
Electronic Journal of Qualitative Theory of Differential Equations

2008, No. 24, 1-10; http://www.math.u-szeged.hu/ejqtde/

Triple positive solutions for a boundary value problem
of nonlinear fractional differential equation

Chuanzhi Bai∗

Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223300, P R China

Abstract

In this paper, we investigate the existence of three positive solutions for the nonlinear fractional boundary
value problem

Dα
0+u(t) + a(t) f (t, u(t), u′′(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

whereDα
0+ is the standard Riemann-Liouville fractional derivative.The method involves applications of a new

fixed-point theorem due to Bai and Ge. The interesting point lies in the fact that the nonlinear term is allowed to
depend on the second order derivativeu′′.
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1. Introduction

Many papers and books on fractional calculus and fractionaldifferential equations have appeared

recently, see for example [1-3, 7-12]. Very recently, El-Shahed [5] used the Krasnoselskii’s fixed-

point theorem on cone expansion and compression to show the existence and non-existence of positive

solutions of nonlinear fractional boundary value problem :

Dα
0+u(t) + λa(t) f (u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0,

whereDα
0+ is the standard Riemann-Liouville fractional derivative.Kaufmann and Mboumi [6] studied

the existence and multiplicity of positive solutions of nonlinear fractional boundary value problem :

Dα
0+u(t) + a(t) f (u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = u′(1) = 0.

Motivated by the above works, in this paper we study the existence of three positive solutions for

the following nonlinear fractional boundary value problem:

∗E-mail address: czbai8@sohu.com

EJQTDE, 2008 No. 24, p. 1



Dα
0+u(t) + a(t) f (t, u(t), u′′(t)) = 0, 0 < t < 1, 3 < α ≤ 4, (1.1)

u(0) = u′(0) = u′′(0) = u′′(1) = 0, (1.2)

by using a new fixed-point theorem due to Bai and Ge [4]. Here, the interesting point lies in the fact that

the nonlinear termf is allowed to depend on the second order derivativeu′′. To the best of the authors

knowledge, no one has studied the existence of positive solutions for nonlinear fractional boundary

value problems (1.1)-(1.2).

Throughout this paper, we assume that the following conditions hold.

(H1) f : [0, 1] × [0,∞) × (−∞,+∞)→ [0,∞) is continuous;

(H2) a ∈ C([0, 1], [0,+∞)) and there exists 0< ω < 1 such that
∫ 1

ω
[(1− s)α−3−(1− s)α−1]a(s)ds > 0.

The rest of this paper is organized as follows: In section 2, we present some preliminaries and

lemmas. Section 3 is devoted to prove the existence of three positive solutions for BVP (1.1) and (1.2).

2. Preliminaries

For the convenience of the reader, we present some definitions from the cone theory on ordered

Banach spaces.

Definition 2.1. The mapψ is said to be a nonnegative continuous concave functional ona coneP of a

real Banach spaceE provided thatψ : P→ [0,∞) is continuous and

ψ(tx + (1− t)y) ≥ tψ(x) + (1− t)ψ(y), ∀x, y ∈ P, 0 ≤ t ≤ 1.

Similarly, we say the mapφ is a nonnegative continuous convex functional on a coneP of a real Banach

spaceE provided thatφ : P→ [0,∞) is continuous and

φ(tx + (1− t)y) ≤ tφ(x) + (1− t)φ(y), ∀x, y ∈ P, 0 ≤ t ≤ 1.

Definition 2.2. Let r > a > 0, L > 0 be given andψ be a nonnegative continuous concave functional

andγ, β be nonnegative continuous convex functionals on the coneP. Define convex sets:

P(γ, r; β, L) = {x ∈ P | γ(x) < r, β(x) < L},

P(γ, r; β, L) = {x ∈ P | γ(x) ≤ r, β(x) ≤ L},

P(γ, r; β, L;ψ, a) = {x ∈ P | γ(x) < r, β(x) < L, ψ(x) > a},

P(γ, r; β, L;ψ, a) = {x ∈ P | γ(x) ≤ r, β(x) ≤ L, ψ(x) ≥ a}.
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Suppose that the nonnegative continuous convex functionals γ, β on the coneP satisfy

(A1) there existsM > 0 such that‖x‖ ≤ M max{γ(x), β(x)}, for x ∈ P;

(A2) P(γ, r; β, L) , ∅, for anyr > 0, L > 0.

