, very few results are available for controllability for fractional integro-differential
inclusions. So the present results complement this literature.

The paper is organized as follows. In Section 2 some preliminary results are introduced.
The main result is presented in Section 3, and an example illustrating the abstract theory is
presented in Section 4.

2 Preliminaries

Let (X, ‖ · ‖) be a real Banach space.
C = C(J, X) be the space of all X-valued continuous functions on J.
L(X) be the Banach space of all linear and bounded operators on X.
L1(J, X) the space of X-valued Bochner integrable functions on J with the norm

‖y‖L1 =
∫ T

0
‖y(t)‖ dt.

L∞(J, R) is the Banach space of essentially bounded functions, normed by

‖y‖L∞ = inf{d > 0 : |y(t)| ≤ d, a.e. t ∈ J}.

Denote by Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded},
Pcp(X) = {Y ∈ P(X) : Y compact}, Pcp,c(X) = {Y ∈ P(X) : Y compact, convex}.
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A multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex (closed)
for all x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all
B ∈ Pb(X) (i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞).

G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a
nonempty, closed subset of X, and if for each open set U of X containing G(x0), there exists
an open neighborhood V of x0 such that G(V) ⊆ U.

G is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X).
If the multivalued map G is completely continuous with nonempty compact values, then G
is u.s.c. if and only if G has a closed graph (i.e. xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply
y∗ ∈ G(x∗)).

For more details on multivalued maps see the books of Deimling [22], Górniewicz [28] and
Hu and Papageorgiou [30] .

Definition 2.1. The multivalued map F : J ×B × X −→ P(X) is said to be an Carathéodory if

(i) t 7−→ F(t, x, y) is measurable for each (x, y) ∈ B × X;

(ii) (x, y) 7−→ F(t, x, y) is upper semicontinuous for almost all t ∈ J.

We need some basic definitions and properties of the fractional calculus theory which are
used further in this paper.

Definition 2.2. Let α > 0 and f : R+ → X be in L1(R+, X). Then the Riemann–Liouville
integral is given by:

Iα
t f (t) =

1
Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds,

where Γ(·) is the Euler gamma function.

For more details on the Riemann–Liouville fractional derivative, we refer the reader to [21].

Definition 2.3 ([40]). The Caputo derivative of order α for a function f : [0,+∞) → R can be
written as

Dα
t f (t) =

1
Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n ds = In−α f (n)(t), t > 0, n− 1 ≤ α < n.

If 0 < α ≤ 1, then

Dα
t f (t) =

1
Γ(1− α)

∫ t

0

f ′(s)
(t− s)α

ds.

Obviously, the Caputo derivative of a constant is equal to zero.

In this paper, we will employ an axiomatic definition for the phase space B which is similar
to those introduced by Hale and Kato [29]. Specifically, B will be a linear space of functions
mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B , and satisfies the following axioms:

(A1) If x : (−∞, T ] −→ X is continuous on J and x0 ∈ B, then xt ∈ B and xt is continuous
in t ∈ J and

‖x(t)‖ ≤ C‖xt‖B , (2.1)

where C ≥ 0 is a constant.
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(A2) There exist a continuous function C1(t) > 0 and a locally bounded function C2(t) ≥ 0
in t ≥ 0 such that

‖xt‖B ≤ C1(t) sup
s∈[0,t]

‖x(s)‖+ C2(t)‖x0‖B , (2.2)

for t ∈ [0, T] and x as in (A1).

(A3) The space B is complete.

Remark 2.4. Condition (2.1) in (A1) is equivalent to ‖φ(0)‖ ≤ C‖φ‖B , for all φ ∈ B.

Let SF,x be a set defined by

SF,x = {v ∈ L1(J, X) : v(t) ∈ F(t, xt, x(t)) a.e. t ∈ J}.

Lemma 2.5 ([33]). Let X be a Banach space. Let F : J × B × X −→ Pcp,c(X) be an L1-Carathéodory
multivalued map and let Ψ be a linear continuous mapping from L1(J, X) to C(J, X), then the operator

Ψ ◦ SF : C(J, X) −→ Pcp,c(C(J, X)),

x 7−→ (Ψ ◦ SF)(x) := Ψ(SF,x)

is a closed graph operator in C(J, X)× C(J, X).

