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Abstract. This note is a reaction on a bunch of fractional inequalities that appeared
in the last few years, and that are all based on what claims to be a fractional discrete
Gronwall inequality. However, we show by a counterexample that this inequality is not
correct. Stimulated by this, the main aim of this note is to propose new inequalities
and illustrate the results on examples. Asymptotic properties of a solution of a linear
equation are studied as well. Moreover, a brief discussion of other related results is
given.
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1 Introduction

Recently, Deekshitulu and Mohan published a set of papers on fractional difference inequal-
ities. All the main results in [12, 13, 15] are proved using a fractional discrete version of
Gronwall inequality given in [11]. In this short note, we show that the proof of this inequality
is not correct, the inequality does not hold, and hence the validity of the implied results is
questionable. Stimulated by these results, the main aim of this paper is to prove new inequal-
ities of Gronwall type for fractional difference inequalities with linear right-hand side and
constant or variable coefficients. Asymptotic properties of a solution of a linear homogeneous
fractional difference equation with constant coefficient are also studied. In our results, we
use a convenient Green function. In Section 4, we illustrate our results on a linear example
from [14] which is also corrected in this note.

Throughout the present paper, ∇ denotes the backward difference operator defined as
∇u(n) = u(n)− u(n − 1), and having the next properties.

BCorresponding author. Email: Michal.Feckan@fmph.uniba.sk
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Lemma 1.1. Let ∇kF(k, j) := F(k, j)− F(k − 1, j). The following holds true

∇
[

k

∑
j=a

F(k, j)

]
= F(k − 1, k) +

k

∑
j=a

∇kF(k, j),

k

∑
j=1

A(k − j)∇ f (j) =
k−1

∑
j=0

A(j)∇k f (k − j),

b

∑
j=a

f (j)∇g(j) = [ f (j)g(j)]bj=a−1 −
b−1

∑
j=a−1

∇ f (j + 1)g(j).

So we will consider fractional differences corresponding to backward difference operator.
Of course, other related achievements are already done than the above-mentioned: we refer
the reader to similar interesting results in [1,8,16]. We only note here that in [1], inequality of
the form

∇µ
∗u(k) ≤ a(k)u(k), k ∈ N0

was investigated (cf. equation (4.1)); in [8], the authors used Riemann–Liouville type fractional
difference; and in [16], the author focused on fractional difference corresponding to forward
difference operator. Hence our results are not covered in these papers.

We denote by Na = {a, a + 1, . . . } the shifted set of positive integers, for simplicity N =

N1, and −Na = {. . . , a − 1, a}. We assume the property of empty sum and empty product,
i.e., ∑b

j=a f (j) = 0, ∏b
j=a f (j) = 1 whenever a, b ∈ Z are such that a > b.

2 Caputo like fractional difference

In this section, we recall some definitions of ∇-based fractional operators, and we show that
fractional difference considered in [9] is of Caputo type.

Definition 2.1 (see [18]). Let α ∈ C, p = max{0, p0}, p0 ∈ Z be such that 0 < Re(α + p0) ≤ 1,
and function f be defined on Na−p. We define the α-th fractional sum as

Σα f (k) :=
∇p

Γ(p + α)

k

∑
j=a

(k − ρ(j))p+α−1 f (j) (2.1)

for k ∈ Na, where ρ(j) = j − 1 and

(α)β =



Γ(α+β)
Γ(α) , α, α + β /∈ {. . . ,−1, 0},

1, α = β = 0,

0, α = 0, β /∈ {. . . ,−1, 0},

undefined, otherwise

for α, β ∈ C.

If p ∈ N, α /∈ −N0, k ∈ Na and f is defined on Na−p, formula (2.1) can be simplified to
the case p = 0 (cf. equation (2.2) in [18]) using

∇p

Γ(p + α)

k

∑
j=a

(k − ρ(j))p+α−1 f (j) =
1

Γ(α)

k

∑
j=a

(k − ρ(j))α−1 f (j), (2.2)
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i.e.,

Σα f (k) =
1

Γ(α)

k

∑
j=a

(k − ρ(j))α−1 f (j) (2.3)

for k ∈ Na, f defined on Na−p. We note that the latter equality is valid whenever α ∈ R\−N0.
Σα is sometimes denoted as ∇−α.

Fractional sum (2.3) is a discrete analogue to Riemann–Liouville fractional integral (cf.
[21]).

Analogically to forward difference based Riemann–Liouville [5] and Caputo [3, 4] like
fractional difference, Deekshitulu and Mohan proposed in [9] the next definition of a ∇-based
fractional difference.

Definition 2.2. Let µ ∈ (0, 1) and f be defined on N0. Then we define the µ-th fractional
difference of a function f as

∇µ f (k) =
k−1

∑
j=0

(
j − µ

j

)
∇k f (k − j) (2.4)

for k ∈ N, where (b
n) with b ∈ R, n ∈ Z is a generalized binomial coefficient given by

(
b
n

)
=


Γ(b+1)

Γ(b−n+1)Γ(n+1) , n > 0,

1, n = 0,

0, n < 0.

