On qualitative properties of a system containing a singular parabolic functional equation

László Simon *
L. Eötvös University of Budapest, Institute of Mathematics

Abstract

We consider a system consisting of a quasilinear parabolic equation and a first order ordinary differential equation containing functional dependence on the unknown functions. The existence and some properties of solutions in $(0, \infty)$ will be proved.

Introduction

In this work we consider initial-boundary value problems for the system

$$
\begin{gather*}
D_{t} u-\sum_{i=1}^{n} D_{i}\left[a_{i}(t, x, u(t, x), D u(t, x) ; u, w)\right]+ \tag{0.1}\\
a_{0}(t, x, u(t, x), D u(t, x) ; u, w)=f(t, x), \\
D_{t} w=F(t, x ; u, w) \text { in } Q_{T}=(0, T) \times \Omega, \quad T \in(0, \infty) \tag{0.2}
\end{gather*}
$$

where the functions

$$
a_{i}: Q_{T} \times \mathbb{R}^{n+1} \times L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}
$$

(with a closed linear subspace V_{1} of the Sobolev space $W^{1, p}(\Omega), 2 \leq p<\infty$) satisfy conditions which are generalizations of the usual conditions for quasilinear parabolic differential equations, considered by using the theory of monotone type operators (see, e.g., [2], [7], [13]) but the equation (0.1) is not uniformly parabolic in a sense, analogous to the linear case. Further,

$$
F: Q_{T} \times L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}
$$

satisfies a Lipschitz condition.

[^0]In [12] the existence of weak solutions in Q_{T} was proved. In this present paper this result will be extended to $Q_{\infty}=(0, \infty) \times \Omega$ and some properties (boundedness, asymptotic property as $t \rightarrow \infty$) of the solutions will be shown.

Such problems arise, e.g., when considering diffusion and transport in porous media with variable porosity, see [5], [8]. In [8] J.D. Logan, M.R. Petersen, T.S. Shores considered and numerically studied a nonlinear system, consisting of a parabolic, an elliptic and an ODE which describes reaction-mineralogy-porosity changes in porous media. System (0.1), (0.2) was motivated by that system. In [3], [4] Á. Besenyei considered a more general system of a parabolic PDE, an elliptic PDE and an ODE.

1 Existence of solutions

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain having the uniform C^{1} regularity property (see [1]) and $p \geq 2$ be a real number. Denote by $W^{1, p}(\Omega)$ the usual Sobolev space of real valued functions with the norm

$$
\|u\|=\left[\int_{\Omega}\left(|D u|^{p}+|u|^{p}\right)\right]^{1 / p}
$$

Let $V_{1} \subset W^{1, p}(\Omega)$ be a closed linear subspace containing $W_{0}^{1, p}(\Omega)$ (the closure of $C_{0}^{\infty}(\Omega)$ in $\left.W^{1, p}(\Omega)\right)$. Denote by $L^{p}\left(0, T ; V_{1}\right)$ the Banach space of the set of measurable functions $u:(0, T) \rightarrow V_{1}$ such that $\|u\|_{V_{1}}^{p}$ is integrable and define the norm by

$$
\|u\|_{L^{p}\left(0, T ; V_{1}\right)}^{p}=\int_{0}^{T}\|u(t)\|_{V_{1}}^{p} d t
$$

The dual space of $L^{p}\left(0, T ; V_{1}\right)$ is $L^{q}\left(0, T ; V_{1}^{\star}\right)$ where $1 / p+1 / q=1$ and V_{1}^{\star} is the dual space of V_{1} (see, e.g., [7], [13]).

On functions a_{i} we assume:
$\left(A_{1}\right)$. The functions $a_{i}: Q_{T} \times \mathbb{R}^{n+1} \times L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega) \rightarrow \mathbb{R}$ satisfy the Carathéodory conditions for arbitrary fixed $(u, w) \in L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega)$ $(i=0,1, \ldots, n)$.
$\left(A_{2}\right)$. There exist bounded (nonlinear) operators $g_{1}: L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega) \rightarrow$ \mathbb{R}^{+}and $k_{1}: L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega) \rightarrow L^{q}(\Omega)$ such that

$$
\left|a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)\right| \leq g_{1}(u, w)\left[\left|\zeta_{0}\right|^{p-1}+|\zeta|^{p-1}\right]+\left[k_{1}(u, w)\right](x), \quad i=0,1, \ldots, n
$$

for a.e. $(t, x) \in Q_{T}$, each $\left(\zeta_{0}, \zeta\right) \in \mathbb{R}^{n+1}$ and $(u, w) \in L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega)$.
$\left(A_{3}\right) . \sum_{i=1}^{n}\left[a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)-a_{i}\left(t, x, \zeta_{0}, \zeta^{\star} ; u, w\right)\right]\left(\zeta_{i}-\zeta_{i}^{\star}\right)>0$ if $\zeta \neq \zeta^{\star}$.
$\left(A_{4}\right)$. There exist bounded operators $g_{2}: L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega) \rightarrow C[0, T]$, $k_{2}: L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega) \rightarrow L^{1}\left(Q_{T}\right)$ such that

$$
\sum_{i=0}^{n} a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right) \zeta_{i} \geq\left[g_{2}(u, w)\right](t)\left[\left|\zeta_{0}\right|^{p}+|\zeta|^{p}\right]-\left[k_{2}(u, w)\right](t, x)
$$

for a.e. $(t, x) \in Q_{T}$, all $\left(\zeta_{0}, \zeta\right) \in \mathbb{R}^{n+1},(u, w) \in L^{p}\left(0, T ; V_{1}\right) \times L^{2}(\Omega)$ and (with some positive constants)

$$
\begin{gather*}
\left.\left[g_{2}(u, w)\right] t\right) \geq \operatorname{const}\left(1+\|u\|_{L^{p}\left(0, t ; V_{1}\right)}\right)^{-\sigma^{\star}}\left(1+\|w\|_{L^{2}\left(Q_{t}\right)}\right)^{-\beta^{\star}} \tag{1.3}\\
\left\|k_{2}(u, w)\right\|_{L^{1}\left(Q_{t}\right)} \leq \operatorname{const}\left(1+\|u\|_{L^{p}\left(0, t ; V_{1}\right)}\right)^{\sigma}\left(1+\|w\|_{L^{2}\left(Q_{t}\right)}\right)^{\beta} \tag{1.4}
\end{gather*}
$$

where

$$
0<\sigma^{\star}<p-1, \quad 0 \leq \sigma<p-\sigma^{\star}
$$

and $\beta, \beta^{\star} \geq 0$ satisfy

$$
\beta^{\star}+\sigma^{\star}<p-1, \quad \beta^{\star}+\sigma^{\star}+\beta+\sigma<p .
$$

