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ON PARAMETRIZATION FOR A NON-LINEAR BOUNDARY

VALUE PROBLEM WITH SEPARATED CONDITIONS

MIKLÓS RONTÓ AND NATALYA SHCHOBAK

Abstract. We obtain some results concerning the investigation of two-dimensi-
onal non-linear boundary value problems with two-point separated linear bound-
ary conditions.

We show that it is useful to reduce the given boundary-value problem, using
an appropriate substitution, to a parametrized boundary value problem con-
taining some unknown scalar parameter in the boundary conditions. To study
the transformed parametrized problem, we use a method which is based upon
special types of successive approximations constructed in an analytic form. The
parametrized problem should be investigated together with certain so-called de-
termining equations, which have algebraic or transcendental form.

1. Introduction

There are various methods aimed at the investigation of boundary value prob-
lems for ordinary differential equations (and, in particular, of those containing un-
known parameters). In [1–5], various iteration schemes are used. The works [6–11]
develop the method of averaging of functional corrections and other projection-
iterative methods. Topological methods based upon the application of degree
theory are used in [12–14] in studies of the solvability of boundary value problems.

Numerical methods for various two-point and multipoint boundary value prob-
lems is dealt with in [15–17] and in the works cited therein. The numerical inves-
tigation of boundary value problems is usually based on the shooting method. In
this case, as a rule, one does not deal with the situation where the values of the
unknown solution are confined within a given bounded set. This may cause certain
difficulties because the regularity conditions for the right-hand side (in particular,
the Lipschitz condition) should be assumed globally, i. e., for all the values of the
space variables. Complications of this kind can be overcome in some cases by using
the numerical-analytic approach.
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Amongst the wide variety of methods available for studying boundary value
problems, the so-called numerical-analytic methods, which are based upon succes-
sive approximations, belong to the few of them that offer constructive possibilities
for the investigation of the existence and the construction of the approximate
solution for periodic, two-point, multipoint, parametrized boundary value prob-
lems [18–28].

According to the basic idea of the numerical-analytic methods, the given bound-
ary value problem is reduced to some “perturbed” boundary value problem con-
taining an unknown vector parameter. The solution of the modified problem is
sought for in an analytic form by successive iterations. As for the way how the
modified problem is constructed, it is essential that the form of the “perturbation
term”, which depending on the original differential equation and boundary con-
dition, yields a certain system of algebraic or transcendental “determining equa-
tions,” which determine the numerical values for the initial values of the solutions
and the values of the parameters. By studying these determining equations, one
can establish existence results for the original boundary value problem.

In this paper our aim to show that, for some types of nonlinear boundary prob-
lems, it is useful to introduce certain parametrization techniques. In particular,
this allows one to avoid dealing with singular matrices in the boundary condition
and to simplify the construction of the successive approximation of the solution in
an analytic form.

2. Problem setting

Let us consider the system of nonlinear differential equations

x′(t) = f (t, x(t)) , t ∈ [0, T ] , (2.1)

with the separated boundary conditions

x1(0) = x10,

x2(T ) = x2T ,
(2.2)

where x = col (x1, x2) : [0, T ] → R
2, f : [0, T ]×D → R

2 is continuous and D ⊂ R
2

is a closed and bounded domain. The boundary conditions (2.2) can be rewritten
in the matrix form

Ax (0) + C1x (T ) = d , (2.3)

where A = ( 1 0
0 0 ), C1 = ( 0 0

0 1 ), and d = ( x10

x2T
) . The matrix C1 is obviously singular.
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3. Parametrization of the boundary conditions

To work around the singularity of the matrix C1, we replace the value of the
first component of the solution (2.1), (2.3) at a point T by a parameter λ:

x1 (T ) = λ. (3.1)

Using the relation (3.1), the boundary condition (2.3) can be rewritten as

Ax (0) + Cx (T ) = d(λ) , (3.2)

where C = ( 1 0
0 1 ) and d(λ) =

(

x10+λ
x2T

)

. Here, in contrast to C1 in (2.3), the matrix
C is nonsingular.

Remark 1. The original non-linear problem with separated boundary conditions
(2.1), (2.2) is equivalent to the boundary-value problem (2.1) with boundary con-
ditions (3.2).