Proposition 2.6 ([13, Proposition III.4]). If Γ1 and Γ2 are compact valued measurable multifunctions,
then the multifunction t → Γ1(t) ∩ Γ2(t) is measurable. If (Γn) is a sequence of compact valued mea-
surable multifunctions, then t → ∩Γn(t) is measurable, and if ∪Γn(t) is compact, then t→ ∪Γn(t)
is measurable.

Definition 2.7. A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Theorem 2.8 (Dhage theorem [23]). Let E be a Banach space, A : E → Pcl,cv,bd(E) and B : E →
Pcp,cv(E), two multivalued operators satisfying:

1. A is a contraction, and

2. B is completely continuous.

Then either

(i) the operator inclusion u ∈ Au + Bu has a solution , or

(ii) the set E = {u ∈ E, u ∈ λA(u) + λB(u), 0 ≤ λ ≤ 1} is unbounded.

Let Ω be a set defined by

Ω =
{

x : (−∞, T]→ X such that x|(−∞,0] ∈ B, x|J ∈ C(J, X)
}

.
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3 Main results

In this section, we state and prove the controllability results for the system (1.1). Now we
define the mild solution for our problem.

Definition 3.1. A function x ∈ Ω is said to be a mild solution of (1.1) if there exists
v(·) ∈ L1(J, X), such that v(t) ∈ F(t, xt, x(t)) a.e. t ∈ [0, T], and x satisfies

x(t) =


φ(t), t ∈ (−∞, 0];

−Q(t)φ(0) +
∫ t

0 R(t− s)Bu(s) ds

+
∫ t

0

∫ s
0 R(t− s)a(s, τ)v(τ) dτ ds, t ∈ J,

(3.1)

where

Q(t) =
∫ ∞

0
ξq(σ)S(tqσ) dσ, R(t) = q

∫ ∞

0
σtq−1ξq(σ)S(tqσ) dσ

and for σ ∈ (0, ∞),

ξq(σ) =
1
q

σ
−1− 1

q vq(σ
− 1

q ) ≥ 0,

vq(σ) =
1
π

∞

∑
n=1

(−1)n−1σ−qn−1 Γ(nq + 1)
n!

sin(nπq).

Here, ξq is a probability density function defined on (0, ∞) [36], that is

ξq(σ) ≥ 0, σ ∈ (0, ∞) and
∫ ∞

0
ξq(σ)dσ = 1.

It is not difficult to verify that

∫ ∞

0
σξq(σ) dσ =

1
Γ(1 + q)

.

Remark 3.2. Note that {S(t)}t≥0 is a uniformly bounded semigroup, i.e,

there exists a constant M > 0 such that ‖S(t)‖ ≤ M for all t ∈ [0, T].

Remark 3.3. Note that
‖R(t)‖ ≤ Cq,Mtq−1, t > 0, (3.2)

where Cq,M = qM
Γ(1+q) .

Definition 3.4. The problem (1.1) is said to be controllable on the interval J if for every initial
function φ ∈ B and x1 ∈ X there exists a control u ∈ L2(J, X) such that the mild solution x(·)
of (1.1) satisfies x(T) = x1.

We impose the following assumptions:

(H1) The multifunction F : J ×B × X −→ Pcp,cv(X) is Carathéodory.
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(H2) There exists a function µ ∈ L1(J, R+) and a continuous nondecreasing function ψ : R+ →
(0,+∞) such that

‖F(t, x, y)‖ = sup{‖v‖ : v ∈ F(t, x, y)}
≤ µ(t)ψ (‖x‖B + ‖y‖X) , (t, x, y) ∈ J ×B × X,

with

ω2

∫ T

0
µ(s) ds <

∫ +∞

v(0)

du
ψ(u)

, (3.3)

where

ω2 = β1

(
M1M2a2C2

q,M
T2q

q2 + aCq,M
Tq

q

)
,

v(0) = ω1 = β2 + β1M1M2aCq,M
Tq

q

[
‖x1‖+ M‖φ‖B

]
,

and
β1 = C∗1 + 1, β2 = C∗2‖φ‖B .

(H3) There exists a function k ∈ L1(J, R+) such that

Hd(F(t, x1, y1), F(t, x2, y2)) ≤ k(t) [‖x1 − x2‖B + ‖y1 − y2‖X] .