$\left(A_{5}\right)$. There exists $\delta>0$ such that if $\left(u_{k}\right) \rightarrow u$ weakly in $L^{p}\left(0, T ; V_{1}\right)$, strongly in $L^{p}\left(0, T ; W^{1-\delta, p}(\Omega)\right)$ and $\left(w_{k}\right) \rightarrow w$ in $L^{2}(\Omega)$ then for $i=0,1, \ldots, n$

$$
a_{i}\left(t, x, u_{k}(t, x), D u_{k}(t, x) ; u_{k}, w_{k}\right)-a_{i}\left(t, x, u_{k}(t, x), D u_{k}(t, x) ; u, w\right) \rightarrow 0
$$

in $L^{q}\left(Q_{T}\right)$.
Definition Assuming $\left(A_{1}\right)-\left(A_{5}\right)$ we define operator $A: L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right) \rightarrow$ $L^{q}\left(0, T ; V_{1}^{\star}\right)$ by

$$
\begin{gathered}
{[A(u, w), v]=\int_{0}^{T}\langle A(u, w)(t), v(t)\rangle d t=} \\
\int_{Q_{T}}\left\{\sum_{i=1}^{n} a_{i}(t, x, u(t, x), D u(t, x) ; u, w) D_{i} v+a_{0}(t, x, u(t, x), D u(t, x) ; u, w) v\right\} d t d x \\
(u, w) \in L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right), \quad v \in L^{p}\left(0, T ; V_{1}\right)
\end{gathered}
$$

where the brackets $\langle\cdot, \cdot\rangle,[\cdot, \cdot]$ mean the dualities in spaces V_{1}^{\star}, V_{1} and $L^{q}\left(0, T ; V_{1}^{\star}\right)$, $L^{p}\left(0, T ; V_{1}\right)$, respectively.

On function $F: Q_{T} \times L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ assume
$\left(F_{1}\right)$. For each fixed $(u, w) \in L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right), F(\cdot ; u, w) \in L^{2}\left(Q_{T}\right)$.
$\left(F_{2}\right) . \quad F$ satisfies the following (global) Lipschitz condition: for each $t \in$ $(0, T],(u, w),\left(u^{\star}, w^{\star}\right) \in X$ we have

$$
\begin{gathered}
\left\|F(\cdot ; u, w)-F\left(\cdot ; u^{\star}, w^{\star}\right)\right\|_{L^{2}\left(Q_{t}\right)}^{2} \leq \\
K\left[\left\|u-u^{\star}\right\|_{L^{p}\left(0, t ; W^{1-\delta, p}(\Omega)\right)}^{2}+\left\|w-w^{\star}\right\|_{L^{2}\left(Q_{t}\right)}^{2}\right] .
\end{gathered}
$$

In [12] the following theorem was proved.
Theorem 1.1 Assume $\left(A_{1}\right)-\left(A_{5}\right)$ and $\left(F_{1}\right),\left(F_{2}\right)$. Then for any $f \in L^{q}\left(0, T ; V_{1}^{\star}\right)$ and $w_{0} \in L^{2}\left(Q_{T}\right)$ there exists $u \in L^{p}\left(0, T ; V_{1}\right)$, $w \in L^{2}\left(Q_{T}\right)$ such that $D_{t} u \in$ $L^{q}\left(0, T ; V_{1}^{\star}\right), D_{t} w \in L^{2}\left(Q_{T}\right)$ and

$$
\begin{gather*}
D_{t} u+A(u, w)=f, \quad u(0)=0, \tag{1.5}\\
D_{t} w=F(t, x ; u, w) \text { for a.e. }(t, x) \in Q_{T}, \quad w(0)=w_{0} . \tag{1.6}
\end{gather*}
$$

EJQTDE, Proc. 8th Coll. QTDE, 2008 No. 20, p. 3

Now assume
$\left(F_{1}^{\prime}\right) F$ has the form $F(t, x ; u, w)=\hat{F}(t, x, w(t, x) ; u, w)$ and $\hat{F}: Q_{T} \times$ $\mathbb{R} \times X \rightarrow R$ satisfies: for each fixed $(u, w) \in L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right), \xi \in \mathbb{R}$, $\hat{F}(\cdot, \xi ; u, w) \in L^{2}\left(Q_{T}\right)$.
$\left(F_{2}^{\prime}\right)$ There exist constants $K, K_{1}\left(c_{1}\right)$ such that if $|\xi|,\left|\xi^{\star}\right| \leq c_{1}$ then for each $t \in(0, T],(u, w),\left(u^{\star}, w^{\star}\right) \in L^{p}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right.$ with the property $|w|,\left|w^{\star}\right| \leq$ c_{1} in Q_{T}

$$
\begin{gathered}
\left|\hat{F}(t, x, \xi ; u, w)-\hat{F}\left(t, x, \xi^{\star} ; u^{\star}, w^{\star}\right)\right|^{2} \leq \\
K\left\|u-u^{\star}\right\|_{L^{p}\left(0, t ; W^{1-\delta, p}(\Omega)\right)}^{2}+K_{1}\left(c_{1}\right)\left[\left\|w-w^{\star}\right\|_{L^{2}\left(Q_{t}\right)}^{2}+\left|\xi-\xi^{\star}\right|^{2}\right] .
\end{gathered}
$$

$\left(F_{3}^{\prime}\right)$ There exists a constant $c_{0}>0$ such that for a.e. (t, x) and all u, w

$$
\hat{F}(t, x, \xi ; u, w) \xi \leq 0 \text { if }|\xi| \geq c_{0} .
$$

Theorem 1.2 Assume $\left(A_{1}\right)-\left(A_{5}\right)$ and $\left(F_{1}^{\prime}\right)-\left(F_{3}^{\prime}\right)$ such that operators g_{2}, k_{2} in $\left(A_{4}\right)$ satisfy the following modified inequalities instead of (1.3) and (1.4):

$$
\begin{aligned}
& {\left[g_{2}(u, w)\right](t) \geq \mathrm{const}\left(1+\|u\|_{L^{p}\left(0, t ; V_{1}\right)}\right)^{-\sigma^{\star}}\left(1+g_{3}\left(\|w\|_{L^{2}\left(Q_{t}\right)}\right)^{-1},\right.} \\
& \quad\left\|k_{2}(u, w)\right\|_{L^{1}\left(Q_{t}\right)} \leq \mathrm{const}\left(1+\|u\|_{L^{p}\left(0, t ; V_{1}\right)}\right)^{\sigma}\left(1+\|w\|_{L^{2}\left(Q_{t}\right)}\right)
\end{aligned}
$$

where g_{3}, g_{4} are monotone nondecreasing positive functions, $0<\sigma^{\star}<p-1$, $0 \leq \sigma<p-\sigma^{\star}$.