We shall show that the transformed boundary value problem (2.1), (3.2) can be
investigated by using some techniques based upon successive approximations. For
any x = col (x1, x2) ∈ R

2, we use the notation |x| = col(|x1|, |x2|) and understand
the inequalities between the 2-dimensional vectors component-wise.

4. Construction of the successive approximations

We first introduce some notation.

Notation 1. If β : I → R
2 is a function, I ⊂ R, and z ∈ R

2, then BI(z, β) denotes
the set

BI(z, β) := {x ∈ R
2 : |x − z| ≤ β(λ) for any λ ∈ I}.

Notation 2. If D ⊂ R
2 is a set and f : [0, T ] × D → R is a function, then

δD(f) :=
1

2

[

max
(t,x)∈[0,T ]×D

f (t, x) − min
(t,x)∈[0,T ]×D

f (t, x)

]

. (4.1)

In (4.1), the min and max operations are understood in the componentwise
sense.

We suppose in the sequel that the following conditions hold for the boundary
value problem (2.1), (2.2).

(A) The function f is continuous on [0, T ]×D and, for a certain non-negative

constant matrix K = (Kij)
2
i,j=1, satisfies the Lipschitz condition of the form

|f(t, x) − f(t, y)| ≤ K |x − y| (4.2)

for all t ∈ [0, T ] and {x, y} ⊂ D.
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(B) The set

Dβ := {z ∈ D : BI(z, β(z, ·)) ⊂ D} (4.3)

is non-empty, where I := {λ ∈ R :
(

λ
x2T

)

∈ D} and

β(z, λ) :=
T

2
δD(f) + |[C−1d(λ) − (C−1A + E)z]|, (4.4)

where E is the unit matrix.

(C) The greatest eigenvalue, λmax(K), of K satisfies the inequality

λmax(K) <
10

3T
.

Let us define the set U ⊂ R as follows:

U := {u ∈ R : col(x10, u) ∈ Dβ} .

With the given problem we associate the sequence of functions {xm(·, u, λ)}
given by the formula

xm(t, u, λ) := z +

∫ t

0

f(s, xm−1(s, u, λ))ds

−
t

T

∫ T

0

f(s, xm−1(s, u, λ))ds +
t

T
[C−1d(λ) − (C−1A + E)z], (4.5)

where m = 1, 2, 3, . . . , x0(t, u, λ) = col(x10, u) =: z, and u ∈ U .
The values of xm(·, u, λ) at the points t = 0 and t = T satisfy the equalities

xm(0, u, λ) = z

and

xm(T, u, λ) = z + C−1d(λ) − (C−1A + E)z.

So functions (4.5) satisfy the boundary conditions (2.2) for any u ∈ U and λ ∈ I.
The following statement establishes the convergence of the sequence (4.5) and

its relation to the transformed boundary value problem (2.1), (3.1), (3.2).

Theorem 1. Assume that f : [0, T ]×D → R
2 satisfies conditions (A)–(C). Then:

(1) The sequence (4.5) converges to the function x∗(t, u, λ) as m → ∞, uni-

formly in (t, u, λ) ∈ [0, T ] × U × I;

(2) The limit function

x∗(t, u, λ) := lim
m→∞

xm(t, u, λ) (4.6)
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is the unique solution of the integral equation

x(t) = z +

∫ t

0

f (s, x(s)) ds

−
t

T

[
∫ t

0

f (s, x(s)) ds + [C−1d(λ) − (C−1A + E)z]

]

, (4.7)

i. e., a solution of the problem

x′(t) = f(t, x(t)) + ∆(u, λ), t ∈ [0, T ],

Ax(0) + Cx(T ) = d(λ),
(4.8)

with the initial value at t = 0 equal to x∗(0, u, λ) = z = col(x10, u). Here,

∆(u, λ) := −
1

T

∫ T

0

f(s, x∗(s, u, λ))ds +
1

T
[C−1d(λ) − (C−1A + E)z]. (4.9)

(3) The following error estimate holds:

|x∗(t, u, λ) − xm(t, u, λ)| ≤
20

9
t

(

1 −
1

T

)

Qm(E − Q)−1h, (4.10)

where

Q =
3

10
TK (4.11)

and h := δD(f) + K|C−1d(λ) − (C−1A + E)z|.