Lemma 2.1.[4] Let P be a cone in a real Banach spaceE andr2 ≥ d > b > r1 > 0, L2 ≥ L1 > 0

constants. Assume thatγ, β are nonnegative continuous convex functionals onP such that(A1) and

(A2) are satisfied.ψ is a nonnegative continuous concave functional onP such thatψ(x) ≤ γ(x) for

all x ∈ P(γ, r2; β, L2) and letT : P(γ, r2; β, L2) → P(γ, r2; β, L2) be a completely continuous operator.

Suppose

(i) {x ∈ P(γ, d; β, L2;ψ, b) | ψ(x) > b} , ∅, ψ(T x) > b for x ∈ P(γ, d; β, L2;ψ, b),

(ii) γ(T x) < r1, β(T x) < L1 for all x ∈ P(γ, r1; β, L1),

(iii) ψ(T x) > b for all x ∈ P(γ, r2; β, L2;ψ, b) with γ(T x) > d.

ThenT has at least three fixed pointsx1, x2, x3 ∈ P(γ, r2; β, L2). Further,

x1 ∈ P(γ, r1; β, L1), x2 ∈ {P(γ, r2; β, L2;ψ, b) | ψ(x) > b},

and

x3 ∈ P(γ, r2; β, L2) \ (P(γ, r2; β, L2;ψ, b) ∪ P(γ, r1; β, L1)).

The above fixed-point theorem is fundamental in the proof of our main result.

Next, we give some definitions from the fractional calculus.

Definition 2.3. The Riemann-Liouville fractional integral of orderα > 0 of a functionu : (0,∞) → R

is defined as

Iα0+u(t) =
1
Γ(α)

∫ t

0

u(s)

(t − s)1−α
ds.

Definition 2.4. The Riemann-Liouville fractional derivative of orderα > 0 of a continuous function

u : (0,∞)→ R is

Dα
0+u(t) =

dn

dtn

[

In−α
0+ u(t)

]

,

wheren = [α] + 1, provided that the right side is pointwise defined on (0,∞).

The following lemma is crucial in finding an integral representation of the boundary value problem

(1), (2).

Lemma 2.2. [3] Suppose thatu ∈ C(0, 1)∩ L(0, 1) with a fractional derivative of orderα > 0. Then

Iα0+Dα
0+u(t) = u(t) + c1tα−1 + c2tα−2 + · · · + cntα−n.

EJQTDE, 2008 No. 24, p. 3



for someci ∈ R, i = 1, 2, ..., n.

From Lemmas 2.2, we now give an integral representation of the solution of the linearized problem.

Lemma 2.3. If y ∈ C[0, 1], then the boundary value problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1, 3 < α ≤ 4, (2.1)

u(0) = u′(0) = u′′(0) = u′′(1) = 0, (2.2)

has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =
1
Γ(α)

{

tα−1(1− s)α−3 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1− s)α−3, 0 ≤ t < s ≤ 1.

Proof. From Lemma 2.2, we get

u(t) = c1tα−1 + c2tα−2 + c3tα−3 + c4tα−4 −

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds.

By (2.2), there arec2 = c3 = c4 = 0, andc1 =
1
Γ(α)

∫ 1
0 (1 − s)α−3y(s)ds. Hence, the unique solution of

BVP (2.1), (2.2) is

u(t) =
∫ 1

0

tα−1(1− s)α−3

Γ(α)
y(s)ds −

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds =

∫ 1

0
G(t, s)y(s)ds.

The proof is complete.

Lemma 2.4.G(t, s) has the following properties.