Here we used the lower index k to denote the variable affected by operator ∇.
From now on, we assume µ ∈ (0, 1). By [9, Remark 3.2], Σ−µu(n) = ∇µu(n) on N if u is

defined on N0. However, this equivalence is obtained because of an incorrect application of
operator ∇. We provide a simple counterexample.

Example 2.3. Consider u(k) = bk for k ∈ N0 and b > 0. Then

[∇µu(k)]k=1 =

[
k−1

∑
j=0

(
j − µ

j

)
∇ku(k − j)

]
k=1

=

(
−µ

0

)
[∇u(k)]k=1 = b − 1.

On the other side, 0 < 1− µ < 1. Thus p = 1 in (2.1). Moreover, since u is defined on N0, then
a = 1. Therefore,

[
Σ−µu(k)

]
k=1 =

[
∇

Γ(1 − µ)

k

∑
j=1

(k − ρ(j))−µu(j)

]
k=1

=

[
1

Γ(−µ)

k

∑
j=1

(k − ρ(j))−µ−1u(j)

]
k=1

=

[
1

Γ(−µ)

k

∑
j=1

Γ(k − j − µ)

Γ(k − j + 1)
u(j)

]
k=1

= b.

Here we applied the identity (2.2).

In reality, Σ−µ is closely related to Riemann–Liouville like ∇-based fractional difference
discussed in [6], while the following lemma states that ∇µ is of Caputo type.
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Lemma 2.4. Let µ ∈ (0, 1), ν = 1− µ and function f be defined on N0. Then ∇µ f (k) = Σν(∇ f (k))
on N.

Proof. For k ∈ N we expand the left-hand side by (2.4), and apply Lemma 1.1 to get

∇µ f (k) =
k−1

∑
j=0

(
j − µ

j

)
∇k f (k − j) =

1
Γ(ν)

k−1

∑
j=0

Γ(j + ν)

Γ(j + 1)
∇k f (k − j)

=
1

Γ(ν)

k

∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)
∇ f (j) =

1
Γ(ν)

k

∑
j=1

(k − ρ(j))ν−1∇ f (j)

which, by (2.1) with a = 1, p = 0, is exactly what has to be proved.

In the sense of the above lemma, we add the lower index ∗ as done in [3, 4] to denote the
Caputo nature of the difference, i.e., ∇µ

∗ := ∇µ in the rest of the paper. Next, in [9, Remark
3.2] the properties of Σµ were translated to ∇µ

∗ . The above discussion implies that this is also
a mistake, and ∇µ

∗ does not have to possess such properties. Nevertheless, we do not go into
details, as we do not need the properties in the present paper.

3 Linear fractional difference equation

In this section, we derive a solution of a nonhomogeneous linear fractional difference equa-
tion in terms of a Green function. Particular case of a constant coefficient at linear term is
investigated in details.

First, we provide a lemma transforming a fractional difference equation to a corresponding
fractional sum equation and a direct corollary.

Lemma 3.1. Let µ ∈ (0, 1), u, f be real functions defined on N0, and N0 × R, respectively. For any
n ∈ N, if

∇µ
∗u(k + 1) = f (k, u(k)), ∀k = 0, 1, . . . , n − 1, (3.1)

then

u(k) = u(0) +
k−1

∑
j=0

Aµ(k − 1, j) f (j, u(j)), ∀k ∈ 0, 1, . . . , n (3.2)

with Aµ(k, j) =
(

k − j + µ − 1
k − j

)
for 0 ≤ j ≤ k.

Proof. We show that applying Σµ to equation (3.1) results in equation (3.2). Let k ∈ {0, 1, . . . ,
n − 1} be arbitrary and fixed. By Lemma 2.4, Σµ(∇µ

∗u(k + 1)) = Σµ(Σν(∇u(k + 1))) for k ∈
N0, where ν = 1 − µ. Property 2.(ii) in [18] says that if µ ∈ C and ν /∈ N, then ΣµΣν = Σµ+ν.
Hence

Σµ
(
∇µ

∗u(k + 1)
)
= Σ1(∇u(k + 1)) =

k

∑
j=0

∇u(j + 1) = u(k + 1)− u(0)

= Σµ f (k, u(k)) =
1

Γ(µ)

k

∑
j=0

(k − ρ(j))µ−1 f (j, u(j))

=
k

∑
j=0

(
k − j + µ − 1

k − j

)
f (j, u(j)) =

k

∑
j=0

Aµ(k, j) f (j, u(j)).