Then for any $f \in L^{q}\left(0, T ; V_{1}^{\star}\right)$ and $w_{0} \in L^{2}\left(Q_{T}\right)$ there exists $u \in L^{p}\left(0, T ; V_{1}\right)$, $w \in L^{2}\left(Q_{T}\right)$ such that $D_{t} u \in L^{q}\left(0, T ; V_{1}^{\star}\right), D_{t} w \in L^{2}\left(Q_{T}\right)$ and (1.5), (1.6) hold.

This theorem is a consequence of Theorem 1.1 (see also [12]): set

$$
c_{0}^{\star}=\max \left\{c_{0},\left\|w_{0}\right\|_{L^{\infty}(\Omega)}\right\}
$$

and let $\chi \in C_{0}^{\infty}(\mathbb{R})$ be such that $\chi(\xi)=\xi$ for $|\xi| \leq c_{0}^{\star}$ and define functions \tilde{F}, \tilde{a}_{i} by

$$
\begin{aligned}
& \tilde{F}(t, x ; u, w)=\hat{F}(t, x, \chi(w(t, x)) ; u, \chi(w)), \\
& \tilde{a}_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)=a_{i}\left(t, x, \zeta_{0}, \zeta ; u, \chi(w)\right),
\end{aligned}
$$

Then by Theorem 1.1 there exists a solution (u, w) of (1.5), (1.6) with \tilde{F}, \tilde{a}_{i} (instead of F, a_{i}, respectively). It is not difficult to show that for a.e. $x \in \Omega$, all $t \in[0, T],|w(t, x)| \leq c_{0}^{\star}$ by (F_{3}^{\prime}) and so (u, w) satisfies the original problem, too.

Now we formulate existence theorems in $(0, \infty)$. Denote by $L_{\text {loc }}^{p}\left(0, \infty ; V_{1}\right)$ the set of functions $v:(0, \infty) \rightarrow V_{1}$ such that for each fixed finite $T>0$, $\left.v\right|_{(0, T)} \in L^{p}\left(0, T ; V_{1}\right)$ and let $Q_{\infty}=(0, \infty) \times \Omega, L_{\text {loc }}^{\alpha}\left(Q_{\infty}\right)$ the set of functions $v: Q_{\infty} \rightarrow R$ such that $\left.v\right|_{Q_{T}} \in L^{\alpha}\left(Q_{T}\right)$ for any finite $T>0$.

Theorem 1.3 Assume that the functions

$$
a_{i}: Q_{\infty} \times \mathbb{R}^{n+1} \times L_{l o c}^{p}\left(0, \infty ; V_{1}\right) \times L_{l o c}^{2}\left(Q_{\infty} \rightarrow \mathbb{R}\right.
$$

satisfy the assumptions $\left(A_{1}\right)-\left(A_{5}\right)$ for any finite T and that $\left.a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)\right|_{Q_{T}}$ depend only on $\left.u\right|_{(0, T)}$ and $\left.w\right|_{Q_{T}}$ (Volterra property). Further, the function

$$
F: Q_{\infty} \times L_{l o c}^{p}\left(0, \infty ; V_{1}\right) \times L_{l o c}^{2}\left(Q_{\infty} \rightarrow \mathbb{R}\right.
$$

satisfies $\left(F_{1}\right),\left(F_{2}\right)$ for arbitrary fixed T and has the Volterra property.
Then for each $f \in L_{l o c}^{q}\left(0, \infty ; V_{1}^{\star}\right), w_{0} \in L^{2}(\Omega)$ there exist $u \in L_{l o c}^{p}\left(0, \infty ; V_{1}\right)$, $w \in L_{l o c}^{2}\left(Q_{\infty}\right)$ which satisfy (1.5), (1.6) for any finite T.

The idea of the proof. The Volterra property implies that if u, w are solutions in Q_{T} then for arbitrary $\tilde{T}<T$, their restriction to $Q_{\tilde{T}}$ are solutions in $Q_{\tilde{T}}$. Therefore, if $\lim \left(T_{j}\right)=+\infty, T_{1}<T_{2}<\ldots<T_{j}<\ldots$ and u_{j}, w_{j} are solutions in $Q_{T_{j}}$ then, by using a 'diagonal process', we can select a subsequence of (u_{j}, w_{j}) which converges in Q_{T} for arbitrary finite T to (u, w), a solution of (1.5), (1.6) in Q_{∞}. (For more details see, e.g., [10].) Similarly can be proved

Theorem 1.4 Assume that the functions

$$
a_{i}: Q_{\infty} \times \mathbb{R}^{n+1} \times L_{l o c}^{p}\left(0, \infty ; V_{1}\right) \times L_{l o c}^{2}\left(Q_{\infty} \rightarrow \mathbb{R}\right.
$$

satisfy the assumptions of Theorem 1.2 for any finite T and they have the Volterra property; the function

$$
\hat{F}: Q_{\infty} \times \mathbb{R} \times L_{l o c}^{p}\left(0, \infty ; V_{1}\right) \times L_{l o c}^{2}\left(Q_{\infty} \rightarrow \mathbb{R}\right.
$$

satisfies $\left(F_{1}^{\prime}\right)-\left(F_{3}^{\prime}\right)$ for arbitrary fixed T and has the Volterra property.
Then for each $f \in L_{l o c}^{q}\left(0, \infty ; V_{1}^{\star}\right), w_{0} \in L^{2}(\Omega)$ there exist $u \in L_{l o c}^{p}\left(0, \infty ; V_{1}\right)$, $w \in L_{l o c}^{2}\left(Q_{\infty}\right)$ which satisfy (1.5), (1.6) for any finite T.