(i) 0 ≤ G(t, s) ≤ h(s), t, s ∈ [0, 1],

where

h(s) =
(1− s)α−3 − (1− s)α−1

Γ(α)
;

(ii) G(t, s) ≥
1
2

tα−1h(s), for 0 ≤ t, s ≤ 1.

Proof. It is easy to check that (i) holds. Next, we prove (ii) holds. If t ≥ s, then

G(t, s)
h(s)

=
tα−1(1− s)α−3 − (t − s)α−1

(1− s)α−3 − (1− s)α−1

≥
t2(t − ts)α−3 − (t − s)2(t − ts)α−3

(1− s)α−3 − (1− s)α−1
=

(t − ts)α−3s(2t − s)

(1− s)α−3s(2− s)

=
tα−3(2t − s)

2− s
≥

tα−2

2− s
≥

tα−1

2
.
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If t ≤ s, then

G(t, s)
h(s)

=
tα−1(1− s)α−3

(1− s)α−3 − (1− s)α−1
≥

tα−1(1− s)α−3

(1− s)α−3
≥

tα−1

2
.

The proof is complete.

3. Main results

Let X = {u ∈ C2[0, 1] : u(0) = u′(0) = 0}. Then we have the following lemma.

Lemma 3.1.Foru ∈ X, ‖u‖0 ≤ ‖u′‖0 ≤ ‖u′′‖0, where‖u‖0 = max0≤t≤1 |u(t)|.

By Lemma 3.1,X is a Banach space when it is endowed with the norm‖u‖ = ‖u′′‖0.

It is easy to know that

∂

∂t
G(t, s) =

α − 1
Γ(α)

{

tα−2(1− s)α−3 − (t − s)α−2, 0 ≤ s ≤ t ≤ 1,
tα−2(1− s)α−3, 0 ≤ t < s ≤ 1.

(3.1)

∂2

∂t2
G(t, s) =

(α − 1)(α − 2)
Γ(α)

{

(t(1− s))α−3 − (t − s)α−3, 0 ≤ s ≤ t ≤ 1,
(t(1− s))α−3, 0 ≤ t < s ≤ 1.

(3.2)

We define the operatorT by

Tu(t) =
∫ 1

0
G(t, s)a(s) f (s, u(s), u′′(s))ds, 0 ≤ t ≤ 1. (3.3)

From (3.1) and (3.3) , we haveTu(0) = (Tu)′(0) = 0. Moreover, we obtain by (H1), (H2) and (3.3) that

(Tu)′′(t) =
∫ 1

0

∂2

∂t2
G(t, s)a(s) f (s, u(s), u′′(s))ds ∈ C2[0, 1], ∀u ∈ X.

Thus,T : X → X. By Lemma 2.3,u(t) is a solution of the fractional boundary value problem (1.1)-(1.2)

if and only if u(t) is a fixed point of the operatorT .

Define the coneP ⊂ X by

P =

{

u ∈ X : u(t) ≥ 0, ∀t ∈ [0, 1], min
ω≤t≤1

u(t) ≥
1
2
ωα−1‖u‖0

}

,

where 0< ω < 1 as in (H2).

Let the nonnegative continuous convex functionalsγ, β and the nonnegative continuous concave

functionalψ be defined on the coneP by

γ(u) = max
0≤t≤1

|u(t)|, β(u) = max
0≤t≤1

|u′′(t)|, ψ(u) = min
ω≤t≤1

|u(t)|.

Thenγ, β, ψ : P→ [0,∞) are three continuous nonnegative functionals such that‖u‖ = max{γ(u), β(u)},
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and (A1), (A2) hold; γ, β are convex,ψ is concave and there holdsψ(u) ≤ γ(u), for all u ∈ P.