This completes the proof.
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Corollary 3.2. Let µ ∈ (0, 1), u, f be real functions defined on N0, and N0 × R, respectively. For
any n ∈ N, if

∇µ
∗u(k + 1) ≤ f (k, u(k)), ∀k = 0, 1, . . . , n − 1,

then

u(k) ≤ u(0) +
k−1

∑
j=0

Aµ(k − 1, j) f (j, u(j)), ∀k = 0, 1, . . . , n.

Proof. Since Aµ(k, j) > 0 for each 0 ≤ j ≤ k < n, the statement immediately follows from
definition of Σµ.

Note that the above corollary holds true with ≥ instead of ≤.
Next, we derive a solution of a linear initial value problem. Let h(k) denote the solution

of the problem
∇µ

∗h(k + 1) = a(k)h(k), k ∈ N0

h(0) = 1,
(3.3)

and define a Green function {gj(k)}k∈N0 , k, j ∈ N0 as

∇µ
∗gj(k + 1) = a(k)gj(k) + δj(k), k ∈ N0

gj(0) = 0,
(3.4)

where δj(k) = 0 for j ̸= k and δj(j) = 1. Then v(k) = u0h(k), k ∈ N0 solves

∇µ
∗v(k + 1) = a(k)v(k), k ∈ N0

v(0) = u0,
(3.5)

and

u(k) =
k−1

∑
j=0

gj(k)b(j), k ∈ N0 (3.6)

solves the equation
∇µ

∗u(k + 1) = a(k)u(k) + b(k), k ∈ N0

u(0) = 0.
(3.7)

Here we note that gj(k) = 0 for 0 ≤ k ≤ j and gj(j + 1) = 1. So setting

g̃j(k) := gj(k + 1), k = −1, 0, . . . ,

formula (3.6) becomes

u(k) =
k−1

∑
j=0

g̃j(k − 1)b(j), k ∈ N0, (3.8)

while (3.4) gives
∇µ

∗ g̃j(k + 1) = a(k + 1)g̃j(k), k ≥ j

g̃j(j) = 1, g̃j(k) = 0, −1 ≤ k < j
(3.9)

for j ∈ N0. Using ∇µ
∗ g̃j(j) = 1, we can directly verify that (3.8) solves (3.4). Thus there are

two different ways, (3.6) and (3.8), how to define a solution u of (3.7). The following lemma
uses (3.6), and concludes the above arguments.
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Lemma 3.3. The initial value problem

∇µ
∗u(k + 1) = a(k)u(k) + b(k), k ∈ N0

u(0) = u0

has a solution

u(k) = u0h(k) +
k−1

∑
j=0

gj(k)b(j), k ∈ N0.

Proof. The considered problem is decomposed to a homogeneous equation with a nontriv-
ial initial condition, of the form (3.5), and a nonhomogeneous equation with a zero initial
condition, of the form (3.7). Consequently, the superposition principle is applied.

The rest of this section is devoted to the case of constant function a(k).

Proposition 3.4. Let µ ∈ (0, 1), a, u0 ∈ R and u fulfill

∇µ
∗u(k + 1) = au(k), k ∈ N0

u(0) = u0.
(3.10)

Then u has the form

u(k) = u0

1 +
k

∑
j=1

∑
i1,i2,...,ij≥0

∑
j
l=1 il≤k−j

j

∏
l=1

aΓ(il + µ)

Γ(µ)Γ(il + 1)

 , k ∈ N0. (3.11)

Proof. First, we apply Lemma 3.1 to get a corresponding fractional sum equation

u(k) = u0 +
k−1

∑
j=0

Aµ(k − 1, j)au(j), k ∈ N0. (3.12)

Note that Aµ(k, j) = Aµ(k + α, j + α) = Γ(k−j+µ)
Γ(µ)Γ(k−j+1) for any α ∈ [−j, ∞), 0 ≤ j ≤ k. For

simplicity, we denote Bµ(k − j) = aAµ(k, j) for 0 ≤ j ≤ k, i.e.,

Bµ(n) =
aΓ(n + µ)

Γ(µ)Γ(n + 1)
, n ∈ N0.

Consequently,

u(k) = u0 +
k−1

∑
j=0

Bµ(k − 1 − j)u(j), k ∈ N0. (3.13)

We claim that then

u(k) = u0

1 +
k

∑
j=1

∑
i1,i2,...,ij≥0

∑
j
l=1 il≤k−j

j

∏
l=1

Bµ(il)

 , k ∈ N0 (3.14)

what is the statement of the proposition.
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We prove the claim by induction with respect to k. If k = 0, then due to the empty sum
property u(0) = u0 in both (3.13) and (3.14). Now, let us assume that (3.14) holds for 0, 1, . . . , k,
and we show that it is true also for k + 1. Using (3.13) and the inductive hypothesis, we have

u(k + 1) = u0 +
k

∑
j=0

Bµ(k − j)u(j)

= u0 +
k

∑
j=0

Bµ(k − j)u0

[
1 +

j

∑
q=1

∑
i1,i2,...,iq≥0
∑

q
l=1 il≤j−q

q

∏
l=1

Bµ(il)

]

= u0

[
1 +

k

∑
j=0

Bµ(k − j)︸ ︷︷ ︸
=:S1

+
k

∑
j=0

Bµ(k − j)
j

∑
q=1

∑
i1,i2,...,iq≥0
∑

q
l=1 il≤j−q

q

∏
l=1

Bµ(il)

︸ ︷︷ ︸
=:S2

]
.