2 Boundedness and stabilization

Theorem 2.1 Assume that the functions a_{i}, \hat{F} satisfy the conditions of Theorem 1.4 such that for all $u \in L_{l o c}^{p}\left(0, \infty ; V_{1}\right), w \in L_{\text {loc }}^{\infty}\left(Q_{\infty}\right), t \in(0, \infty)$ the operators g_{2}, k_{2} in $\left(A_{4}\right)$ satisfy

$$
\begin{align*}
& {\left[g_{2}(u, w)\right](t) \geq \text { const }\left[1+\sup _{\tau \in[0, T]} y(\tau)\right]^{-\sigma^{\star} / 2} \cdot\left[1+g_{3}\left(\sup _{\tau \in[0, T]} z(\tau)\right)\right]^{-1}} \tag{2.7}\\
& \quad \int_{\Omega}\left[k_{2}(u, w)\right](t, x) d x \leq \tag{2.8}\\
& \text { const }\left[1+\sup _{\tau \in[0, T]} y(\tau)^{\sigma / 2}+\varphi(t) \sup _{\tau \in[0, T]} y(\tau)^{\left(p-\sigma^{\star}\right) / 2}\right] \cdot\left[1+g_{4}\left(\sup _{\tau \in[0, T]} z(\tau)\right)\right]
\end{align*}
$$

where $0<\sigma^{\star}<p-1,0<\sigma<p-\sigma^{\star}, \lim _{\infty} \varphi=0, g_{3}, g_{4}$ are monotone nondecreasing positive functions,

$$
y(\tau)=\int_{\Omega} u(\tau, x)^{2} d x, \quad z(\tau)=\|w(\tau, \cdot)\|_{L^{\infty}(\Omega)}
$$

Further, the constant c_{0} in $\left(F_{3}^{\prime}\right)$ is independent of $T,\|f(t)\|_{V_{1}^{\star}}$ is bounded for $t \in(0, \infty)$.

Then for a solution $u \in L_{l o c}^{p}\left(0, \infty ; V_{1}\right), w \in L_{l o c}^{\infty}\left(Q_{\infty}\right)$ of (1.5), (1.6) with $w_{0} \in L^{\infty}(\Omega)$ and arbitrary initial condition on u, y and z are bounded in $(0, \infty)$.

Proof Since the constant c_{0} in $\left(F_{3}^{\prime}\right)$ is independent of T, it is easy to show that

$$
|w(t, x)| \leq \max \left\{c_{0},\left\|w_{0}\right\|_{L^{\infty}(\Omega)}\right\}
$$

for a.e. $x \in \Omega$, all $t>0$ (see the idea of the proof of Theorem 1.2, i.e. z is bounded.

Further, applying (1.5) to $u(t) \in V_{1}$, by $\left(A_{4}\right)$ we obtain

$$
\begin{gather*}
\frac{1}{2} y^{\prime}(t)+\left[g_{2}(u, w)\right](t)\|u(t)\|_{V_{1}}^{p}-\int_{\Omega}\left[k_{2}(u, w)\right](t, x) d x \leq \tag{2.9}\\
\langle f(t), u(t)\rangle \leq\|f(t)\|_{V_{1}^{\star}}\|u(t)\|_{V_{1}} \leq \mathrm{const}\|u(t)\|_{V_{1}}
\end{gather*}
$$

since $\|f(t)\|_{V_{1}^{\star}}$ is bounded. Young's inequality implies

$$
\begin{gather*}
\|u(t)\|_{V_{1}} \leq \varepsilon\left[g_{2}(u, w)\right](t)^{1 / p}\|u(t)\|_{V_{1}} \cdot \frac{1}{\varepsilon\left[g_{2}(u, w)\right](t)^{1 / p}} \leq \tag{2.10}\\
\frac{\varepsilon^{p}}{p}\left[g_{2}(u, w)\right](t)\|u(t)\|_{V_{1}}^{p}+\frac{1}{q \varepsilon^{q}\left[g_{2}(u, w)\right](t)^{q / p}} .
\end{gather*}
$$

Choosing sufficiently small $\varepsilon<0$, one obtains from (2.9), (2.10)
$\frac{1}{2} y^{\prime}(t)+\frac{1}{2}\left[g_{2}(u, w)\right](t)\|u(t)\|_{V_{1}}^{p} \leq \int_{\Omega}\left[k_{2}(u, w)\right](t, x) d x+\operatorname{const}\left[g_{2}(u, w)\right](t)^{-q / p}$
Since by Hölder's inequality , $p \geq 2$,

$$
\|u(t)\|_{V_{1}}^{p} \geq \operatorname{const} y(t)^{p / 2}
$$

(2.7), (2.8), (2.11) and the boundedness of z imply (with some positive constant $\left.c^{\star}\right)$

$$
\begin{gather*}
y^{\prime}(t)+c^{\star} y(t)^{p / 2}\left[1+\sup _{\tau \in[0, T]} y(\tau)\right]^{-\sigma^{\star} / 2} \leq \tag{2.12}\\
\text { const }\left[1+\sup _{\tau \in[0, T]} y(\tau)^{\sigma / 2}+\varphi(t) \sup _{\tau \in[0, T]} y(\tau)^{\left(p-\sigma^{\star}\right) / 2}+\sup _{\tau \in[0, T]} y(\tau)^{(q / p)\left(\sigma^{\star} / 2\right)}\right] .
\end{gather*}
$$

Since $0 \leq \sigma<p-\sigma^{\star}<p,(q / p) \sigma^{\star}<p-\sigma^{\star}, \lim _{\infty} \varphi=0$, it is not difficult to show that (2.12) implies the boundedness of $y(t)$ (see [11]).

Now we formulate an attractivity result.

Theorem 2.2 Assume that the functions a_{i}, \hat{F} satisfy the conditions of Theorem 2.1 such that for all $u \in L_{\text {loc }}^{p}\left(0, \infty ; V_{1}\right)$, $w \in L_{\text {loc }}^{\infty}\left(Q_{\infty}\right), t \in(0, \infty)$

$$
\begin{equation*}
\int_{\Omega}\left[k_{2}(u, w)\right](t, x) d x \leq \varphi(t)\left[\sup _{\tau \in[0, T]} y(\tau)^{\left(p-\sigma^{\star}\right) / 2}\right] \cdot\left[1+g_{4}\left(\sup _{\tau \in[0, T]} z(\tau)\right)\right] \tag{2.13}
\end{equation*}
$$