(H4) For each t ∈ J, a(t, s) is measurable on [0, t] and a(t) = ess sup{|a(t, s)|, 0 ≤ s ≤ t} is
bounded on J. The map t→ at is continuous from J to L∞(J, R), here, at(s) = a(t, s).

(H5) The linear operator W : L2(J, X)→ X defined by

Wu =
∫ T

0
R(T − s)Bu(s) ds.

has an inverse operator W−1, which takes values in L2(J, X)/ ker W and there exist two
positive constants M1 and M2 such that

‖B‖L(X) ≤ M1, ‖W−1‖L(X) ≤ M2. (3.4)

Theorem 3.5. Assume that the hypotheses (H1)–(H5) hold. Then the problem (1.1) is controllable on
the interval (−∞, T] provided that

M1 M2 a2 C2
q,M

T2q

q2 (C∗1 + 1)‖k‖L1 < 1. (3.5)

Proof. We transform the problem (1.1) into a fixed-point problem. Consider the multivalued
operator N : Ω −→ P(Ω) defined by N(h) = {h ∈ Ω} with

h(t) =


φ(t), t ∈ (−∞, 0];

−Q(t)φ(0) +
∫ t

0 R(t− s)Bu(s) ds

+
∫ t

0

∫ s
0 R(t− s)a(s, τ)v(τ) dτ ds, t ∈ J.

Using hypothesis (H5) for an arbitrary function x(·) define the control

u(t) = W−1
[

x1 + Q(t)φ(0)−
∫ T

0

∫ s

0
R(T − s)a(s, τ)v(τ) dτ ds

]
(t). (3.6)
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Obviously, fixed points of the operator N are mild solutions of the problem (1.1). For φ ∈ B,
we will define the function y(·) : (−∞, T] −→ X by

y(t) =

{
φ(t), t ∈ (−∞, 0];

−Q(t)φ(0), t ∈ J.

Then y0 = φ. For each function z ∈ C(J, X) with z(0) = 0, we denote by z the function defined
by

z(t) =

{
0, t ∈ (−∞, 0];

z(t), t ∈ J.

If x(·) verifies (3.1), we can decompose it as x(t) = y(t) + z(t), for t ∈ J, which implies
xt = yt + zt, for every t ∈ J and the function z(t) satisfies

z(t) =
∫ t

0
R(t− s)Buy+z(s) ds +

∫ t

0

∫ s

0
R(t− s)a(s, τ)v(τ) dτ ds,

where

v ∈ SF,y+z =
{

v ∈ L1(J, X) : v(t) ∈ F(t, yt + zt, y(t) + z(t)) for a.e. t ∈ J
}

.

Let
Z0 = {z ∈ Ω : z0 = 0}.

For any z ∈ Z0, we have

‖z‖Z0 = sup
t∈J
‖z(t)‖+ ‖z0‖B = sup

t∈J
‖z(t)‖.

Thus (Z0, ‖ · ‖Z0) is a Banach space. We define the operator P : Z0 −→ P(Z0) by P(z) =

{h ∈ Z0} with

h(t) =
∫ t

0
R(t− s)Buy+z(s) ds +

∫ t

0

∫ s

0
R(t− s)a(s, τ)v(τ) dτ ds, v(s) ∈ SF,y+z, t ∈ J.

Obviously the operator N having a fixed point is equivalent to P having one, so it turns to
prove that P has a fixed point. Let r > 0 and consider the set

Br = {z ∈ Z0 : ‖z‖Z0 ≤ r}.

We need the following lemma.

Lemma 3.6. Set
C∗i = sup

t∈J
Ci(t) (i = 1, 2). (3.7)

Then for any z ∈ Br we have
‖yt + zt‖B ≤ C∗2‖φ‖B + C∗1 r,

and

‖u(s)‖ ≤ M2

[
‖x1‖+ M‖φ‖B + aCq,M

∫ T

0

∫ τ

0
(t− τ)q−1‖v(ι)‖ dι dτ

]
. (3.8)
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Proof. Using (2.2), (3.4), (3.6) and (3.7), we obtain

‖yt + zt‖B ≤ ‖yt‖B + ‖zt‖B
≤ C1(t) sup

0≤τ≤t
‖y(τ)‖+ C2(t)‖y0‖B + C1(t) sup

0≤τ≤t
‖z(τ)‖+ C2(t)‖z0‖B

≤ C2(t)‖φ‖B + C1(t) sup
0≤τ≤t

‖z(τ)‖

≤ C∗2‖φ‖B + C∗1 r.

