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Abstract

Applying the Briot-Bouquet theorem we show that there exists an
unique analytic solution to the equation

(

tn−1Φp (y′)
)

′

+(−1)itn−1Φq(y) =

0, on (0, a), where Φr(y) := |y|r−1
y, 0 < r, p, q ∈ R+, i = 0, 1, 1 ≤ n ∈

N, a is a small positive real number. The initial conditions to be added
to the equation are y(0) = A 6= 0, y′(0) = 0, for any real number A. We
present a method how the solution can be expanded in a power series for
near zero.

1 Preliminaries

We consider the quasilinear differential equation

∆pu + (−1)i |u|
q−1

u = 0, u = u(x), x ∈ Rn,

where n ≥ 1, p and q are positive real numbers, i = 0, 1 and ∆p denotes the

p−Laplacian
(

∆pu = div(|∇u|p−1 ∇u)
)

. If n = 1, then the equation is reduced

to
(Φp (y′))

′
+ (−1)iΦq(y) = 0,

where for r ∈ {p, q}

Φr(y) :=

{

|y|
r−1

y, for y ∈ R\ {0}
0, for y = 0.

We note that function Φr is an odd function. For n > 1 we restrict our attention
to radially symmetric solutions. The problem under consideration is reduced to

(

tn−1Φp (y′)
)′

+ (−1)itn−1Φq(y) = 0, on (0, a) (1)

∗This paper is in final form and no version of it is submitted for publication elsewhere.
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where a > 0. A solution of (1) means a function y ∈ C1 (0, a) for which
tn−1Φp (y′) ∈ C1 (0, a) and (1) is satisfied. We shall consider the initial values

y(0) = A 6= 0,
y′(0) = 0,

(2)

for any A ∈ R.
For the existence and uniqueness of radial solutions to (1) we refer to [9]. If

n = 1 and i = 0, then it was showed that the initial value problem (1) − (2)
has a unique solution defined on the whole R (see [3], and [4]), moreover, its
solution can be given in closed form in terms of incomplete gamma functions
[4]. If n = 1, i = 0, Lindqvist gives some properties of the solutions [8]. If n = 1
and p = q = 1, then (1) is a linear differential equation, and its solutions are
well-known:
if i = 0, the solution (1) − (2) with A = 1 is the cosine function,
if i = 1, the solution (1) − (2) with A = 1 is the hyperbolic cosine function,
and both the cosine and hyperbolic cosine functions can be expanded in power
series.

In the linear case, when n = 2, p = q = 1, i = 0, the solution of (1)−(2) with
A = 1 is J0(t), the Bessel function of first kind with zero order, and for n = 3,
p = q = 1, i = 0 then the solution of (1) − (2) with A = 1 is j0(t) = sin t/t,
called the spherical Bessel function of first kind with zero order.

In the cases above, for special values of parameteres n, p, q, i, we know the
solution in the form of power series.

The type of singularities of (1) − (2) was classified in [1] in the case when
i = 0, and p = q. If n = 1, then a solution of (1) is not singular.

Our purpose is to show the existence of the solution of problem (1)− (2) in
power series form near the origin. We intend to examine the local existence of
an analytic solution to problem (1) − (2) and we give a constructive procedure
for calculating solution y in power series near zero. Moreover we present some
numerical experiments.

2 Existence of an unique solution

We will consider a system of certain differential equations, namely, the special
Briot-Bouquet differential equations. For this type of differential equations we
refer to the book of E. Hille [6] and E. L. Ince [7].

Theorem 1 (Briot-Bouquet Theorem) Let us assume that for the system of
equations

ξ dz1

dξ = u1(ξ, z1(ξ), z2(ξ)),

ξ dz2

dξ = u2(ξ, z1(ξ), z2(ξ)),

}

(3)

where functions u1 and u2 are holomorphic functions of ξ, z1(ξ), and z2(ξ) near
the origin, moreover u1(0, 0, 0) = u2(0, 0, 0) = 0, then a holomorphic solution
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of (3) satisfying the initial conditions z1(0) = 0, z2(0) = 0 exists if none of the
eigenvalues of the matrix
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∂z2
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∣

∣
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∂u2

∂z1

∣

∣

∣

(0,0,0)

∂u2

∂z2

∣

∣

∣

(0,0,0)







is a positive integer.

For a proof of Theorem 1 we refer to [2].
The differential equation (1) has singularity around t = 0 for the case n > 1.

Theorem 1 ensures the existence of formal solutions z1 =
∞
∑

k=0

akξk and z2 =

∞
∑

k=0

bkξk for system (3), and also the convergence of formal solutions.

We apply the method Parades and Uchiyama [10].