Proof. We shall prove that, under the conditions assumed, sequence (4.5) is a
Cauchy sequence in the Banach space C([0, T ] , R2) equipped with the usual uni-
form norm. We first show that xm(t, u, λ) ∈ D for all (t, u, λ) ∈ [0, T ]×U × I and
m ∈ N. Indeed, using the estimate [23, Lemma 4]

∣

∣

∣

∣

∫ t

0

[

f(τ) −
1

T

∫ T

0

f(s)ds

]

dτ

∣

∣

∣

∣

≤
1

2
α1(t)

[

max
t∈[0,T ]

f(t) − min
t∈[0,T ]

f(t)

]

where

α1(t) = 2t

(

1 −
t

T

)

, |α1(t)| ≤
T

2
, t ∈ [0, T ],

relation (4.5) for m = 0 implies that

|x1(t, u, λ) − z| ≤

∣

∣

∣

∣

∫ t

0

[

f(t, z) −
1

T

∫ T

0

f(t, z)ds

]

dt

∣

∣

∣

∣

+
∣

∣C−1d(λ) − (C−1A + E)z
∣

∣ ≤ α1(t)δD(f) + β̃(z, λ) ≤ β(z, λ), (4.12)

where
β̃(z, λ) =

∣

∣C−1d(λ) − (C−1A + E)z
∣

∣ . (4.13)
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Therefore, by virtue of (4.3), we conclude that x1(t, u, λ) ∈ D whenever (t, u, λ) ∈
[0, T ] × U × I. By induction, one can easily show that all functions (4.5) are also
contained in the domain D for all m = 1, 2, . . . , t ∈ [0, T ], u ∈ U, λ ∈ I.

Consider the difference of functions

xm+1(t, u, λ) − xm(t, u, λ) =

∫ t

0

[f(s, xm(s, u, λ))− f(s, xm−1(s, u, λ))] ds

−
t

T

∫ t

0

[f(s, xm(s, u, λ))− f(s, xm−1(s, u, λ))]ds (4.14)

and introduce the notation

dm(t, u, λ) := |xm(t, u, λ) − xm−1(t, u, λ)| , m = 1, 2, . . . . (4.15)

Using the estimate from [21, Lemma 2.3] and taking the Lipschitz condition into
account, we get

dm+1(t, u, λ) ≤ K

[(

1 −
t

T

)
∫ t

0

dm(s, u, λ)ds +
t

T

∫ T

t

dm(s, u, λ)ds

]

(4.16)

for every m = 0, 1, 2, . . . . According to (4.12), we have

d1(t, u, λ) = |x1(t, u, λ) − z| ≤ α1(t)δD(f) + β̃(z, λ), (4.17)

where β̃(z, λ) is given by (4.13). Now we need the estimate

αm+1(t) ≤

(

3

10
T

)

αm(t) ≤

(

3

10
T

)m

ᾱ1(t), t ∈ [a, b], m ≥ 0, (4.18)

obtained in [21, Lemma 2.4] for the sequence of functions

αm+1(t) =

(

1 −
t

T

)
∫ t

0

αm(s)ds +
t

T

∫ T

t

αm(s)ds, m = 0, 1, 2, . . . (4.19)

where α0(t) = 1, α1(t) = 2t
(

1 − t
T

)

, and ᾱ1(t) = 10
9
α1(t). In view of (4.17), (4.19),

it follows from (4.16) for m = 1 that

d2(t, u, λ) ≤ KδD(f)

[(

1 −
t

T

)
∫ t

0

α1(s)ds +
t

T

∫ T

t

α1(s)ds

]

+ Kβ̃(z, λ)

[(

1 −
t

T

)
∫ t

0

ds +
t

T

∫ T

t

ds

]

≤ K
[

α2(t)δD(f) + α1(t)β̃(z, λ)
]

.

By induction, we can easily obtain

dm+1(t, u, λ) ≤ Km[αm+1(t)δD(f) + αm(t)β̃(z, λ)], m = 0, 1, 2, . . . , (4.20)
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where αm+1 and αm are computed according to (4.19) and δD(f), β̃(z, λ) are given
by (4.1) and (4.3). By virtue of the second estimate in (4.18), relation (4.20) yields

dm+1(t, u, λ) ≤ α1(t)

[

(

3

10
TK

)m

δD(f) + K

(

3

10
TK

)m−1

β̃(z, λ)

]

= ᾱ1(t)
[

QmδD(f) + KQm−1β̃(z, λ)
]

, (4.21)

for all m = 1, 2, . . . , where the matrix Q is given by formula (4.11). Therefore, in
view of (4.21), we have

|xm+j(t, u, λ) − xm(t, u, λ)|

≤ |xm+j(t, u, λ) − xm+j−1(t, u, λ)| + |xm+j−1(t, u, λ) − xm+j−2(t, u, λ)| + . . .

