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1 Introduction

The well-known Lyapunov inequality [6] for second-order linear differential equations states
that if u(t) is a nontrivial solution of the following problem{

u′′(t) + r(t)u(t) = 0, t ∈ (a, b),

u(a) = 0 = u(b),
(1.1)

where r(t) is a continuous and nonnegative function defined in [a, b], then∫ b

a
r(t)dt >

4
b− a

, (1.2)

and the constant 4 cannot be replaced by a larger number.
The Lyapunov inequality has proved useful in the study of various properties of ordinary

differential equations. Typical applications include bounds for eigenvalues, oscillation theory,
stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.

Since the appearance of Lyapunov’s fundamental paper, there have been many improve-
ments and generalizations of (1.2) in some literatures. A thorough literature review of con-
tinuous and discrete Lyapunov-type inequalities and their applications can be found in the
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survey articles by Cheng [5], Brown and Hinton [2], Tiryaki [11] and Pinasco [9]. Some other
related results can be found in the articles [3,7,8,10,12–16,18] and the references cited therein.

But so far, there have been few works devoted to higher-order half-linear problems, mainly
because the linear case was solved using Green’s functions, which are not available now.

The study of Lyapunov-type inequalities for the differential equation under the anti-
periodic boundary conditions was initiated by Wang [13]. He first obtained Lyapunov-type
inequalities for m + 1-order half-linear differential equation with anti-periodic boundary con-
ditions, the main result is as follow.

Theorem 1.1. Consider the following m + 1-order half-linear differential equation

(|u(m)(t)|p−2u(m)(t))′ + r(t)|u(t)|p−2u(t) = 0, t ∈ (a, b) and p > 1. (1.3)

If u(t) is a nonzero solution of (1.3) satisfying the anti-periodic boundary conditions

u(i)(a) + u(i)(b) = 0, i = 0, 1, 2, . . . , m, (1.4)

then ∫ b

a
|r(t)| dt > 2

(
2

b− a

)m(p−1)

. (1.5)

As a special case of Theorem 1.1, we also gave the following results.

Theorem 1.2. Let us consider the following boundary value problem{
u(2n+1)(t) + r(t)u(t) = 0,

u(i)(a) + u(i)(b) = 0, i = 0, 1, . . . , 2n.
(1.6)

If u(t) is a nonzero solution of problem (1.6), then∫ b

a
|r(t)|dt >

22n+1

(b− a)2n . (1.7)

Theorem 1.3. Let us consider the following boundary value problem{
u(n)(t) + r(t)u(t) = 0,

u(i)(a) + u(i)(b) = 0, i = 0, 1, . . . , n− 1.
(1.8)

If u(t) is a nonzero solution of problem (1.8), then∫ b

a
|r(t)|dt >

2n

(b− a)n−1 . (1.9)

Recently, there are several papers [1, 4] to discuss Lyapunov-type inequalities for half-
linear system under anti-periodic boundary conditions. Very recently, Yang and Lo in [17]
considered a more general higher-order anti-periodic boundary value problem, for example,
they get the following result (the special case of Corollary 1).

Theorem 1.4. Let us consider the following boundary value problem{
u(n)(t) + r(t)u(t) = 0,

u(k)(a) + u(k)(b) = 0, k = 0, 1, . . . , n− 1.
(1.10)

If problem (1.10) has a nonzero solution u(t), then the following inequality holds:∫ b

a
|r(t)| dt >

πn−1

(b− a)n−1 ·
√

2√(
1− 1

22n−2

)
ζ(2n− 2)

. (1.11)
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In this article, we try to generalize Lyapunov-type inequalities to more general half-linear
differential equations under anti-periodic boundary conditions.

2 Main results

In this section, we give our main result Theorem 2.1 and some corollaries.