(3.15)

Changing k − j + 1 → j, we get

S1 =
k+1

∑
j=1

Bµ(j − 1) =
1

∑
j=1

∑
0≤ij≤k

1

∏
l=1

Bµ(ij) =
1

∑
j=1

∑
i1,i2,...,ij≥0

∑
j
l=1 il≤k+1−j

j

∏
l=1

Bµ(il).

Similarly in S2:

S2 =
k+1

∑
j=1

Bµ(j − 1)
k+1−j

∑
q=1

∑
i1,i2,...,iq≥0

∑
q
l=1 il≤k+1−j−q

q

∏
l=1

Bµ(il)

=
k+1

∑
j=1

k+1−j

∑
q=1

Bµ(j − 1) ∑
i1,i2,...,iq≥0

∑
q
l=1 il+j−1≤k−q

q

∏
l=1

Bµ(il).

Now we switch the sums ∑k+1
j=1 ∑

k+1−j
q=1 = ∑k+1

q=1 ∑
k+1−q
j=1 . Note that the second sum is empty for

q = k + 1. Hence

S2 =
k

∑
q=1

k+1−q

∑
j=1

Bµ(j − 1) ∑
i1,i2,...,iq≥0

∑
q
l=1 il+j−1≤k−q

q

∏
l=1

Bµ(il).

Note that j − 1 takes values 0, 1, . . . , k − q. So we can denote iq+1 = j − 1 and merge the last
two sums to obtain

S2 =
k

∑
q=1

∑
i1,i2,...,iq+1≥0

∑
q+1
l=1 il≤k−q

q+1

∏
l=1

Bµ(il).

Finally, we change q + 1 → q

S2 =
k+1

∑
q=2

∑
i1,i2,...,iq≥0

∑
q
l=1 il≤k+1−q

q

∏
l=1

Bµ(il),

and after summing S1 and S2, (3.14) is obtained for k + 1.
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Now we present an alternative proof without using induction principle.

Alternative proof of Proposition 3.4. If a = 0, then by (3.12), the statement is proved. From now
on, we assume that a ̸= 0. By using the formula [19, Problem 7, p. 15]

lim
n→∞

Γ(n + µ)

Γ(n + 1)
n1−µ = 1, (3.16)

it is clear that
1

lim sup
n→∞

n
√
|Bµ(n)|

= 1.

So the power series

∆µ(x) =
∞

∑
n=0

Bµ(n)xn

has the radius of convergence 1. Furthermore, (3.16) gives that

1
a

∞

∑
n=0

Bµ(n) = +∞,

and using Bµ(n)
a > 0 we see that

1
a

lim
x→1−

∆µ(x) = +∞. (3.17)

Next, we know that the sequence {|Bµ(n)|}∞
n=0 is decreasing (see the proof of Lemma 4.6) with

limn→∞ Bµ(n) = 0 (see (3.16)). So the Leibnitz criterion implies the convergence of the series

∞

∑
n=0

Bµ(n)(−1)n,

and the Abel theorem [23, p. 9] implies

lim
x→−1+

∆µ(x) = lim
x→1−

∞

∑
n=0

Bµ(n)(−1)nxn =
∞

∑
n=0

Bµ(n)(−1)n = ∆µ(−1).

Next, Lemma 4.6 implies

|u(k)| ≤ |u0|(1 + |a|)k, k ∈ N0.

Hence
1

lim sup
n→∞

n
√
|u(n)|

≥ 1
1 + |a| , (3.18)

thus the power series

U(x) =
∞

∑
n=0

u(n)xn
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has the radius of convergence RU greater than or equal to 1
1+|a| . Consequently, we start with

0 ̸= |x| < 1
1+|a| . Then using (3.13), we derive

U(x)∆µ(x) =

(
∞

∑
i=0

u(i)xi

)(
∞

∑
j=0

Bµ(j)xj

)

=
∞

∑
k=1

∑
i+j=k−1

u(i)Bµ(j)xk−1 =
∞

∑
k=1

k−1

∑
j=0

u(j)Bµ(k − 1 − j)xk−1

=
∞

∑
k=1

(u(k)− u0)xk−1 =
∑∞

k=0 u(k)xk − u(0)
x

− u0

1 − x

=
U(x)

x
− u0

x(1 − x)
.