+ |xm+1(t, u, λ) − xm(t, u, λ)| =

j
∑

i=1

dm+i(t, u, λ)

≤ ᾱ1(t)

[

j
∑

i=1

(

Qm+iδD(f) + KQm+i−1β̃(z, λ)
)

]

= ᾱ1(t)

[

Qm

j−1
∑

i=0

QiδD(f) + KQm

j−1
∑

i=0

Qiβ̃(z, λ)

]

. (4.22)

Since, due to conditions (C), the greatest eigenvalue of the matrix Q of the form

(4.11) does not exceed the unity, we have
∑j−1

i=0 Qi ≤ (E − Q)−1 and limm→∞ Qm =
0. Therefore we can conclude from (4.22) that, according to the Cauchy crite-
rion, the sequence xm(t, u, λ) of the form (4.5) uniformly converges in the domain
(t, u, λ) ∈ [0, T ] × U × I. Since all functions xm(t, u, λ) of the sequence (4.5) sat-
isfy the boundary condition (3.2) the limit function x∗(t, u, λ) also satisfies these
conditions. Passing to the limit as m → ∞ in equality (4.5), we show that the
limit function satisfies both the integral equation (4.7) and the integro-differential
equation (4.8). Estimate (4.10) is an immediate consequence of (4.22). �

Let us formulate the following statement concerning a control parameter. Con-
sider the Cauchy problem

x′(t) = f(t, x(t)) + µ, t ∈ [0, T ], (4.23)

x(0) = z = col(x10, u), (4.24)

where z ∈ Dβ and µ ∈ R
2 is control parameter.

Theorem 2. Under the conditions of Theorem 1, the solution x = x(t, 0, z) of the

initial value problem (4.23), (4.24) satisfies the boundary conditions (3.2) if and
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only if

µ = ∆(u, λ), (4.25)

where ∆ : U × I → R
2 is the mapping defined by the formula (4.9).

Proof. According to the Picard–Lindelöf existence theorem, it is easy to show that
the Lipschitz condition (4.2) implies that the initial value problem (4.23), (4.24)
has a unique solution for all (µ, u) ∈ R

2 ×U. It follows from the proof of Theorem
1 that, for every fixed

(u, λ) ∈ U × I, (4.26)

the limit function (4.6) of the sequence (4.5) satisfies the integral equation (4.7)
and, in addition, x∗(t, u, λ) = limm→∞ xm(t, u, λ) satisfies the boundary condition
(3.1). This implies immediately that the function x = x∗(t, w, u, λ) of the form
(4.6) is the unique solution of the initial value problem

dx(t)

dt
= f(t, x(t)) + ∆(u, λ), t ∈ [0, T ], (4.27)

x(0) = z, (4.28)

where ∆(w, u, λ) is given by (4.9). Hence, (4.27), (4.28) coincides with (4.23),
(4.24) corresponding to

µ = ∆(u, λ) = −
1

T

∫ T

0

f(s, x(s))ds +
1

T
[C−1d(λ) − (C−1A + E)z]. (4.29)

The fact that the function (4.6) is not a solution of (4.23), (4.24) for any other
value of µ, not equal to (4.29), is obvious from equation (4.25). �

The following statement explains the relation of the limit function x = x∗(t, u, λ)
to the solution of the transformed parametrized boundary value problem (2.1),
(3.2).