For 3< α ≤ 4, it is rather straightforward that

max
0≤t≤1

tα−3(1− tα−2) =
α − 2
2α − 5

(

α − 3
2α − 5

)
α−3
α−2

, max
0≤t≤1

tα−1(1− tα−2) =
α − 2
2α − 3

(

α − 1
2α − 3

)
α−1
α−2

. (3.4)

For convenience, we denote

M =
(α − 1)(α − 2)
Γ(α)(2α − 5)

(

α − 3
2α − 5

)
α−3
α−2

, N =
1

Γ(α)(2α − 3)

(

α − 1
2α − 3

)
α−1
α−2

,

m =
ωα−1

2Γ(α)

∫ 1

ω

[

(1− s)α−3 − (1− s)α−1
]

a(s)ds > 0, (by (H2))

where 3< α ≤ 4.

We are now in a position to present and prove our main result.

Theorem 3.2.Assume that(H1) and(H2) hold. Suppose there exist constantsr2 ≥
2b
ωα−1 > b > r1 > 0,

L2 ≥ L1 > 0 such thatbm ≤ min{ r2
N‖a‖0

,
L2

M‖a‖0
}. If the following assumptions hold

(H3) f (t, u, v) < min
{

r1
N‖a‖0

,
L1

M‖a‖0

}

, for (t, u, v) ∈ [0, 1] × [0, r1] × [−L1, L1];

(H4) f (t, u, v) > b
m , for (t, u, v) ∈ [ω, 1] ×

[

b, 2b
ωα−1

]

× [−L2, L2];

(H5) f (t, u, v) ≤ min
{

r2
N‖a‖0

,
L2

M‖a‖0

}

, for (t, u, v) ∈ [0, 1] × [0, r2] × [−L2, L2],

then BVP (1.1)-(1.2) has at least three positive solutionsu1, u2, andu3 such that

max
0≤t≤1

u1(t) ≤ r1, max
0≤t≤1

|u′′1 (t)| ≤ L1;

b < min
ω≤t≤1

u2(t) ≤ max
0≤t≤1

u2(t) ≤ r2, max
0≤t≤1

|u′′2 (t)| ≤ L2;

max
0≤t≤1

u3(t) ≤
2b

ωα−1
, max

0≤t≤1
|u′′3 (t)| ≤ L2.

Proof. By (H1), (H2), Lemma 2.4 and (3.3), foru ∈ P, we haveTu(t) ≥ 0,∀t ∈ [0, 1], and

min
ω≤t≤1

Tu(t) = min
ω≤t≤1

∫ 1

0
G(t, s)a(s) f (s, u(s), u′′(s))ds

≥

∫ 1

0
min
ω≤t≤1

G(t, s)a(s) f (s, u(s), u′′(s))ds

≥
1
2
ωα−1

∫ 1

0
h(s)a(s) f (s, u(s), u′′(s))ds
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≥
1
2
ωα−1 max

0≤t≤1

∫ 1

0
G(t, s)a(s) f (s, u(s), u′′(s))ds =

1
2
ωα−1‖Tu‖0, t ∈ [0, 1].

Thus,T (P) ⊂ P. Moreover, it is easy to check by the Arzela-Ascoli theorem that the operatorT is

completely continuous. We now show that all the conditions of Lemma 2.1 are satisfied.

If u ∈ P(γ, r2; β, L2), thenγ(u) = max0≤t≤1 |u(t)| ≤ r2, β(u) = max0≤t≤1 |u′′(t)| ≤ L2, and assumption

(H5) implies

f (t, u(t), u′′(t)) ≤ min

{

r2

N‖a‖0
,

L2

M‖a‖0

}

, ∀t ∈ [0, 1]. (3.5)

Thus, by (3.4), (3.2) and (3.3), we get

β(Tu) = max
0≤t≤1

|(Tu)′′(t)| = max
0≤t≤1

∣

∣

∣

∣

∣

∣

∫ 1

0

∂2

∂t2
G(t, s)a(s) f (s, u(s), u′′(s))ds

∣

∣

∣

∣

∣

∣

≤ ‖a‖0
L2

M‖a‖0
max
0≤t≤1

∫ 1

0

∂2

∂t2
G(t, s)ds

=
L2

M
(α − 1)(α − 2)
Γ(α)

max
0≤t≤1

[∫ t

0

(

tα−3(1− s)α−3 − (t − s)α−3
)

ds +
∫ 1

t
tα−3(1− s)α−3ds

]

=
L2

M
α − 1
Γ(α)

max
0≤t≤1

tα−3(1− tα−2) =
L2

M
α − 1
Γ(α)

α − 2
2α − 5

(

α − 3
2α − 5

) α−3
α−2

=
L2

M
· M = L2.