Theorem 2 For any p ∈ (0, + ∞) , q ∈ (0, + ∞) , i = 0, 1, n ∈ N the
initial value problem (1) y(0) = A, y′(0) = 0 has an unique analytic solution
of the form y(t) = Q

(

t1+1/p
)

in (0, a) for small real value of a, where Q is a
holomorphic solution to

Q′′ =
(−1)

i+1

p (1 + 1/p)
p+1 t−

p+1
p

Φq(Q)

|Q′|
p−1 −

n

p α
t−(1+1/p)Q′

near zero satisfying Q(0) = A, Q′(0) = p
p+1Φ1/p

[

(−1)i+1Φq(A)/n
]

.

Proof. We shall now present a formulation of (1) as a system of Briot-Bouquet
type differential equations (3). Let us take solution of (1) in the form

y(t) = Q (tα) , t ∈ (0, a) ,

where function Q ∈ C2(0, a) and α is a positive constant. Substituting y(t) =
Q (tα) into (1) we get that Q satisfies

Q′′ (tα) =
(−1)

i+1

p αp+1
t−(α−1)(p+1) Φq(Q)

|Q′|p−1 −
n − 1 + p (α − 1)

p α
t−αQ′

and introducing variable ξ by ξ = tα we have

Q′′(ξ) =
(−1)

i+1

p αp+1
ξ−

(α−1)
α (p+1) Φq(Q)

|Q′|
p−1 −

n − 1 + p (α − 1)

p α
ξ−1Q′. (4)

Here, we introduce function Q as follows

Q(ξ) = γ0 + γ1ξ + z(ξ), (5)
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where z ∈ C2(0, a), z(0) = 0, z′(0) = 0. Therefore Q has to fulfill the properties
Q(0) = γ0, Q′(0) = γ1, Q′(ξ) = γ1+z′(ξ), Q′′(ξ) = z′′(ξ). From initial condition
y(0) = A we have that

γ0 = A.

We restate (4) as a system of equations:

z1(ξ) = z(ξ)
z2(ξ) = z′(ξ)

}

with
z1 (0) = 0
z2 (0) = 0

}

,

according to (4) we get that

z′′(ξ) =
(−1)

i+1

p αp+1
ξ−

(α−1)
α (p+1) Φq (γ0 + γ1ξ + z(ξ))

|γ1 + z′(ξ)|
p−1

−
n − 1 + p (α − 1)

p α
ξ−1 (γ1 + z′(ξ)) .

We generate the system of equations

u1(ξ, z1(ξ), z2(ξ)) = ξ z′1(ξ)
u2(ξ, z1(ξ), z2(ξ)) = ξ z′2(ξ)

}

as follows

u1(ξ, z1(ξ), z2(ξ)) = ξ z2

u2(ξ, z1(ξ), z2(ξ)) = (−1)i+1

p αp+1 ξ
1−p(α−1)

α
Φq(γ0+γ1ξ+z1(ξ))

|γ1+z2(ξ)|
p−1

− n−1+p(α−1)
p α (γ1 + z2(ξ))











.

In order to satisfy conditions u1(0, 0, 0) = 0 and u2(0, 0, 0) = 0 we must get zero
for the power of ξ in the right-hand side of the second equation:

1 − p(α − 1)

α
= 0,

i.e., α = 1
p + 1. To ensure u2(0, 0, 0) = 0 we have the connection

n Φp(γ1) +

(

p

p + 1

)p

(−1)iΦq(γ0) = 0,

i.e.,

γ1 = (−1)i+1 p

p + 1
Φ1/p

(

(−1)i+1 Φq (γ0)

n

)

. (6)

Therefore, taking into consideration that Φr is an even function for any r ∈
{p, q}, we obtain

γ1 =

{

p
p+1Aq/p(−1)i+1 1

n1/p if A > 0,
p

p+1 |A|
q/p

(−1)i 1
n1/p if A < 0.

(7)
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From initial conditions y(0) = A 6= 0, y′(0) = 0, and (5) it follows that
γ0 = A.

For u1 and u2 we find that

∂u1

∂z1

∣

∣

∣

∣

(0,0,0)

= 0,
∂u1

∂z2

∣

∣

∣

∣

(0,0,0)

= 0,

∂u2

∂z1

∣

∣

∣

∣

(0,0,0)

= −
ppq |γ0|

q−1

(p + 1)
p+1

|γ1|
p−1 ,

∂u2

∂z2

∣

∣

∣

∣

(0,0,0)

= −
n p

p + 1
.

Therefore the eigenvalues of matrix

[

∂u1/∂z1 ∂u1/∂z2

∂u2/∂z1 ∂u2/∂z2

]

at (0, 0, 0) are 0 and −np/(p + 1). Since both eigenvalues are non-positive, ap-
plying Theorem 1 we get the existence of unique analytic solutions z1 and z2 at
zero. Thus we get the analytic solution Q(ξ) = γ0 + γ1ξ + z(ξ) satisfying (4)
with Q(0) = γ0, Q′(0) = γ1, where γ0 = A and γ1 is determined in (7) .