Theorem 2.1. Consider the following m + 1-order anti-periodic boundary value problem:

(|u(m)(t)|p−2u(m)(t))′ +
m

∑
j=0

rj(t)|u(j)(t)|p−2u(j)(t) = 0, t ∈ (a, b) and p > 1, (2.1)

u(i)(a) + u(i)(b) = 0, i = 0, 1, 2, . . . , m and u(t) 6= 0, ∀t ∈ (a, b), (2.2)

where m ≥ 1, rj(t), j = 0, 1, 2, . . . , m are real continuous functions on [a, b]. If problem (2.1)–(2.2)
has a nonzero solution u(t), then the the following inequality holds:

m−1

∑
j=0

[(b− a)Cm−j]
p−1

2

∫ b

a
|rj(s)| ds +

∫ b

a
|rm(s)| ds > 2, (2.3)

where

Cn =
(22n − 1)(b− a)2n−1

22n−1π2n ζ(2n), n = 1, 2, . . . ,

and ζ(s) = ∑+∞
k=1

1
ks , Re(s) > 1 is the Riemann zeta function.

Before proving our theorem, we first give some corollaries of Theorem 2.1.
Let rm(t) = 0 in (2.1), we have the following result.

Corollary 2.2. Let us consider the following boundary value problem
(|u(m)(t)|p−2u(m)(t))′ +

m−1

∑
j=0

rj(t)|u(j)(t)|p−2u(j)(t) = 0, t ∈ (a, b) and p > 1,

u(i)(a) + u(i)(b) = 0, i = 0, 1, . . . , m and u(t) 6= 0, ∀t ∈ (a, b),

(2.4)

where m ≥ 1, rj(t), j = 0, 1, 2, . . . , m− 1 are real continuous functions on [a, b]. If problem (2.4) has
a nonzero solution u(t), then the the following inequality holds:

m−1

∑
j=0

C
p−1

2
m−j

∫ b

a
|rj(s)| ds >

2

(b− a)
p−1

2

. (2.5)

For the linear case p = 2, we have the following result.

Corollary 2.3. Let us consider the following boundary value problem
u(m+1)(t) +

m

∑
j=0

rj(t)u(j)(t) = 0,

u(i)(a) + u(i)(b) = 0, i = 0, 1, . . . , m,

(2.6)

where m ≥ 1, rj(t), j = 0, 1, 2, . . . , m are real continuous functions on [a, b]. If u(t) is a nonzero
solution of problem (2.6), then the following inequality holds:

m−1

∑
j=0

√
(b− a)Cm−j

∫ b

a
|rj(s)| ds +

∫ b

a
|rm(s)| ds > 2. (2.7)
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Remark 2.4. Let rj(t) = 0, j = 1, 2, . . . , m in Corollary 2.3, we obtain Theorem 1.4.

Remark 2.5. If we compare Theorems 2.1 with results in [1, 4], it is easy to see that they are
different from each other.

Let rj(t) = 0, j = 1, 2, . . . , m in Theorem 2.1, For the nonlinear case, we have the following
results.

Corollary 2.6. Let us consider the following boundary value problem{
(|u(m)(t)|p−2u(m)(t))′ + r0(t)|u(t)|p−2u(t) = 0, p > 1,

u(i)(a) + u(i)(b) = 0, i = 0, 1, . . . , m.
(2.8)

where r0(t) is a real continuous function on [a, b]. If u(t) is a nonzero solution of problem (2.8), then
the following inequality holds:

∫ b

a
|r0(s)| ds > 2

(
2

b− a

)m(p−1)

·
[

π2m

2(22m − 1)ζ(2m)

] p−1
2

. (2.9)

Now, let us compare inequalities (2.9) and (1.5). Since for m ≥ 2, ζ(2m) ≤ ζ(2) < 2, we
have

π2m

2(22m − 1)ζ(2m)
>

π2m

22(22m − 1)
>

1
4

(
π2

4

)m

≥ 1
4

(
π2

4

)2

> 1,

thus [
π2m

2(22m − 1)ζ(2m)

] p−1
2

>

[
π2m

22(22m − 1)

] p−1
2

> 1,

and [
π2m

2(22m − 1)ζ(2m)

] p−1
2

>

[
π2m

22(22m − 1)

] p−1
2

→ +∞ (m→ +∞)

so inequality (2.9) improves inequality (1.5) significantly.