Further,

$$
\begin{gather*}
\lim _{t \rightarrow \infty}\|f(t)\|_{V_{1}^{\star}}=0, \tag{2.14}\\
\xi \hat{F}(t, x, \xi ; u, w) \leq-g(\xi) \xi \tag{2.15}
\end{gather*}
$$

with a strictly monotone increasing continuous function g satisfying $g(0)=0$.
Then for a solution $u \in L_{l o c}^{p}\left(0, \infty ; V_{1}\right), w \in L_{l o c}^{\infty}\left(Q_{\infty}\right)$ of (1.5), (1.6) with $w_{0} \in L^{\infty}(\Omega)$ and arbitrary initial condition on u, for the functions defined in Theorem 2.1 we have

$$
\begin{align*}
& \lim _{\infty} y=0, \tag{2.16}\\
& \lim _{\infty} z=0 . \tag{2.17}
\end{align*}
$$

Proof By (1.6) and (2.15) for a.e. $x \in \Omega, t \mapsto w(t, x)$ is continuous and monotone decreasing and for a.e. (t, x)

$$
D_{t} w(t, x) \leq-g(w(t, x)) \text { if } w(t, x)>0
$$

thus for a.e. $x \in \Omega$ satisfying $w_{0}(x)>0$,

$$
w(t, x) \leq w_{0}(x)-\operatorname{tg}(w(t, x)) \text { for a.e. } x \in \Omega \text { until } w(t, x)>0
$$

(g is monotone increasing, $t \mapsto w(t, x)$ is monotone decreasing). Consequently,

$$
\operatorname{tg}(w(t, x)) \leq w_{0}(x), \text { thus } w(t, x) \leq g^{-1}\left(\frac{\left\|w_{0}\right\|_{L^{\infty}(\Omega)}}{t}\right)
$$

for a.e. $x \in \Omega$ with $w_{0}(x)>0$ until $w(t, x)>0$. In the case $w_{0}(x)<0$ we obtain

$$
w(t, x) \geq-g^{-1}\left(\frac{\left\|w_{0}\right\|_{L^{\infty}(\Omega)}}{t}\right)
$$

for a.e. $x \in \Omega$ until $w(t, x)<0$. If for some $t_{1}, w\left(t_{1}, x\right)=0$ then $w(t, x)=0$ for $t>t_{1}$. Hence we obtain (2.17).

In order to prove (2.16), we use (2.13) and so we obtain (similarly to (2.12))

$$
\begin{equation*}
y^{\prime}(t)+c^{\star} y(t)^{p / 2}\left[1+\sup _{\tau \in[0, T]} y(\tau)\right]^{-\sigma^{\star} / 2} \leq \tag{2.18}
\end{equation*}
$$

const $\varphi(t)\left[1+\sup _{\tau \in[0, T]} y(\tau)^{\left(p-\sigma^{\star}\right) / 2}\right]+$ const $\|f(t)\|_{V_{1}^{\star}} \sup _{\tau \in[0, T]} y(\tau)^{(q / p)\left(\sigma^{\star} / 2\right)}$.

Since y is bounded and $\lim \varphi_{\infty}=0$, by using (2.14) one can derive from (2.18) the equality (2.16) (see, e.g., [9]).

Remark In the case $g(\xi)=-\alpha_{1} \xi$ (where α_{1} is a positive constant)

$$
|w(t, x)| \leq\left|w_{0}(x)\right| \exp \left(-\alpha_{1} t\right) \text { for a.e. }(t, x)
$$

and the inequality

$$
-\alpha_{2} \xi^{2} \leq \xi \hat{F}(t, x, \xi ; u, w) \leq 0 \quad\left(\alpha_{2}>0\right)
$$

implies

$$
|w(t, x)| \geq\left|w_{0}(x)\right| \exp \left(-\alpha_{2} t\right) \text { for a.e. }(t, x)
$$

Now we formulate a stabilization result.
Theorem 2.3 Assume that conditions of Theorem 2.1 are satisfied such that (A_{2}), (A_{4}) hold for all $T>0$ with operators

$$
\begin{align*}
& g_{1}, g_{2}: L_{l o c}^{p}\left(0, \infty ; V_{1}\right) \times L_{l o c}^{2}\left(Q_{\infty}\right) \rightarrow \mathbb{R}^{+}, \tag{2.19}\\
& k_{1}: L_{l o c}^{p}\left(0, \infty ; V_{1}\right) \times L_{l o c}^{2}\left(Q_{\infty}\right) \rightarrow L^{q}(\Omega) \tag{2.20}
\end{align*}
$$

for arbitrary fixed $u \in L_{\text {loc }}^{p}\left(0, \infty ; V_{1}\right), w \in L_{\text {loc }}^{2}\left(Q_{\infty}\right)$ such that

$$
\begin{equation*}
\int_{\Omega} u(t, x)^{2} d x, \quad\|w(t, \cdot)\|_{L^{\infty}}, \quad t \in(0, \infty) \text { are bounded } \tag{2.21}
\end{equation*}
$$

and for every $\left(\zeta_{0}, \zeta\right) \in \mathbb{R}$, a.a. $x \in \Omega$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)=a_{i, \infty}\left(x, \zeta_{0}, \zeta\right), \quad i=0,1, \ldots, n \tag{2.22}
\end{equation*}
$$

exist and are finite where $a_{i, \infty}$ satisfy the Carathéodory conditions.
Further, for every fixed $u \in L_{l o c}^{p}\left(0, \infty ; V_{1}\right), w \in L_{l o c}^{2}\left(Q_{\infty}\right)$

$$
\begin{gather*}
\sum_{i=0}^{n}\left[a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)-a_{i}\left(t, x, \zeta_{0}^{\star}, \zeta^{\star} ; u, w\right)\right]\left(\zeta_{i}-\zeta_{i}^{\star}\right) \geq \tag{2.23}\\
{\left[g_{2}(u, w)\right](t)\left[\left|\zeta_{0}-\zeta_{0}^{\star}\right|^{p}+\left|\zeta-\zeta^{\star}\right|^{p}\right]-\left[k_{3}(u, w)\right](t, x)}
\end{gather*}
$$

with some operator

$$
\begin{equation*}
k_{3}: L_{l o c}^{p}\left(0, \infty ; V_{1}\right) \times L_{l o c}^{2}\left(Q_{\infty}\right) \rightarrow L^{1}\left(Q_{\infty}\right) \tag{2.24}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{\Omega}\left[k_{3}(u, w)\right](t, x) d x=0 \tag{2.25}
\end{equation*}
$$

for all fixed u, w satisfying (2.21).
On \hat{F} assume

$$
\begin{equation*}
\hat{F}(t, x, \xi ; u, w)\left[\xi-w_{\infty}(x)\right] \leq-g\left(\xi-w_{\infty}(x)\right)\left[\xi-w_{\infty}(x)\right] \tag{2.26}
\end{equation*}
$$

with some $w_{\infty} \in L^{\infty}(\Omega)$ where g is a strictly monotone increasing function with $g(0)=0$.