(3.19)

Solving (3.19) we obtain

U(x) =
u0

(1 − x)(1 − x∆µ(x))
. (3.20)

From (3.20) we obtain

∞

∑
n=0

u(n)xn = u0

(
∞

∑
j=0

xj

) ∞

∑
i=0

xi

(
∞

∑
k=0

Bµ(k)xk

)i
 . (3.21)

By expanding the right-hand side of (3.21) and comparing the powers of x, we immediately
get (3.14).

If u0 = 0 then U(x) = 0. So we suppose that u0 ̸= 0. Next, using (3.16) we see that

Bµ(n) ∼
a

Γ(µ)n1−µ

as n → ∞. So by results of [23, pp. 224–225], we have

(1 − x)∆µ(x) ∼ (1 − x)
∞

∑
n=1

a
Γ(µ)n1−µ

xn ∼ a(1 − x)1−µ

as x → 1−, so
lim

x→1−
(1 − x)∆µ(x) = 0,

while we recall (3.17). Then clearly

lim
x→1−

|U(x)| = +∞

due to (3.20), thus the radius of convergence RU of U(x) is less than or equal to 1, and we get

1
1 + |a| ≤ RU ≤ 1. (3.22)

On the other hand, we know

|∆µ(x)| ≤ |a|
[

1 +
1

Γ(µ)

∞

∑
n=1

Γ(n + µ)

Γ(n + 1)
|x|n

]

≤ |a|
[

1 +
1

Γ(µ)

∞

∑
n=1

|x|n
n1−µ

]
= |a|

[
1 +

1
Γ(µ)

Li1−µ(|x|)
]
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where we applied the estimation of the ratio of gamma functions

Γ(n + µ)

Γ(n + 1)
≤ 1

n1−µ
, n ∈ N, µ ∈ (0, 1)

from [17], and used the notation

Liν(x) =
∞

∑
n=1

xn

nν
=

1
Γ(ν)

∫ ∞

0

xtν−1

et − x
dt, x, ν ∈ (0, 1)

for the polylogarithm function [20, Section 7.12]. Consequently,

|1 − x∆µ(x)| ≥ 1 − |x||∆µ(x)| ≥ 1 − F(|x|) (3.23)

for

F(x) = x|a|
[

1 +
1

Γ(µ)
Li1−µ(x)

]
.

We note that F is increasing on (0, 1). The right-hand side of (3.23) is positive if and only if
|x| < F−1(1). Note that F−1(1) > 1

1+|a| . To see this, we estimate

Li1−µ

(
1

1 + |a|

)
<

∞

∑
n=1

(
1

1 + |a|

)n

=
1
|a| <

Γ(µ)
|a| ,

i.e.,
|a|

1 + |a|

[
1 +

1
Γ(µ)

Li1−µ

(
1

1 + |a|

)]
= F

(
1

1 + |a|

)
< 1.

This improves (3.22) to
F−1(1) ≤ RU ≤ 1. (3.24)

Summarizing the above arguments, we obtain the next result.

Proposition 3.5. The solution u(n) of initial value problem (3.10) with u0 ̸= 0 fulfills

lim sup
n→∞

n
√
|u(n)| = 1

RU
(3.25)

for RU satisfying (3.24).

To get a better result, we note if a > 0 then x∆µ(x) is increasing on [0, 1) from 0 to +∞. So
for any a > 0, there is a unique 1 > ra,µ > F−1(1) solving equation

1 = ra,µ∆µ(ra,µ).

Then |1 − x∆µ(x)| > 0 for any |x| < r|a|,µ. Hence (3.24) is improved to

r|a|,µ ≤ RU ≤ 1. (3.26)

Note that estimation (3.24) as well as (3.26) gives better estimate on the asymptotic property
(3.25) than (3.18) derived from Lemma 4.6. Moreover, Proposition 3.5 yields the next corollary.

Corollary 3.6. If the solution u(n) of (3.10) with u0 ̸= 0 satisfies u(n) → 0 as n → ∞, then the rate
of convergence is slower than any exponential one, i.e., there are no constants c1 > 0 and ϖ ∈ (0, 1)
so that |u(n)| ≤ c1ϖn for any n ∈ N0.
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Proof. In contrary, if c1 > 0, ϖ ∈ (0, 1) are such that |u(n)| ≤ c1ϖn ∀n ∈ N0, then

RU =
1

lim sup
n→∞

n
√
|u(n)|

≥ 1
ϖ

> 1

what contradicts (3.26).

On the other hand, if a > 0, u0 ̸= 0 then

1
u0

lim
x→r−a,µ

U(x) = +∞,

so RU = ra,µ, and thus {u(n)}n∈N0 is unbounded satisfying (3.25). A related result is derived
in [7, Theorem 5.1].