Also, we get

‖u(s)‖ ≤ ‖W−1‖
[
‖x1‖+ ‖Q(t)φ(0)‖+

∫ T

0

∫ τ

0
‖R(t− τ)‖‖a(τ, ι)‖‖v(ι)‖ dι ds

]
≤ M2

[
‖x1‖+ M‖φ‖B + aCq,M

∫ T

0

∫ τ

0
(t− τ)q−1‖v(ι)‖ dι dτ

]
.

The lemma is proved.
Now, we define the following multivalued operators P1, P2 : Z0 −→ P(Z0) as

P1(z) =
{

h ∈ Z0 : h(t) =
∫ t

0
R(t− s)Buy+z(s) ds, t ∈ J

}
and

P2(z) =
{

h ∈ Z0 : h(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ)v(τ) dτ ds, v(s) ∈ SF,y+z, t ∈ J

}
.

It is clear that P = P1 + P2. The problem of finding solutions of (1.1) is reduced to finding
solutions of the operator inclusion z ∈ P1(z) + P2(z). We shall show that the operators P1 and
P2 satisfy all conditions of the Theorem 2.8. The proof will be given in several steps.
Step 1: P1 is a contraction.
Let z, z∗ ∈ Z0 and h ∈ P1(z). Then, there exists v(t) ∈ F(t, yt + zt, y(t) + z(t)) such that

h(t) =
∫ t

0
R(t− s)Buy+z(s) ds, t ∈ J.

From (H3), it follows that

Hd (F(t, yt + zt, y(t) + z(t)), F(t, yt + z∗t , y(t) + z∗(t)))

≤ k(t) [‖zt − z∗t ‖B + ‖z(t)− z∗(t)‖X] .

Hence there is ω ∈ F(t, yt + z∗t , y(t) + z∗(t)) such that

|v(t)−ω| ≤ k(t) [‖zt − z∗t ‖B + ‖z(t)− z∗(t)‖X] .

Consider U : J → P(E) given by

u(t) = {ω ∈ E : |v(t)−ω| ≤ k(t) [‖zt − z∗t ‖B + ‖z(t)− z∗(t)‖X] .

Since the multivalued operator V(t) = U(t) ∩ F(t, yt + z∗t , y(t) + z∗(t)) is measurable (see
Proposition 2.6), there exists a function v∗(t), which is a measurable selection for V. So,
v∗(t) ∈ F(t, yt + z∗t , y(t) + z∗(t)), and using (A2), for each t ∈ J, we obtain

‖v(t)− v∗(t)‖ ≤ k(t) [‖zt − z∗t ‖B + ‖z(t)− z∗(t)‖X]

≤ k(t)[C∗1‖z(t)− z∗(t)‖+ ‖z(t)− z∗(t)‖]
≤ k(t)(C∗1 + 1)‖z(t)− z∗(t)‖
≤ k(t)(C∗1 + 1)‖z(t)− z∗(t)‖.
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Let us define for each t ∈ J

h∗(t) =
∫ t

0
R(t− s)Buy+z∗(s)ds.

Then we have

‖h(t)− h∗(t)‖ ≤
∫ t

0
‖R(t− s)‖‖Buy+z(s)− Buy+z∗(s)‖ ds

≤ M1 a Cq,M

∫ t

0
(t− s)q−1‖uy+z(s)− uy+z∗(s)‖ ds

≤ M1 a Cq,M

∫ t

0
(t− s)q−1

∥∥∥W−1
[

x1 + Q(t)φ(0)

−
∫ T

0

∫ τ

0
R(t− τ)a(τ, ι)v(ι)‖ dι dτ

]
−W−1

[
x1 + Q(t)φ(0)−

∫ T

0

∫ τ

0
R(t− τ)a(τ, ι)v∗(ι)‖ dι dτ

]∥∥∥ ds

≤ M1 M2 a2 C2
q,M

∫ t

0
(t− s)q−1

∫ T

0

∫ τ

0
(t− τ)q−1‖v(ι)− v∗(ι)‖ dι dτ ds

≤ M1 M2 a2 C2
q,M

∫ t

0
(t− s)q−1

×
∫ T

0

∫ τ

0
(t− τ)q−1k(ι)(C∗1 + 1)‖z(ι)− z∗(ι)‖ dι dτ ds

≤ M1 M2 a2 C2
q,M

T2q

q2 (C∗1 + 1)‖k‖L1‖z− z∗‖.