Moreover, we obtain by (3.5) that

γ(Tu) = max
0≤t≤1

∣

∣

∣

∣

∣

∣

∫ 1

0
G(t, s)a(s) f (s, u(s), u′′(s))ds

∣

∣

∣

∣

∣

∣

≤ ‖a‖0
r2

N‖a‖0
max
0≤t≤1

∫ 1

0
G(t, s)ds

=
r2

N
1
Γ(α)

max
0≤t≤1

[∫ t

0

(

tα−1(1− s)α−3 − (t − s)α−3
)

ds +
∫ 1

t
tα−1(1− s)α−3ds

]

=
r2

N
1

Γ(α)(α − 2)
max
0≤t≤1

tα−1(1− tα−2) =
r2

N
1
Γ(α)

1
2α − 3

(

α − 1
2α − 3

)
α−1
α−2

=
r2

N
· N = r2.

Hence,T : P(γ, r2; β, L2) → P(γ, r2; β, L2). Similarly, if u ∈ P(γ, r1; β, L1), then assumption (H3)

yields f (t, u(t), u′′(t)) < min
{

r1
N‖a‖0

,
L1

M‖a‖0

}

for t ∈ [0, 1]. As in the argument above, we can obtain that

T : P(γ, r1; β, L1)→ P(γ, r1; β, L1). Hence, condition (ii) of Lemma 2.1 is satisfied.
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To check condition (i) of Lemma 2.1, we chooseu(t) = 2b
ωα−1 , 0 ≤ t ≤ 1. It is easy to see thatu(t) =

2b
ωα−1 ∈ P(γ, 2b

ωα−1 ; β, L2;ψ, b), ψ(u) = ψ( 2b
ωα−1 ) > b, and so{u ∈ P(γ, 2b

ωα−1 ; β, L2;ψ, b) | ψ(u) > b} , ∅.

Hence, ifu ∈ P(γ, 2b
ωα−1 ; β, L2;ψ, b), thenb ≤ u(t) ≤ 2b

ωα−1 , |u′′(t)| ≤ L2 for ω ≤ t ≤ 1. From assumption

(H4), we havef (t, u(t), u′′(t)) > b
m for ω ≤ t ≤ 1. Thus, by Lemma 2.4 and (3.2), we have

ψ(Tu) = min
ω≤t≤1

∣

∣

∣

∣

∣

∣

∫ 1

0
G(t, s)a(s) f (s, u(s), u′′(s))ds

∣

∣

∣

∣

∣

∣

≥

∫ 1

0
min
ω≤t≤1

G(t, s)a(s) f (s, u(s), u′′(s))ds ≥
ωα−1

2

∫ 1

0
h(s)a(s) f (s, u(s), u′′(s))ds

≥
ωα−1

2

∫ 1

ω

h(s)a(s) f (s, u(s), u′′(s))ds >
ωα−1

2
b
m

∫ 1

ω

h(s)a(s)ds

=
ωα−1

2
b
m

1
Γ(α)

∫ 1

ω

[

(1− s)α−3 − (1− s)α−1
]

a(s)ds

= b,

i.e.,

ψ(Tu) > b, ∀u ∈ P(γ, 2b
ωα−1 ; β, L2, ψ, b).