Remark 3.7. Taking limit µ → 1− in (3.10) gives

∇u(k + 1) = au(k), k ∈ N0

u(0) = u0

which has solution u(k) = u0(1 + a)k. On the other hand, from (3.11), we get

lim
µ→1−

u(k)c = u0

1 +
k

∑
j=1

aj ∑
i1,i2,...,ij≥0

∑
j
l=1 il≤k−j

1



= u0

1 +
k

∑
j=1

aj
k−j

∑
m=0

∑
i1,i2,...,ij≥0

∑
j
l=1 il=m

1

 = u0

[
1 +

k

∑
j=1

aj
k−j

∑
m=0

(
m + j − 1

j − 1

)]

= u0

[
1 +

k

∑
j=1

(
k
j

)
aj

]
= u0(1 + a)k.

So we call the bracket in (3.11), the generalized binomial. Note that linear Riemann–Liouville
fractional difference equations are solved in [7] leading to discrete Mittag-Leffler functions.

Next, we derive a formula for a Green function satisfying (3.4) with constant a.

Proposition 3.8. Let µ ∈ (0, 1), a ∈ R. Then for any i ∈ N0, the Green function {gc
i (k)}k∈N0

satisfying
∇µ

∗gc
i (k + 1) = agc

i (k) + δi(k), k ∈ N0,

gc
i (0) = 0

(3.27)

has the form

gc
i (k) =

k−i

∑
j=1

aj−1 ∑
i1,i2,...,ij≥0

∑
j
l=1 il=k−i−j

j

∏
l=1

Γ(il + µ)

Γ(µ)Γ(il + 1)
, k ∈ N0. (3.28)
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Proof. Let i ∈ N0 be arbitrary and fixed. As in the proof of Proposition 3.4, applying Lemma
3.1, one can see that

gc
i (k) =

k−1

∑
j=0

(
Bµ(k − 1 − j)gc

i (j) + Aµ(k − 1, j)δi(j)
)
, k ∈ N0. (3.29)

In particular, gc
i (0) = 0 which agrees with (3.28).

Let (3.28) be valid at 0, 1, . . . , k. Then by (3.29),

gc
i (k + 1) =

k

∑
j=0

Bµ(k − j)
j−i

∑
q=1

aq−1 ∑
i1,i2,...,iq≥0

∑
q
l=1 il=j−i−q

q

∏
l=1

Cµ(il)

︸ ︷︷ ︸
=:S

+
k

∑
j=0

Cµ(k − j)δi(j) (3.30)

where Cµ(k − j) = Aµ(k, j). There are three possible cases. If i /∈ {0, 1, . . . , k}, gc
i (k + 1) = 0

due to the empty sum property. The same is true for (3.28).
If i = k, then S = 0 and (3.30) implies

gc
i (k + 1) =

k

∑
j=0

Cµ(k − j)δi(j) = Cµ(0) = 1.

The same holds for (3.28).
Finally, if i ∈ {0, 1, . . . , k − 1}, then

S =
k

∑
j=i+1

j−i

∑
q=1

aqCµ(k − j) ∑
i1,i2,...,iq≥0

∑
q
l=1 il=j−i−q

q

∏
l=1

Cµ(il)

=
k−i

∑
q=1

k

∑
j=q+i

aqCµ(k − j) ∑
i1,i2,...,iq≥0

∑
q
l=1 il=j−i−q

q

∏
l=1

Cµ(il).

Note that k − j takes the values 0, 1, . . . , k − q − i. So we denote iq+1 = k − j and write

S =
k−i

∑
q=1

aq ∑
i1,i2,...,iq+1≥0

∑
q+1
l=1 il=k−i−q

q+1

∏
l=1

Cµ(il).

On substitute q + 1 → q, we get

S =
k+1−i

∑
q=2

aq−1 ∑
i1,i2,...,iq≥0

∑
q
l=1 il=k+1−i−q

q

∏
l=1

Cµ(il)

and (3.30) becomes (3.28).

4 Fractional difference inequalities

In this section, we explain where the problem lies of the fractional Gronwall inequality es-
tablished in [11]. Then we propose our alternative fractional difference inequalities of the
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Gronwall type that can be used instead of the original one. For a better clarity, we use quo-
tation marks when recalling the false result. At the end of the section, an example of linear
fractional difference equation with a given initial condition from [14], is given. On this exam-
ple, we illustrate different estimates of its solution.

First, we recall a discrete Gronwall lemma (see e.g. [22, Lemma 1.4.2]).

Lemma 4.1. Let u, p, q be real functions defined on N0, and p be nonnegative. For any n ∈ N0, if

u(k) ≤ u(0) +
k−1

∑
j=0

(p(j)u(j) + q(j)), ∀k = 0, 1, . . . , n,

then

u(k) ≤ u(0)
k−1

∏
j=0

(1 + p(j)) +
k−1

∑
j=0

q(j)
k−1

∏
l=j+1

(1 + p(l)), ∀k = 0, 1, . . . , n.