By an analogous relation, obtained by interchanging the roles of z and z∗, it follows that

Hd(P1(z), P1(z∗)) ≤ M1 M2 a2 C2
q,M

T2q

q2 (C∗1 + 1)‖k‖L1‖z− z∗‖.

By (3.5), the mapping P1 is a contraction.
Step 2: P2 has compact, convex values, and it is completely continuous. This will be given in
several claims.
Claim 1: P2 is convex for each z ∈ Z0.

Indeed, if h1 and h2 belong to P2, then there exist v1, v2 ∈ SF,y+z such that, for t ∈ J, we
have

hi(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ)vi(τ) dτ ds, i = 1, 2.

Let d ∈ [0, 1]. Then for each t ∈ J, we have

dh1(t) + (1− d)h2(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ) [dv1(τ) + (1− d)v2(τ)] dτ ds.

Since SF,y+z is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ P2.

Claim 2: P2 maps bounded sets into bounded sets in Z0.
Indeed, it is enough to show that for any r > 0, there exists a positive constant ` such that

for each z ∈ Br = {z ∈ Z0 : ‖z‖Z0 ≤ r}, we have ‖P2(z)‖Z0 ≤ `. Then for each h ∈ P2(z), there
exists v ∈ SF,y+z such that

h(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ)v(τ) dτ ds.
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Using (H2) and Lemma 3.6 we have for each t ∈ J,

‖h(t)‖ ≤
∫ t

0

∫ s

0
‖R(t− s)a(s, τ)v(τ)‖ dτ ds

≤ a Cq,M

∫ t

0

∫ s

0
(t− s)q−1 [µ(τ)ψ (‖yτ + zτ‖+ ‖y(τ) + z(τ)‖)] dτ ds

≤ a Cq,M

∫ t

0

∫ s

0
(t− s)q−1 [µ(τ)ψ (C∗2‖φ‖B + C∗1 r + r)] dτ ds

≤ a Cq,M

∫ t

0

∫ s

0
(t− s)q−1 [µ(τ)ψ (C∗2‖φ‖B + (C∗1 + 1)r)] dτ ds

≤
Tqa Cq,M

q
ψ (C∗2‖φ‖B + (C∗1 + 1)r)

∫ T

0
µ(τ) dτ

≤ `.

Hence P2(Br) is bounded.
Claim 3: P2 maps bounded sets into equicontinuous sets of Z0.
Let h ∈ P2(z) for z ∈ Z0 and let τ1, τ2 ∈ [0, T], with τ1 < τ2, we have

‖h(τ2)− h(τ1)‖ ≤
∥∥∥∥∫ τ2

0

∫ s

0
[R(τ1 − s)− R(τ2 − s)]a(s, τ)v(τ) dτ ds

∥∥∥∥
+
∫ τ1

τ2

∫ s

0
‖R(τ1 − s)‖‖a(s, τ)‖‖v(τ)‖ dτ ds

≤ I1 + I2,

where

I1 =

∥∥∥∥∫ τ2

0

∫ s

0
[R(τ1 − s)− R(τ2 − s)]a(s, τ)v(τ) dτ ds

∥∥∥∥
I2 =

∫ τ1

τ2

∫ s

0
‖R(τ1 − s)‖‖a(s, τ)‖‖v(τ)‖ dτ ds.