Theorem 3. Let conditions (A)–(C) be satisfied. Then the pair (x∗(·, u∗, λ∗), λ∗) is

a solution of the transformed boundary value problem (2.1), (3.2) with a parameter

λ if and only if the pair (u∗, λ∗) satisfies the system of the determining equations

∆(u, λ) = −
1

T

∫ T

0

f(s, x∗(s, u, λ))ds +
1

T
[C−1d(λ) − (C−1A + E)z] = 0. (4.30)

Proof. It suffices to apply Theorem 2 and notice that the differential equation in
(4.27) coincides with (2.1) if and only if the pair (u∗, λ∗) satisfies the equation

∆(u∗, λ∗) = 0,

i. e., when the relation (4.30) holds. �
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In practice, it is natural to fix some natural m and, instead of the exact deter-
mining system

∆(u, λ) = −
1

T

∫ T

0

f(s, x∗(s, u, λ))ds +
1

T
[C−1d(λ) − (C−1A + E)z] = 0,

to consider the approximate determining system

∆m(u, λ) = −
1

T

∫ T

0

f(s, xm(s, u, λ))ds +
1

T
[C−1d(λ) − (C−1A + E)z] = 0,

whence, taking into account condition (3.1), we find approximate values of the
unknown parameters (u, λ) ∈ U × I.

5. An application

Consider the system

x′

1(t) = 0.5x2(t) + 0.1 − 0.05t2, (5.1)

x′

2(t) = 0.5x1(t) − x2
2(t) + 0.01t4 + 0.15t, (5.2)

where t ∈ [0, 1], with the separated boundary conditions

x1(0) = 0, x2(1) = 0.1. (5.3)

It is easy to check that the following vector-function is an exact solution of the
above problem:

x1(t) = 0.1t, x2(t) = 0.1t2. (5.4)

Suppose that the boundary value problem is considered in the domain

D :=
{

(x1, x2) : |x1| ≤ 0.5, |x2| ≤ 0.5
}

.

The boundary condition (5.3) can be rewritten in the form

Ax (0) + C1x (T ) = d , (5.5)

where A = ( 1 0
0 0 ), C1 = ( 0 0

0 1 ), and d = ( 0
0.1 ) . Here C1 is a singular matrix.

Let us replace the value of the first component of the solution of the boundary
value problem (5.2), (5.5) at a point T by a parameter λ:

x1 (T ) = λ, (5.6)

where λ ∈ [−0.5, 0.5]. Using (5.6), the boundary condition (5.5) can be rewritten
as

(

1 0
0 0

)

x (0) +

(

1 0
0 1

)

x (T ) =

(

λ

0.1

)

, (5.7)

where C = E is a nonsingular matrix.
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One can verify that, for the boundary value problem (5.2) -(5.7), conditions
(A)–(C) are fulfilled in the domain D with the matrices

A :=

[

1 0
0 0

]

, C :=

[

1 0
0 1

]

, K :=

[

0 0.5
0.5 1

]

.

0

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

s

Figure 1. The first components of the exact solution (solid line)
and its first approximation (drawn with dots).

Indeed, from the Perron theorem it is known that the greatest eigenvalue λmax(K)
of the matrix K in virtue of the nonnegativity of its elements is real, nonnegative
and computations show that

λmax(K) ≤ 0.37.

Moreover the vectors δD(f) and β(z, λ) in (4.4) are such that

δD(f) ≤

[

0.275
0.455

]

,

β(z, λ) :=
T

2
δD(f) +

∣

∣C−1d(λ) − (C−1A + E)z
∣

∣ ≤

[

0.1375
0.2275

]

+

∣

∣

∣

∣

λ

0.1 − u

∣

∣

∣

∣

.

Thus, we can proceed with application of the numerical-analytic scheme de-
scribed above and thus construct the sequence of approximate solutions.
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0

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

s

Figure 2. The second components of the exact solution (solid line)
and its first approximation (drawn with dots).

The result of the first iteration is

x11(t, u, λ) = 0.01666666667t− 0.01666666667t3 + tλ,

x12(t, u, λ) = u + 0.002t5 + 0.075t2 + 0.023t − tu,

for all t ∈ [0, 1], u ∈ U , λ ∈ [−0.5, 0.5].
The computation shows that the approximate solutions of the first approximate

determining equation are

u = 0.02355483002, λ = 0.09511074834.

The first and second components of the first approximation are

x11(t) = 0.1117774150t− 0.01666666667 t3,

x12(t) = 0.02355483002 + 0.002t5 + 0.075t2 − 0.55483002 · 10−3t.