Now, we recall the questionable “lemma” from [11].

“Lemma” 4.2. Let µ ∈ (0, 1), and u, a, b be real nonnegative functions defined on N0. If

∇µ
∗u(k + 1) ≤ a(k)u(k) + b(k), k ∈ N0, (4.1)

then

u(k) ≤ u(0)
k−1

∏
j=0

(1 + Aµ(k − 1, j)a(j))

+
k−1

∑
j=0

Aµ(k − 1, j)b(j)
k−1

∏
l=j+1

(1 + Aµ(k − 1, l)a(l)), k ∈ N0.

Originally, inequality (4.1) is transformed to a corresponding sum equation using the
properties of operator ∇µ

∗ . However, from Section 2 we know that this does not have to
be valid. Next, Aµ(k, j) is considered only as a function of j and Lemma 4.1 is applied with
p(j) = Aµ(k − 1, j)a(j) and q(j) = Aµ(k − 1, j)b(j). This can cause another problem, since in
general, the discrete Gronwall inequality does not hold with p, q depending on k. To prove
that, it really makes a problem and “Lemma” 4.2 is not correct, we provide the following
counterexample.

Example 4.3. Let u(0) = u0 > 0, u(1) = 2u0 and u(2) = (3 + µ)u0 for µ ∈ (0, 1). Consider
{u(k)}k∈N3 such that (4.1) holds for k ∈ N2. For k = 0, we have

[
∇µ

∗u(k)
]

k=1 =

[
k−1

∑
j=0

(
j − µ

j

)
∇ku(k − j)

]
k=1

=

(
−µ

0

)
((u(1)− u(0)) = u0 ≤ u(0),

and for k = 1, [
∇µ

∗u(k)
]

k=2 =

[
k−1

∑
j=0

(
j − µ

j

)
∇ku(k − j)

]
k=2

=

(
−µ

0

)
((u(2)− u(1)) +

(
1 − µ

1

)
(u(1)− u(0))

= (1 + µ)u0 +
Γ(2 − µ)

Γ(2)Γ(1 − µ)
u0 = 2u0 ≤ u(1).
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Thus (4.1) is satisfied for each k ∈ N0 with a(0) = a(1) = 1, b(0) = b(1) = 0, and all the
assumptions of “Lemma” 4.2 are satisfied. But the statement does not hold for k = 2, since

u0

1

∏
j=0

(1 + Aµ(1, j)) = u0

(
1 +

(
µ

1

))(
1 +

(
µ − 1

0

))
= (2 + 2µ)u0 < (3 + µ)u0 = u(2).

Instead of “Lemma” 4.2, we provide the following fractional difference inequalities of the
Gronwall type.

Lemma 4.4. Let µ ∈ (0, 1), u, a, b be real functions defined on N0, and a be nonnegative. For any
n ∈ N, if

∇µ
∗u(k + 1) ≤ a(k)u(k) + b(k), ∀k = 0, 1, . . . , n − 1,

then

u(k) ≤ u(0)h(k) +
k−1

∑
j=0

gj(k)b(j), k = 0, 1, . . . , n

where h solves (3.3) and gj is a solution of (3.4).

Proof. Let v(k) denote a solution of the initial value problem

∇µ
∗v(k + 1) = a(k)v(k) + b(k), k ∈ N0

v(0) = u(0).

Then by Lemma 3.3,

v(k) = u(0)h(k) +
k−1

∑
j=0

gj(k)b(j)

for k = 0, 1, . . . , n. So it is sufficient to prove u(k) ≤ v(k) for each k = 0, 1, . . . , n. Clearly, it is
true for k = 0. Let it be valid for 1, 2, . . . , k. Then by Corollary 3.2 and Lemma 3.1,

u(k + 1) ≤ u(0) +
k

∑
j=0

Aµ(k, j)(a(j)u(j) + b(j))

≤ u(0) +
k

∑
j=0

Aµ(k, j)(a(j)v(j) + b(j)) = v(k + 1).

Hence the lemma is proved.

Lemma 4.5. Let µ ∈ (0, 1), a > 0, u, b be real functions defined on N0. For any n ∈ N, if

∇µ
∗u(k + 1) ≤ au(k) + b(k), ∀k = 0, 1, . . . , n − 1,

then

u(k) ≤ u(0)

1 +
k

∑
j=1

∑
i1,i2,...,ij≥0

∑
j
l=1 il≤k−j

j

∏
l=1

aΓ(il + µ)

Γ(µ)Γ(il + 1)


+

k−1

∑
i=0

b(i)
k−i

∑
j=1

aj−1 ∑
i1,i2,...,ij≥0

∑
j
l=1 il=k−i−j

j

∏
l=1

Γ(il + µ)

Γ(µ)Γ(il + 1)
, k = 0, 1, . . . , n
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Proof. The lemma can be proved as Lemma 4.4 using Propositions 3.4 and 3.8, and Lemma
3.3.