For I1, using (3.2) and (H2), we have

I1 ≤ a
∫ τ2

0

∫ s

0
‖R(τ1 − s)− R(τ2 − s)‖‖v(τ)‖ dτ ds

≤ aψ (C∗2‖φ‖B + (C∗1 + 1)r) ‖µ‖L1

∫ τ2

0
‖R(τ1 − s)− R(τ2 − s)‖ ds

≤ aψ (C∗2‖φ‖B + (C∗1 + 1)r) ‖µ‖L1

× [q
∫ τ2

0

∫ ∞

0
σ‖[(τ1 − s)q−1 − (τ2 − s)q−1]ξq(σ)S((τ1 − s)qσ)‖ dσ ds

+ q
∫ τ2

0

∫ ∞

0
σ(τ2 − s)q−1ξq(σ)‖S((τ1 − s)qσ)− S((τ2 − s)qσ)‖ dσ ds]

≤ aψ (C∗2‖φ‖B + (C∗1 + 1)r) ‖µ‖L1 × [Cq,M

∫ τ2

0

∣∣∣(τ1 − s)q−1 − (τ2 − s)q−1
∣∣∣ ds

+ q
∫ τ2

0

∫ ∞

0
σ(τ2 − s)q−1ξq(σ)‖S((τ1 − s)qσ)− S((τ2 − s)qσ)‖ dσ ds].

Clearly, the first term on the right-hand side of the above inequality tends to zero as τ2 → τ1.
From the continuity of S(t) in the uniform operator topology for t > 0, the second term on
the right-hand side of the above inequality tends to zero as τ2 → τ1.
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In view of (3.2), we have

I2 ≤ aψ (C∗2‖φ‖B + (C∗1 + 1)r) ‖µ‖L1

∫ τ1

τ2

‖R(τ1 − s)‖ ds

≤ aCq,Mψ (C∗2‖φ‖B + (C∗1 + 1)r) ‖µ‖L1

∫ τ1

τ2

(τ1 − s)q−1 ds.

As τ2 → τ1, I2 tends to zero.
So P2(Br) is equicontinuous.

Claim 4: (P2Br)(t) is relatively compact for each t ∈ J, where

(P2Br)(t) = {h(t) : h ∈ P2(Br)}.

Let 0 < t ≤ T be fixed and let ε be a real number satisfying 0 < ε < t. For arbitrary δ > 0, we
define

hε,δ(t) = q
∫ t−ε

0
(t− s)q−1

∫ ∞

δ
σξq(σ)S((t− s)qσ)

∫ s

0
a(s, τ)v(τ) dτ dσ ds

= qS(εqδ)
∫ t−ε

0
(t− s)q−1

∫ ∞

δ
σξq(σ)S((t− s)qσ− εqδ)

∫ s

0
a(s, τ)v(τ) dτ dσ ds,

where v ∈ SF,y+z. Since S(t) is a compact operator, the set

Hε,δ = {hε,δ(t) : h ∈ P2(Br)}

is relatively compact. Moreover,

‖h(t)− hε,δ(t)‖

≤ q
∫ t−ε

0
(t− s)q−1

∫ δ

0
σξq(σ)‖S((t− s)qσ)‖

∫ s

0
‖a(s, τ)‖‖v(τ)‖ dτ dσ ds

+q
∫ t

t−ε
(t− s)q−1

∫ ∞

0
σξq(σ)‖S((t− s)qσ)‖

∫ s

0
‖a(s, τ)‖‖v(τ)‖ dτ dσ ds

≤ Tq Maψ (C∗2‖φ‖B + (C∗1 + 1)r) ‖µ‖L1

∫ δ

0
σξq(σ) dσ

+
εq Ma

Γ(1 + q)
ψ (C∗2‖φ‖B + (C∗1 + 1)r) ‖µ‖L1 .

Therefore, (P2Br)(t) is relatively compact.
As a consequence of Claim 2 to 4 together with the Arzelà–Ascoli theorem we can conclude

that P2 is completely continuous.
Claim 5: P2 has a closed graph.

Let zn → z∗, hn ∈ P2(zn), and hn → h∗. We shall show that h∗ ∈ P2(z∗). hn ∈ P2(zn) means
that there exists vn ∈ SF,yn+zn such that

hn(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ)vn(τ) dτ ds, t ∈ J.

We have to prove that there exists v∗ ∈ SF,y∗+z∗ such that

h∗(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ)v∗(τ) dτ ds, t ∈ J.
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Consider the linear and continuous operator Υ : L1(J, X) −→ C(J, X) defined by

(Υv)(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ)v(s) dτ ds.

From Lemma 2.5 it follows that Υ ◦ SF is a closed graph operator and from the definition of Υ
one has

hn(t) ∈ Υ(SF,yn+zn).