3 Proof of Theorem 2.1

In this section, we prove our main result. For this purpose, we need the following lemmas.

Lemma 3.1 ([14]). For n ≥ 1, define the following Sobolev space:

H =
{

x | x(n) ∈ L2[a, b], x(i)(a) + x(i)(b) = 0, i = 0, 1, 2, . . . , n− 1
}

.

For any x ∈ H, there exists a positive constant Cn such that the Sobolev inequality(
sup

a≤t≤b
|x(t)|

)2

≤ Cn

∫ b

a
|x(n)(t)|2 dt. (3.1)

holds, where

Cn =
(22n − 1)(b− a)2n−1

22n−1π2n ζ(2n), n = 1, 2, . . . ,

and ζ(s) = ∑+∞
k=1

1
ks , Re(s) > 1 is the Riemann zeta function, and the constants {Cn} are sharp.
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Lemma 3.2. If u(t) is a nonzero solution of (2.1) satisfying the anti-periodic boundary condition (2.2),
denote Uk = supa≤t≤b |u(k)(t)|, then for k = 0, 1, 2, . . . , m− 1, we have

Uk ≤
√
(b− a)Cm−k Um.

Proof. Applying Lemma 3.1 to x = u(k), k = 0, 1, 2, . . . , m − 1 and n = m respectively, we
obtain (

sup
a≤t≤b

|u(k)(t)|
)2

≤ Cm−k

∫ b

a
|u(m)(t)|2 dt.

So,

Uk = sup
a≤t≤b

|u(k)(t)| =

√√√√( sup
a≤t≤b

|u(k)(t)|
)2

≤

√
Cm−k

∫ b

a
|u(m)(t)|2 dt

≤
√
(b− a)Cm−k sup

a≤t≤b
|u(m)(t)| =

√
(b− a)Cm−k Um.

Proof of Theorem 2.1. Define

H(t, s) =


1
2

, a ≤ s ≤ t,

−1
2

, t ≤ s ≤ b.

Then, by the anti-periodic boundary condition (2.2) with i = m, we have

|u(m)(t)|p−2u(m)(t) =
∫ b

a
H(t, s)(|u(m)(s)|p−2u(m)(s))′ ds

= −
m

∑
j=0

∫ b

a
H(t, s)rj(s)|u(j)(s)|p−2u(j)(s) ds,

then

|u(m)(t)|p−1 ≤
m

∑
j=0

∫ b

a
|H(t, s)||rj(s)||u(j)(s)|p−1 ds

≤ 1
2

m

∑
j=0

∫ b

a
|rj(s)||u(j)(s)|p−1 ds

<
1
2

m

∑
j=0

Up−1
j

∫ b

a
|rj(s)| ds

=
1
2

(
m−1

∑
j=0

Up−1
j

∫ b

a
|rj(s)| ds + Up−1

m

∫ b

a
|rm(s)| ds

)

≤ 1
2

Up−1
m

[
m−1

∑
j=0

((b− a)Cm−j)
p−1

2

∫ b

a
|rj(s)| ds +

∫ b

a
|rm(s)| ds

]
,

thus

Up−1
m <

1
2

Up−1
m

[
m−1

∑
j=0

((b− a)Cm−j)
p−1

2

∫ b

a
|rj(s)| ds +

∫ b

a
|rm(s)| ds

]
. (3.2)
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Now, we claim that Um > 0. In fact, if it is not true, then we have Um = 0 or u(m)(t) = 0
for t ∈ [a, b]. By the anti-periodic condition (2.2), we obtain u(t) = 0 for t ∈ [a, b], which
contradicts to u(t) is a nonzero solution of (2.1)–(2.2). Thus, Um > 0, dividing both sides of
the inequality (3.2) by Um, we obtain

m−1

∑
j=0

((b− a)Cm−j)
p−1

2

∫ b

a
|rj(s)| ds +

∫ b

a
|rm(s)| ds > 2.
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