Finally, there exists $f_{\infty} \in V_{1}^{\star}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|f(t)-f_{\infty}\right\|_{V_{1}^{\star}}=0 . \tag{2.27}
\end{equation*}
$$

Then for a solution $u \in L_{l o c}^{p}\left(0, \infty ; V_{1}\right), w \in L_{l o c}^{\infty}\left(Q_{\infty}\right)$ of (1.5), (1.6) in $(0, \infty)$ with $w_{0} \in L^{\infty}(\Omega)$, any initial condition on u we have

$$
\begin{gather*}
\lim _{t \rightarrow \infty}\left\|u(t)-u_{\infty}\right\|_{L^{2}(\Omega)}=0 \tag{2.28}\\
\lim _{T \rightarrow \infty} \int_{T-a}^{T+a}\left\|u(t)-u_{\infty}\right\|_{V_{1}}^{p} d t=0 \text { for arbitrary fixed } a>0 \tag{2.29}\\
\lim _{t \rightarrow \infty}\left\|w(t, \cdot)-w_{\infty}\right\|_{L^{\infty}(\Omega)}=0 \tag{2.30}
\end{gather*}
$$

where $u_{\infty} \in V_{1}$ is the unique solution to

$$
\begin{equation*}
A_{\infty}\left(u_{\infty}\right)=f_{\infty} \tag{2.31}
\end{equation*}
$$

and the operator $A_{\infty}: V_{1} \rightarrow V_{1}^{\star}$ is defined by

$$
\begin{gathered}
\left\langle A_{\infty}(z), v\right\rangle=\sum_{i=1}^{n} \int_{\Omega} a_{i, \infty}(x, z(x), D z(x)) D_{i} v(x) d x+ \\
\int_{\Omega} a_{0, \infty}(x, z(x), D z(x)) v(x) d x, \quad z, v \in V_{1}
\end{gathered}
$$

Proof Equality (2.30) follows from (2.26) similarly as it was proved in Theorem 2.2. By Theorem 2.1 (2.21) holds. Applying $\left(A_{2}\right)$ (by using (2.19), (2.20)) to $u(t)=\tilde{u}, w(t)=\tilde{w}$ where $\tilde{u} \in V_{1}, \tilde{w} \in L^{2}(\Omega)$, we obtain from (2.22)

$$
\left|a_{i, \infty}\left(x, \zeta_{0}, \zeta\right)\right| \leq c_{1}\left(\left|\zeta_{0}\right|^{p-1}+|\zeta|^{p-1}\right)+\tilde{k}_{1}(x)
$$

with some constant c_{1} and $\tilde{k}_{1} \in L^{q}(\Omega)$. Similarly, Vitali's theorem, (2.19), (2.20), (2.22) - (2.25) imply

$$
\begin{gathered}
\sum_{i=1}^{n} \int_{\Omega}\left[a_{i, \infty}(x, z(x), D z(x))-a_{i, \infty}\left(x, z^{\star}(x), D z^{\star}(x)\right)\right]\left[D_{i} z(x)-D_{i} z^{\star}(x)\right] d x+ \\
\int_{\Omega}\left[a_{0, \infty}(x, z(x), D z(x))-a_{0, \infty}\left(x, z^{\star}(x), D z^{\star}(x)\right)\right]\left[z(x)-z^{\star}(x)\right] d x \geq \\
c_{2} \int_{\Omega}\left[\left|z(x)-z^{\star}(x)\right|^{p}+\left|D z(x)-D z^{\star}(x)\right|^{p}\right] d x \text { for any } z, z^{\star} \in V_{1}
\end{gathered}
$$

Consequently, $A_{\infty}: V_{1} \rightarrow V_{1}^{\star}$ is bounded, hemicontinuous, strictly monotone and coercive which implies the existence of a unique solution of (2.31) (see, e.g., [13]).

If u, w are solutions of $(1.5),(1.6)$ in $(0, \infty)$ then by (2.31) we obtain

$$
\begin{gather*}
\left\langle D_{t}\left[u(t)-u_{\infty}\right], u(t)-u_{\infty}\right\rangle+\left\langle A(u, w)(t)-A_{\infty}\left(u_{\infty}\right), u(t)-u_{\infty}\right\rangle= \tag{2.32}\\
\left\langle f(t)-f_{\infty}, u(t)-u_{\infty}\right\rangle
\end{gather*}
$$

It is well known (see [13]) that

$$
y(t)=\left\langle u(t)-u_{\infty}, u(t)-u_{\infty}\right\rangle=\int_{\Omega}\left[u(t)-u_{\infty}\right]^{2} d x
$$

is absolutely continuous and the first term in (2.32) equals to $1 / 2 y^{\prime}(t)$ for a.e. t. Further, for the second term in (2.32) we have by (2.23) and Young's inequality

$$
\begin{gather*}
\left\langle[A(u, w)](t)-A_{\infty}\left(u_{\infty}\right), u(t)-u_{\infty}\right\rangle= \tag{2.33}\\
\left\langle[A(u, w)](t)-\left[A_{u, w}\left(u_{\infty}\right)\right](t), u(t)-u_{\infty}\right\rangle+ \\
\left\langle\left[A_{u, w}\left(u_{\infty}\right)\right](t)-A_{\infty}\left(u_{\infty}\right), u(t)-u_{\infty}\right\rangle \geq \\
g_{2}(u, w)\left\|u(t)-u_{\infty}\right\|_{V_{1}}^{p}-\int_{\Omega}\left[k_{3}(u, w)\right](t, x) d x- \\
\frac{\varepsilon^{p}}{p}\left\|u(t)-u_{\infty}\right\|_{V_{1}}^{p}-\frac{1}{q \varepsilon^{q}}\left\|\left[A_{u, w}\left(u_{\infty}\right)\right](t)-A_{\infty}\left(u_{\infty}\right)\right\|_{V_{1}^{\star}}^{q}
\end{gather*}
$$

with arbitrary $\varepsilon>0$ where we used the notation

$$
\begin{gathered}
\left\langle\left[A_{u, w}\left(u_{\infty}\right)\right](t), z\right\rangle= \\
\int_{\Omega}\left\{\sum_{i=1}^{n} a_{i}\left(t, x, u_{\infty}(x), D u_{\infty}(x) ; u, w\right) D_{i} z+a_{0}\left(t, x, u_{\infty}(x), D u_{\infty}(x) ; u, w\right) z\right\}
\end{gathered}
$$