As zn → z∗ and hn → h∗, there is a v∗ ∈ SF,y∗+z∗ such that

h∗(t) =
∫ t

0

∫ s

0
R(t− s)a(s, τ)v(s) dτ ds.

Hence the multivalued operator P2 is upper semi-continuous.
Claim 6: A priori bounds.

Now it remains to show that the set

E = {z ∈ Z0 : z ∈ λP1(z) + λP2(z), for some 0 < λ < 1}

is bounded.
Let z ∈ E be any element, then there exists v ∈ SF,y+z such that

z(t) = λ
∫ t

0
R(t− s)Bu(s) ds + λ

∫ t

0

∫ s

0
R(t− s)a(s, τ)v(s) dτ ds for some 0 < λ < 1.

Thus, by (3.8), (H2) and Lemma 3.6, for each t ∈ J we have

‖z(t)‖ ≤
∫ t

0
‖R(t− s)‖‖Bu(s)‖ds +

∫ t

0

∫ s

0
‖R(t− s)‖‖a(s, τ)‖‖v(s)‖ dτ ds

≤ M1M2aCq,M

∫ t

0
(t− s)q−1

[
‖x1‖+ M‖φ‖B

+ aCq,M

∫ T

0

∫ τ

0
(t− τ)q−1‖v(ι)‖ dι dτ

]
ds + aCq,M

∫ t

0
(t− s)q−1

∫ s

0
‖v(τ)‖ dτ ds

≤ M1M2aCq,M
Tq

q

[
‖x1‖+ M‖φ‖B

]
+ M1M2a2C2

q,M

∫ t

0
(t− s)q−1

∫ T

0

∫ τ

0
(t− τ)q−1‖v(ι)‖ dι dτ ds

+ aCq,M

∫ t

0
(t− s)q−1

∫ s

0
‖v(τ)‖ dτ ds

≤ M1M2aCq,M
Tq

q

[
‖x1‖+ M‖φ‖B

]
+ M1M2a2C2

q,M

×
∫ t

0
(t− s)q−1

∫ T

0

∫ τ

0
(t− τ)q−1 [µ(ι)ψ(‖yι + zι‖+ ‖y(ι) + z(ι)‖)] dι dτ ds

+ aCq,M

∫ t

0
(t− s)q−1

∫ s

0
[µ(τ)ψ(‖yτ + zτ‖+ ‖y(τ) + z(τ)‖)] dτ ds

≤ M1M2aCq,M
Tq

q

[
‖x1‖+ M‖φ‖B

]
+ M1M2a2C2

q,M

×
∫ t

0
(t− s)q−1

∫ T

0

∫ τ

0
(t− τ)q−1 [µ(ι)ψ(C∗2‖φ‖B + (C∗1 + 1)‖z(ι)‖)] dι dτ ds

+ aCq,M

∫ t

0
(t− s)q−1

∫ s

0
[µ(τ)ψ(C∗2‖φ‖B + (C∗1 + 1)‖z(τ)‖)] dτ ds
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≤ M1M2aCq,M
Tq

q

[
‖x1‖+ M‖φ‖B

]
+ M1M2a2C2

q,M
T2q

q2

∫ t

0
[µ(s)ψ(C∗2‖φ‖B + (C∗1 + 1)‖z(s)‖)] ds

+ aCq,M
Tq

q

∫ t

0
[µ(s)ψ(C∗2‖φ‖B + (C∗1 + 1)‖z(s)‖)] ds

≤ M1M2aCq,M
Tq

q

[
‖x1‖+ M‖φ‖B

]
+

(
M1M2a2C2

q,M
T2q

q2 + aCq,M
Tq

q

) ∫ t

0
[µ(s)ψ(β2 + β1‖z(s)‖)] ds

Then

β2 + β1‖z(t)‖ ≤ β2 + β1M1M2aCq,M
Tq

q

[
‖x1‖+ M‖φ‖B

]
+ β1

(
M1M2a2C2

q,M
T2q

q2 + aCq,M
Tq

q

) ∫ t

0
[µ(s)ψ(β2 + β1‖z(s)‖)] ds

≤ ω1 + ω2

∫ t

0
[µ(s)ψ(β2 + β1‖z(s)‖)] ds.