Corollary 3 From Theorem 2 it follows that solution y(t) for (1) has an ex-

pansion near zero of the form y(t) =
∞
∑

k=0

aktk(
1
p +1) satisfying y(0) = A and

y′(0) = 0.

3 Determination of local solution

We give a method for the determination of power series solution of (1) − (2) .
For simplicity, we take A = 1. Thus initial conditions

y(0) = 1,
y′(0) = 0

are considered. We seek a solution of the form

y(t) = a0 + a1 t
1
p +1 + a2 t2(

1
p +1) + . . . , t > 0, (8)

with coefficients ak ∈ R, k = 0, 1, . . . . From Section 2 we get that a0 = γ0 = 1
and a1 = γ1 = p

p+1 (−1)i+1 1
n1/p . Near zero y(t) > 0 and y′(t) < 0 for i = 0,

y′(t) > 0 for i = 1. Therefore

Φq(y(t)) = yq(t) =
(

a0 + a1 t
1
p +1 + a2 t2(

1
p +1) + . . .

)q

.

After differentiating (8) , we get

y′(t) = t
1
p

[

a1

(

1

p
+ 1

)

+ 2a2

(

1

p
+ 1

)

t
1
p +1 + 3a3

(

1

p
+ 1

)

t2(
1
p +1) + . . .

]

,
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and hence

Φp(y
′(t)) = (−1)i+1 (y′(t))

p

= (−1)i+1t

[

a1

(

1

p
+ 1

)

+ 2a2

(

1

p
+ 1

)

t
1
p +1 + 3a3

(

1

p
+ 1

)

t2(
1
p +1) + . . .

]p

.

For yq(t) and (y′(t))p

yq(t) = A0 + A1 t
1
p +1 + A2 t2(

1
p +1) + . . . (9)

(y′(t))
p

= t
[

B0 + B1 t
1
p +1 + B2 t2(

1
p +1) + . . .

]

, (10)

where coefficients Ak and Bk can be expressed in terms of ak (k = 0, 1, . . .).
Using (10) we obtain

(

tn−1Φp (y′)
)′

=
(

(−1)i+1tn
[

B0 + B1 t
1
p +1 + B2 t2(

1
p +1) + . . .

])′

= (−1)i+1tn−1

[

B0n + B1(n +
1

p
+ 1)t

1
p +1 + B2(n + 2

(

1

p
+ 1

)

) t2(
1
p +1) + . . .

]

,

and substituing it to the equation (1) with (9) we get

(−1)i+1tn−1

[

B0n + B1

(

n +
1

p
+ 1

)

t
1
p +1 + B2

(

n + 2

(

1

p
+ 1

))

t2(
1
p +1) + . . .

]

+ (−1)
i
tn−1

[

A0 + A1 t
1
p +1 + A2 t2(

1
p +1) + . . .

]

= 0.

Comparing the coefficients of the proper power of t we find

B0n − A0 = 0,

B1(n +
1

p
+ 1) − A1 = 0,

B2(n + 2

(

1

p
+ 1

)

) − A2 = 0,

...

Bk(n + k

(

1

p
+ 1

)

) − Ak = 0, (11)

...

Applying the J. C. P. Miller formula (see [5]) for the determination of Ak and
Bk (k = 0, 1, . . .) we have.

Ak =
1

k

k−1
∑

j=0

[(k − j) q − j]Ajak−j , (12)

Bk =
p

a1k(p + 1)

k−1
∑

j=0

[(k − j) p − j] Bjak−j+1

[

(k − j + 1)

(

1

p
+ 1

)]

(13)
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for any k > 0.
From initial condition y(0) = 1 we get a0 = 1, A0 = 1, and therefore

B0 =
1

n
.

From (11) for i = 1 we get B1(n+ 1
p +1)−A1 = 0, and evaluating A1 from (12)

and B1 from (13) we find

B0 =

[

a1

(

1

p
+ 1

)]p

,

thus

a1 =
p

p + 1
(−1)i+1 1

n1/p
.

Similarly, we determine coefficients ak for all k = 0, 1, ... from (11) , (12) and
(13) .

Example 4 Solve (1) − (2) for n=2; i=0; p=0.5; q=1.

The solution of the differential equation (tΦ0.5 (y′))
′
+ tΦ1(y) = 0 with con-

ditions y(0) = 0, y′(0) = 1 near zero we evaluate by MAPLE from (11) , (12)
and (13) . We obtain

y(t) = 1 − 0.2222222222t3 + 0.0370370370t6

−0.0047031158t9 + 0.0005443421t12 + ... .
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