Next, we state an estimation independent of µ.

Lemma 4.6. If the assumptions of Lemma 4.4 are satisfied, then

u(k) ≤ u(0)
k−1

∏
j=0

(1 + a(j)) +
k−1

∑
j=0

b(j)
k−1

∏
l=j+1

(1 + a(l)), ∀k = 0, 1, . . . , n.

Proof. Corollary 3.2 is applied to obtain the sum inequality

u(k) ≤ u(0) +
k−1

∑
j=0

Aµ(k − 1, j)(a(j)u(j) + b(j)), ∀k = 0, 1, . . . , n. (4.2)

Let us define a function g as

g(x) =
Γ(x + µ)

Γ(x + 1)

for x ≥ 0. We claim that g is decreasing on [0, ∞). Clearly, g is positive on the whole domain.
Next, g′(x) = (Ψ(x + µ) − Ψ(x + 1))g(x) where Ψ is a logarithmic derivative of gamma
function (psi function or digamma function, see e.g. [19]) which satisfies [2, 6.4.10]

Ψ′(x) =
∞

∑
j=0

1
(x + j)2 > 0, x > 0.

Thus indeed, g′(x) < 0 for x ≥ 0. Consequently, since Aµ(k − 1, j) = g(k−1−j)
Γ(µ) , then Aµ(·, j) is

decreasing on [j, ∞), and Aµ(k − 1, ·) is increasing on [1, k − 1]. So we get two estimates

Aµ(k − 1, j) ≤ Aµ(j, j), Aµ(k − 1, j) ≤ Aµ(k − 1, k − 1)

for 1 ≤ j ≤ k − 1. It does not matter which we use, as both give the same result Aµ(j, j) =

Aµ(k − 1, k − 1) = 1. Hence by (4.2),

u(k) ≤ u(0) +
k−1

∑
j=0

(a(j)u(j) + b(j)), ∀k = 0, 1, . . . , n.

Finally, the statement follows by Lemma 4.1.

Remark 4.7. Lemmas 4.4, 4.5 and 4.6 remain valid when ≤ is replaced with ≥.

Example 4.8. Consider the following initial value problem

∇
1
2∗ u(k + 1) = u(k), k ∈ N0

u(0) = 1.
(4.3)

By Lemma 3.1,

u(k) = u(0) +
k−1

∑
j=0

A 1
2
(k − 1, j)u(j), k ∈ N0. (4.4)

In Figure 4.1, one can compare values of the solution of (4.3), its estimate

u(k) ≤ 2k, k ∈ N0 (4.5)
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obtained from Lemma 4.6, the false estimate

u(k) ≤
k−1

∏
j=0

(1 + A 1
2
(k − 1, j)), k ∈ N0 (4.6)

given by “Lemma” 4.2, and the following one presented in [14]

u(k) ≤ exp

(
k−1

∑
j=0

A 1
2
(k − 1, j)

)
, k ∈ N0. (4.7)

Figure 4.1: Solution of (4.3) – black with points, estimate (4.5) – blue with solid boxes, estimate
(4.6) – green with boxes, estimate (4.7) – red with diamonds.

By the way, the solution of (4.3) is in [14] stated as

u(k) =
k−1

∏
j=0

(1 + A 1
2
(k − 1, j)),

which obviously does not satisfy (4.4) (one can set k = 2 and see the difference). Nevertheless,
because of the simple form of (4.3), its solution can be explicitly calculated using Proposition
3.4 to get

u(k) = 1 +
k

∑
j=1

∑
i1,i2,...,ij≥0

∑
j
l=1 il≤k−j

j

∏
l=1

Γ
(
il +

1
2

)
√

πΓ(il + 1)
, k ∈ N0.

Remark 4.9. We recall that Gronwall type inequalities are derived in [1, 8, 16] for different
fractional difference inequalities from our paper. More general inequalities are presented
in [4].
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5 Conclusion

In this note, we showed by Example 4.3 that the Caputo like ∇-based fractional Gronwall
lemma (“Lemma” 4.2) is false. By this, many proofs of the recent results of Deekshitulu and
Mohan are discarded, as they are based on the “lemma”. This should motivate authors to
carefully and critically approach any results published in more or less esteemed journals.

One can try to find simple counterexamples to show that the inequalities from [12, 13, 15]
are false as well, or use the proposed Lemma 4.6 to obtain valid results.

We note that in [10], the authors made a similar fault as in [11] – they neglected the
dependence of a summed function on independent variable in discrete Langenhop inequality
without any explanation. So one can doubt the correctness of this step. So we hope that our
approach and results could help these authors improve their results.

On the other hand, their results were stimulations for us to propose new ∇-based fractional
difference inequalities of the Gronwall type for constant or variable coefficients, which have
been not yet studied. We also dealt with related linear fractional difference equations.
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