By Vitali's theorem we obtain from $\left(A_{2}\right)$, (2.19), (2.20), (2.22)

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|\left[A_{u, w}\left(u_{\infty}\right)\right](t)-A_{\infty}\left(u_{\infty}\right)\right\|_{V_{1}^{\star}}=0 \tag{2.34}
\end{equation*}
$$

Finally, by Young's inequality, for the right hand side of (2.32) we have

$$
\begin{equation*}
\left|\left\langle f(t)-f_{\infty}, u(t)-u_{\infty}\right\rangle\right| \leq \frac{\varepsilon^{p}}{p}\left\|u(t)-u_{\infty}\right\|_{V_{1}}^{p}+\frac{1}{q \varepsilon^{q}}\left\|f(t)-f_{\infty}\right\|_{V_{1}^{\star}}^{q} \tag{2.35}
\end{equation*}
$$

Thus, choosing sufficiently small $\varepsilon>0$, (2.21), (2.25), (2.27), (2.32) - (2.35) yield

$$
\begin{equation*}
y^{\prime}(t)+c^{\star}\left\|u(t)-u_{\infty}\right\|_{V_{1}}^{p} \leq \psi(t) \tag{2.36}
\end{equation*}
$$

thus by Hölder's inequality

$$
\begin{equation*}
y^{\prime}(t)+c^{\star \star} y(t)^{p / 2} \leq \psi(t) \tag{2.37}
\end{equation*}
$$

where $\lim _{t \rightarrow \infty} \psi(t)=0$ and $c^{\star}, c^{\star \star}$ are positive constants. Similarly to (2.16), one obtains (2.28) from (2.37). Combining (2.28) and (2.36) one obtains (2.29).

Examples Now we consider examples satisfying the conditions of Theorems 1.4-2.3. (Examples for Theorems 1.1, 1.3 see in [12].) Let $a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)$ have the form

$$
\begin{gather*}
a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)=b_{1}\left(\left[H_{1}(u)\right]\right) b_{2}\left(\left[H_{2}(w)\right]\right) \alpha_{i}\left(t, x, \zeta_{0}, \zeta\right), \quad i=1, \ldots, n, \tag{2.38}\\
a_{0}\left(t, x, \zeta_{0}, \zeta ; u, w\right)=b_{1}\left(\left[H_{1}(u)\right]\right) b_{2}\left(\left[H_{2}(w)\right]\right) \alpha_{0}\left(t, x, \zeta_{0}, \zeta\right)+ \tag{2.39}\\
\hat{b}_{0}\left(\left[F_{0}(u)\right](t, x)\right) \tilde{b}_{0}\left(G_{0}(w)\right) \hat{\alpha}_{0}\left(t, x, \zeta_{0}, \zeta\right)
\end{gather*}
$$

where α_{i} satisfy the usual conditions: they are Carathéodory functions;

$$
\left|\alpha_{i}\left(t, x, \zeta_{0}, \zeta\right)\right| \leq c_{1}\left(\left|\zeta_{0}\right|^{p-1}+|\zeta|^{p-1}\right)+k_{1}(x)
$$

with some constant $c_{1}, k_{1} \in L^{q}(\Omega), i=0,1, \ldots, n$;

$$
\begin{gathered}
\sum_{i=1}^{n}\left[\alpha_{i}\left(t, x, \zeta_{0}, \zeta\right)-\alpha_{i}\left(t, x, \zeta_{0}, \zeta^{\star}\right)\right]\left(\zeta_{i}-\zeta_{i}^{\star}\right)>0 \text { if } \zeta \neq \zeta^{\star} \\
\sum_{i=0}^{n} \alpha_{i}\left(t, x, \zeta_{0}, \zeta\right) \zeta_{i} \geq c_{2}\left(\left|\zeta_{0}\right|^{p}+|\zeta|^{p}\right)
\end{gathered}
$$

with some constant $c_{2}>0$. E.g. functions

$$
\alpha_{i}=\zeta_{i}|\zeta|^{p-2}, \quad i=1, \ldots, n, \quad \alpha_{0}=\zeta_{0}\left|\zeta_{0}\right|^{p-2}
$$

satisfy the above conditions. The function $\hat{\alpha}_{0}$ satisfies the Carathéodory condition and

$$
\begin{equation*}
\left|\hat{\alpha}_{0}\left(t, x, \zeta_{0}, \zeta\right)\right| \leq c_{1}\left(\left|\zeta_{0}\right|^{\hat{\rho}}+|\zeta|^{\hat{\rho}}\right), \quad 0 \leq \hat{\rho}<p-1 \tag{2.40}
\end{equation*}
$$

Further, $b_{1}, b_{2}, \hat{b}_{0}, \tilde{b}_{0}$ are continuous functions, satisfying (with some positive constants)

$$
b_{1}(\Theta) \geq \frac{\text { const }}{1+|\Theta|^{\sigma^{\star}}}, \quad\left|\hat{b}_{0}(\Theta)\right| \leq \text { const }|\Theta|^{p-1-\rho^{\star}}
$$

with $0<\sigma^{\star}<p-1, \sigma^{\star}+\hat{\rho}<\rho^{\star}<p-1$,

$$
b_{2}(\Theta) \geq \frac{\text { const }}{1+g_{3}(\Theta)}, \quad\left|\tilde{b}_{0}(\Theta)\right| \leq \operatorname{const}\left[1+g_{4}(\Theta)\right]
$$