The result of the second iteration is

x21(t, u, λ) = 0.1666666667 · 10−3t6 − 0.4166666667 · 10−2t3

+ 0.575 · 10−2t2 − 0.25t2u + 0.25ut − 0.175 · 10−2t + tλ
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and

x22(t, u, λ) = u − 0.3636363636 · 10−6t11 − 0.0000375t8 − 0.1314285715 · 10−4t7

+ 0.57142857 · 10−3t7u − 0.6666666667 · 10−3ut6 + 0.875 · 10−3t5

− 0.29458333 · 10−2t4 + 0.0375t4u − 0.03466666666t3u − 0.17633333 · 10−3t3

− 0.3333333333t3u2 + 0.07916666665t2 + 0.25t2λ − 0.023t2u + t2u2

− 0.6666666667u2t + 0.02313150651t− 0.9797380952ut− 0.25tλ,

for all t ∈ [0, 1], u ∈ U , and λ ∈ [−0.5, 0.5].
The approximate solutions of the second approximate determining equation are

u = −0.002210976578, λ = 0.1011972559.

So the first and second components of the second approximation have the form

x21(t) = 0.1666666667 · 10−3t6 − 0.4166666667 · 10−2t3

+ 0.6302744144 · 10−2t2 + 0.09889451180t
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Figure 3. The first components of the exact solution (solid line)
and its second approximation (drawn with dots).
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and

x22(t) = −0.2210976578 · 10−2 − 0.3636363636 · 10−6t11 − 0.375 · 10−4t8

− 0.14406272 · 10−4t7 + 0.1473984385 · 10−5t6 + 0.875 · 10−3t5

− 0.3028744957 · 10−2t4 − 0.1013156178 · 10−3t3

+ 0.1045217215t2 − 0.488843 · 10−5t.

As is seen from Figures 1, 2, and 3 above and Figures 4, 5, and 6 presented below,
the graph of the exact solution almost coincides with those of its approximations
(especially with the graph of the fifth approximation), whereas the difference be-
tween their derivatives does not exceed 0.2 · 10−6. For example, the error of the
first approximation (i. e., the uniform deviation of the first approximation from
the exact solution) admits the estimates

|x∗

1(t) − x11(t)| ≤ 0.4 · 10−2; |x∗

2(t) − x12(t)| ≤ 0.25 · 10−1.

The error for the third approximation is

|x∗

1(t) − x31(t)| ≤ 0.4 · 10−4; |x∗

2(t) − x32(t)| ≤ 0.25 · 10−4,
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Figure 4. The second components of the exact solution (solid line)
and its second approximation (drawn with dots).
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and the error for the fifth approximation is

|x∗

1(t) − x51(t)| ≤ 0.2 · 10−6; |x∗

2(t) − x52(t)| ≤ 0.16 · 10−6.
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Figure 5. The first components of the exact solution (solid line)
and its fifth approximation (drawn with dots).
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Figure 6. The second components of the exact solution (solid line)
and its fifth approximation (drawn with dots).

EJQTDE, Proc. 8th Coll. QTDE, 2008 No. 18, p. 14



References

[1] I. A. Goma, “Method of successive approximations in a two-point boundary problem with
parameter,” Ukrain. Math. J., vol. 29, no. 6, pp. 594–599, 1977.

[2] I. A. Goma, “On the theory of the solutions of a boundary value problem with a parameter,”
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[13] M. Fečkan, “Parametrized singular boundary value problems,” J. Math. Anal. Appl.,
vol. 188, no. 2, pp. 417–425, 1994.

[14] M. Fečkan, “Parametrized singularly perturbed boundary value problems,” J. Math. Anal.
Appl., vol. 188, no. 2, pp. 426–435, 1994.

[15] H. B. Keller, Numerical methods for two-point boundary-value problems. N. Y.: Dover Pub-
lications, Inc., 1992.

[16] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical solution of boundary value
problems for ordinary differential equations. No. 13 in Classics in Applied Mathematics,
Philadelphia: SIAM, 1995.

[17] A. A. Abramov, V. I. Ul’yanova, and L. F. Yukhno, “A method for solving the multiparam-
eter eigenvalue problem for certain systems of differential equations,” Comput. Math. Math.
Phys., vol. 40, no. 1, pp. 18–26, 2000.

[18] A. M. Samoilenko and N. I. Ronto, Numerical-analytic methods in the theory of boundary
value problems for ordinary differential equations. Kiev: Naukova Dumka, 1992.

EJQTDE, Proc. 8th Coll. QTDE, 2008 No. 18, p. 15
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