Let
m(t) := sup {β2 + β1‖z(s)‖ : 0 ≤ s ≤ t} , t ∈ J.

By the previous inequality, we have

m(t) ≤ ω1 + ω2

∫ t

0
[µ(s)ψ(m(s))] ds.

Let us take the right-hand side of the above inequality as v(t). Then we have

m(t) ≤ v(t) for all t ∈ J,

with
v(0) = ω1,

and
v′(t) = ω2µ(t)ψ(m(t)), a.e. t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤ ω2µ(t)ψ(v(t)), a.e. t ∈ J.

Integrating from 0 to t we get

∫ t

0

v′(s)
ψ(v(s))

ds ≤ ω2

∫ t

0
µ(s) ds.

By a change of variable we get

∫ v(t)

v(0)

du
ψ(u)

≤ ω2

∫ t

0
µ(s) ds.
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Using the condition (3.3), this implies that for each t ∈ J, we have

∫ v(t)

v(0)

du
ψ(u)

≤ ω2

∫ t

0
µ(s) ds ≤ ω2

∫ T

0
µ(s)ds <

∫ +∞

v(0)

du
ψ(u)

.

Thus, for every t ∈ J, there exists a constant Λ such that v(t) ≤ Λ and hence m(t) ≤ Λ. Since
‖z‖Z0 ≤ m(t), we have ‖z‖Z0 ≤ Λ.

This shows that the set E is bounded. As a consequence of Theorem 2.8 we deduce that
P1 + P2 has a fixed point z defined on the interval (−∞, T] which is the solution of problem
(1.1). This completes the proof.

4 An example

Consider the following integro-differential equation with fractional derivative of the form

∂q

∂tq v(t, ζ) ∈
(

∂2

∂ζ2 v(t, ζ) + µ(t, ζ)

+
∫ t

0
(t− s)2

∫ 0

−∞
G(t, v(t + θ, ζ))η(t, θ, ζ) dθ ds

)
, t ∈ [0, 1], ζ ∈ [0, π]; (4.1)

v(t, 0) = v(t, π) = 0, t ∈ [0, 1];

v(θ, ζ) = ϕ(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π],

where 0 < q < 1, µ : [0, 1]× [0, π] → [0, π], and G : [0, 1]×R → P(R) is an u.s.c. multivalued
map with compact convex values.

Set X = L2([0, π]) and define A by

D(A) = {u ∈ X : u′′ ∈ X, u(0) = u(π) = 0},
Au = u′′.

It is well known that A is the infinitesimal generator of an analytic semigroup (S(t))t≥0 on X
[43]. Furthermore, A has a discrete spectrum with eigenvalues of the form −n2, n ∈ N, and
the corresponding normalized eigenfunctions are given by

un(x) =

√
2
π

sin(nx).

In addition, {un : n ∈N} is an orthogonal basis for X,

S(t)u =
∞

∑
n=1

e−n2t(u, un)un, for all u ∈ X and every t ≥ 0.

From these expressions it follows that (S(t))t≥0 is uniformly bounded compact semigroup.
For the phase space, we choose B = Bγ defined by

Bγ :=
{

φ ∈ C((−∞, 0], X) : lim
θ→−∞

eγθφ(θ) exists in X
}

endowed with the norm
‖φ‖ = sup{eγθ |φ(θ)| : θ ≤ 0}.
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Notice that the phase space Bγ satisfies axioms (A1)–(A3).
For t ∈ [0, 1], ζ ∈ [0, π] and ϕ ∈ Bγ, we set

x(t)(ζ) = v(t, ζ),

a(t, s) = (t− s)2,

F(t, ϕ, x(t))(ζ) =
∫ 0

−∞
G(t, ϕ(θ)(ζ))η(t, θ, ζ) dθ,

Bu(t)(ζ) = µ(t, ζ).

With the above choices, we see that the system (4.1) is the abstract formulation of (1.1). Assume
that the operator W : L2([0, 1], X)→ X defined by

Wu(·) =
∫ 1

0
R(1− s)µ(s, ·) ds,

has a bounded invertible operator W−1 in L2([0, 1], X)/ ker W.
Thus all the conditions of Theorem 3.5 are satisfied. Hence, system (4.1) is controllable on

(−∞, T].
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