(g_{3}, g_{4} are monotone nondecreasing positive functions.)
Finally,

$$
\begin{gathered}
\left.H_{1}: L_{l o c}^{p}\left(0, \infty ; W^{1-\delta, p}(\Omega)\right)\right) \rightarrow C\left(\overline{Q_{\infty}}\right), \quad H_{2}: L_{l o c}^{2}\left(Q_{\infty}\right) \rightarrow C\left(\overline{Q_{\infty}}\right), \\
\left.F_{0}: L_{l o c}^{p}\left(0, \infty ; W^{1-\delta, p}(\Omega)\right)\right) \rightarrow L_{l o c}^{p}\left(Q_{\infty}\right), \quad G_{0}: L_{l o c}^{2}\left(Q_{\infty}\right) \rightarrow L_{l o c}^{2}\left(Q_{\infty}\right)
\end{gathered}
$$

are linear operators of Volterra type such that for any fixed finite $T>0$ their restrictions

$$
\left.H_{1}: L^{p}\left(0, T ; W^{1-\delta, p}(\Omega)\right)\right) \rightarrow C\left(\overline{Q_{T}}\right), \quad H_{2}: L^{2}\left(Q_{T}\right) \rightarrow C\left(\overline{Q_{T}}\right)
$$

$$
\left.F_{0}: L^{p}\left(0, T ; W^{1-\delta, p}(\Omega)\right)\right) \rightarrow L^{p}\left(Q_{T}\right), \quad G_{0}: L^{2}\left(Q_{T}\right) \rightarrow L^{2}\left(Q_{T}\right)
$$

are uniformly bounded with respect to $T \in(0, \infty)$. $\left[H_{1}(u)\right](t, x)$ may have e.g. one of the forms:

$$
\begin{aligned}
& \int_{Q_{t}} d(t, x, \tau, \xi) u(\tau, \xi) d \tau d \xi \text { where } \sup _{(t, x) \in Q_{T}} \int_{Q_{T}}|d(t, x, \tau, \xi)|^{q} d \tau d \xi<\infty, \\
& \int_{\Gamma_{t}} d(t, x, \tau, \xi) v(\tau, \xi) d \tau d \sigma_{\xi} \text { where } \sup _{(t, x) \in Q_{T}} \int_{\Gamma_{T}}|d(t, x, \tau, \xi)|^{q} d \tau d \sigma_{\xi}<\infty .
\end{aligned}
$$

Examples for F_{0}, G_{0} see in [11].
By using Young's inequality, one can prove that the assumptions on a_{i} in Theorem 1.4 are fulfilled for the above example (see [11]). The assumptions on a_{i} in Theorem 2.1 are satisfied for the above example if

$$
\begin{align*}
& \left\|H_{1}(u)\right\|_{C\left(\overline{Q_{T}}\right)} \leq \mathrm{const} \sup _{\tau \in[0, T]}\left\{\int_{\Omega} u(\tau, x)^{2} d x\right\}^{1 / 2}, \tag{2.41}\\
& \left\|F_{0}(u)\right\|_{L^{p}\left(Q_{T}\right)} \leq \mathrm{const} \sup _{\tau \in[0, T]}\left\{\int_{\Omega} u(\tau, x)^{2} d x\right\}^{1 / 2} \tag{2.42}
\end{align*}
$$

with constants not depending on T. (2.41) is satisfied if e.g.

$$
\begin{gathered}
{\left[H_{1}(u)\right](t, x)=\int_{Q_{t}} d(t, x, \tau, \xi) u(\tau, \xi) d \tau d \xi \text { where }} \\
\sup _{(t, x) \in Q_{\infty}} \int_{0}^{\infty}\left[\int_{\Omega}|d(t, x, \tau, \xi)|^{2} d \xi\right]^{1 / 2} d \tau<\infty
\end{gathered}
$$

The assumptions on a_{i} in Theorem 2.2 are satisfied if (2.41), (2.42) hold and (instead of (2.40))

$$
\begin{equation*}
\left|\hat{\alpha}_{0}\left(t, x, \zeta_{0}, \zeta\right)\right| \leq \varphi_{1}(t)\left(\left|\zeta_{0}\right|^{\hat{\rho}}+|\zeta|^{\hat{\rho}}\right), \quad 0 \leq \hat{\rho}<p-1 \tag{2.43}
\end{equation*}
$$

where $\lim _{\infty} \varphi_{1}=0$.
Finally, the following modification of functions (2.38), (2.39) satisfy the conditions of Theorem 2.3: for simplicity e.g.

$$
\alpha_{i}=\zeta_{i}|\zeta|^{p-2} \text { for } i=1, \ldots, n, \quad \alpha_{0}=\zeta_{0}\left|\zeta_{0}\right|^{p-2}
$$

(2.43) is valid and instead of $b_{1}\left(H_{1}(u)\right), b_{2}\left(H_{2}(w)\right)$ we have $b_{1}\left(t, H_{1}(u)\right), b_{2}\left(t, H_{2}(w)\right)$, respectively, where (with some positive constants)

$$
b_{1}(t, \Theta)=\frac{\text { const }}{1+\psi_{1}(t)|\Theta|^{\sigma^{\star}}}, \quad b_{2}(t, \Theta)=\frac{\text { const }}{1+\psi_{2}(t) g_{3}(\Theta)}, \quad \lim _{\infty} \psi_{j}=0 .
$$

References

[1] R.A Adams, Sobolev spaces, Academic Press, New York - San Francisco - London, 1975.
[2] J. Berkovits, V. Mustonen, Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Ser. VII, 12, Roma (1992), 597-621.
[3] Á. Besenyei, Existence of solutions of a nonlinear system modelling fluid flow in porous media, Electronic J. of Diff. Equatsn. 153 (2006), 1-19.
[4] Á. Besenyei, Stabilization of solutions to a nonlinear system modelling fluid flow in porous media, submitted.
[5] S. Cinca, Diffusion und Transport in porösen Medien bei veränderlichen Porosität. Diplomawork, Univ. Heidelberg, 2000.
[6] W. Jäger, L. Simon, On a system of quasilinear parabolic functional differential equations, Acta Math. Hung. 112, (2006), 39-55.
[7] J.L. Lions, Quelques métodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969.
[8] J.D. Logan, M.R. Petersen, T.S. Shores, Numerical study of reaction-mineralogy-porosity changes in porous media. Appl. Math. Comput. 127, (2002), 149-164.
[9] L. Simon, On different types of nonlinear parabolic functional differential equations, Pure Math. Appl. 9 (1998), 181-192.
[10] L. Simon, On nonlinear hyperbolic functional differential equations, Math. Nachr. 217 (2000), 175-186.
[11] L. Simon, W Jäger, On non-uniformly parabolic functional differential equations. Studia Sci. Math. Hung., to appear.
[12] L. Simon, On a system with a singular parabolic equation, Folia FSN Univ. Masarykianae Brunensis, Math., to appear.
[13] E. Zeidler, Nonlinear functional analysis and its applications II A and II B. Springer, 1990.
(Received September 1, 2007)

[^0]: *This work was supported by the Hungarian National Foundation for Scienific Research under grant OTKA T 049819. This paper is in final form and no version of it is submitted for publication elsewhere.