This shows that condition (i) of Lemma 2.1 is satisfied. We finally show that (iii) of Lemma 2.1 also

holds. Suppose thatu ∈ P(γ, r2; β, L2;ψ, b) with γ(Tu) > 2b
ωα−1 . Then, by the definition ofψ andTu ∈ P,

we have

ψ(Tu) = min
ω≤t≤1

∣

∣

∣

∣

∣

∣

∫ 1

0
G(t, s)a(s) f (s, u(s), u′′(s))ds

∣

∣

∣

∣

∣

∣

≥
ωα−1

2

∫ 1

0
h(s)a(s) f (s, u(s), u′′(s))ds ≥

ωα−1

2
max
0≤t≤1

∫ 1

0
G(t, s)a(s) f (s, u(s), u′′(s))ds

=
ωα−1

2
γ(Tu) >

ωα−1

2
·

2b

ωα−1
= b.

So, the condition (iii) of Lemma 2.1 is satisfied. Therefore,an application of Lemma 2.1 implies that the

boundary value problem (1.1)-(1.2) has at least three positive solutionsu1, u2, andu3 in P(α, r2; β, L2)

such that

max
0≤t≤1

u1(t) < r1, max
0≤t≤1

|u′′1 (t)| < L1;

b ≤ min
ω≤t≤1

u2(t) ≤ max
0≤t≤1

u2(t) ≤ r2, max
0≤t≤1

|u′′2 (t)| ≤ L2;

max
0≤t≤1

u3(t) ≤
2b

ωα−1
, max

0≤t≤1
|u′′3 (t)| ≤ L2.
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The proof is complete.

Finally, we give an example to illustrate the effectiveness of our result.

Example 3.1.Consider the nonlinear fractional boundary value problem :

D3.6
0+u(t) + a(t) f (t, u(t), u′′(t)) = 0, 0 < t < 1, (3.6)

u(0) = u′(0) = u′′(0) = u′′(1) = 0, (3.7)

wherea(t) = 100(1− t), and

f (t, u, v) =



















1
103 |cost| + 1

3803
u3
+

(

|v|
800

)3
, u ≤ 2,

1
103 |cost| + 6561

380 +
(

|v|
800

)3
, u ≥ 2.

Setα = 3.6,ω = 1
2, we have

M =
(α − 1)(α − 2)
Γ(α)(2α − 5)

(

α − 3
2α − 5

) α−3
α−2

= 0.3125, N =
1

Γ(α)(2α − 3)

(

α − 1
2α − 3

) α−1
α−2

= 0.8397,

‖a‖0 = 100, m =
ωα−1

2Γ(α)

∫ 1

ω

[

(1− s)α−3 − (1− s)α−1
]

a(s)ds = 0.12.

Obviously,a(t) satisfies condition (H2). Chooser1 = 1, b = 2, r2 = 1500,L1 = 30, andL2 = 600,

then

2b

ωα−1
= 24.2515,

b
m
= 16.6667,

min

{

r1

N‖a‖0
,

L1

M‖a‖0

}

= 0.0119, min

{

r2

N‖a‖0
,

L2

M‖a‖0

}

= 17.8635.

Consequently,f (t, u, v) satisfy

f (t, u, v) < 0.0119, for (t, u, v) ∈ [0, 1] × [0, 1] × [−30, 30];

f (t, u, v) > 16.6667, for (t, u, v) ∈ [1/2, 1] × [2, 24.2515]× [−600, 600];

f (t, u, v) < 17.8635, for (t, u, v) ∈ [0, 1] × [0, 1500]× [−600, 600],

Then all the assumptions of Theorem 3.2 hold. Hence, with Theorem 3.2, nonlinear fractional boundary

value problem (3.6), (3.7) has at least three positive solutionsu1, u2, u3, such that

max
0≤t≤1

u1(t) ≤ 1, max
0≤t≤1

|u′′1 (t)| ≤ 30;

2 < min
1/2≤t≤1

u2(t) ≤ max
0≤t≤1

u2(t) ≤ 1500, max
0≤t≤1

|u′′2 (t)| ≤ 600;

max
0≤t≤1

u3(t) ≤ 24.2515, max
0≤t≤1

|u′′3 (t)| ≤ 600.
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