THE FREEZING METHOD FOR VOLTERRA INTEGRAL EQUATIONS IN A BANACH SPACE *

M. I. Gil'
Department of Mathematics
Ben Gurion University of the Negev
P.0. Box 653, Beer-Sheva 84105, Israel
E-mail: gilmi@cs.bgu.ac.il

Abstract

The "freezing" method for ordinary differential equations is extended to the Volterra integral equations in a Banach space of the type $$
x(t)-\int_{0}^{t} K(t, t-s) x(s) d s=f(t)(t \geq 0)
$$ where $K(t, s)$ is an operator valued function "slowly" varying in the first argument. Besides, sharp explicit stability conditions are derived.

Subject Classification: 45M10, 45N05 Key words: Volterra integral equations, Banach space, stability

\section*{1 Introduction and statement of the basic lemma}

Stability and boundedness of Volterra integral and integrodifferential equations have been extensively considered for a long time (see the well-known books [1, 4], recent papers [5, 8, 15, 16] and papers listed below). The basic method in the theory of stability and boundedness of Volterra integral equations is the direct Liapunov method. But finding the Liapunov functionals is a difficult mathematical problem. The other approach is connected with an interpretation of the Volterra equations as operator equations in appropriate spaces. Such an approach was used in many papers, cf. $[3,6,7,12,14,16]$ and references therein. In this paper, for a class of Volterra equations in a Banach space we establish explicit sufficient stability conditions which are also necessary stability conditions when the integral operator is a convolution. Our results improve the well known ones in the case of the considered equations.

[^0]The approach suggested below is based on the extension of the "freezing" method which was introduced by V.M. Alekseev for linear ordinary differential equations cf. [2] (see also [9, Section 3.2]). That method was already extended to difference equations [11].

Let X be a Banach space with a norm $\|$.$\| and the unit operator I, R_{+}:=[0, \infty)$, and $C(\omega, X)$ is the space of continuous functions defined on a set $\omega \subset \mathbb{R}$ with values in X and equipped with the sup-norm $|\cdot|_{C(\omega)}=|\cdot|_{C(\omega, X)} . L^{p}(\omega, X)(1 \leq p<\infty)$ is the space of functions defined on ω with values in X and equipped with the

$$
|f|_{L^{p}(\omega)}=\left[\int_{\omega}\|f(t)\|^{p} d t\right]^{1 / p} .
$$

Consider in X the equation

$$
\begin{equation*}
x(t)-\int_{0}^{t} K(t, t-s) x(s) d s=f(t)\left(f \in C\left(R_{+}, X\right), t \geq 0\right) \tag{1.1}
\end{equation*}
$$

where $K(t, s)$ is a functions defined on $[0 \leq s \leq t<\infty]$, whose values are bounded operators in X, and for any fixed $\tau \geq 0, K(\tau,$.$) is integrable and bounded on R_{+}$. In addition,

$$
\begin{equation*}
\int_{0}^{t}\|K(t, s)-K(\tau, s)\| d s \leq q|t-\tau| \quad(q=\text { const } ; t, \tau \geq 0) \tag{1.2}
\end{equation*}
$$

A solution of Equation (1.1) is a continuous function defined on R_{+}and satisfying (1.1) for all finite $t>0$. The existence of solutions under consideration is checked below.

Note that the approach suggested below enables us to consider also the equation

$$
x(t)-\int_{0}^{t} K(t-s, s) x(s) d s=f(t)(t \geq 0)
$$

under condition (1.2). It is clear that under (1.2) the function $K(\tau, s)$, for a fixed τ, admits the Laplace transform

$$
\tilde{K}_{\tau}(z):=\int_{0}^{\infty} e^{-z s} K(\tau, s) d s \quad\left(\text { Rez } \geq c_{0}=\text { const }\right)
$$

Besides, it is assumed that the operator $W_{\tau}(z):=I-\tilde{K}_{\tau}(z)$ is invertible for all $z \in C_{+}:=\{z \in$ $\mathbb{C}: R e z \geq 0\}$ and $W_{\tau}^{-1}(i y) \in L^{1}(\mathbb{R})$. Introduce the "local Green function"

$$
G_{\tau}(t):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i y t} W_{\tau}^{-1}(i y) d y
$$

We will say that Equation (1.1) is stable, if for any $f \in C\left(R_{+}, X\right)$ a solution x of (1.1) satisfies the inequality

$$
\begin{equation*}
|x|_{C\left(R_{+}\right)} \leq a_{0}|f|_{C\left(R_{+}\right)} \tag{1.3}
\end{equation*}
$$

where the constant a_{0} does not depend on f.
Lemma 1.1 Under condition (1.2), let

$$
\begin{equation*}
q \int_{0}^{\infty} s \sup _{\tau \geq 0}\left\|G_{\tau}(s)\right\| d s<1 \tag{1.4}
\end{equation*}
$$

Then Equation (1.1) is stable. Moreover, constant a_{0} in (1.3) is explicitly pointed below.
This lemma is proved in the next section.

2 Proof of Lemma 1.1

Consider the equation

$$
\begin{equation*}
x(t)-\int_{0}^{t} K(\tau, t-s) x(s) d s=f(t) \quad(t \geq 0) \tag{2.1}
\end{equation*}
$$

with a fixed $\tau \geq 0$. Applying to (2.1) the Laplace transform, we have

$$
\tilde{x}(z)-\tilde{K}_{\tau}(z) \tilde{x}(z)=\tilde{f}(z),
$$

where $\tilde{x}(z)$ and $\tilde{f}(z)$ are the Laplace transforms to $x(t)$ and $f(t)$, respectively, z is the dual variable. Hence,

$$
\tilde{x}(z)=W_{\tau}^{-1}(z) \tilde{f}(z)
$$

So

$$
\begin{equation*}
x(t)=\int_{0}^{t} G_{\tau}(t-s) f(s) d s \tag{2.2}
\end{equation*}
$$

Now rewrite (1.1) in the form

$$
\begin{equation*}
x(t)-\int_{0}^{t} K(\tau, t-s) x(s) d s=f_{0}(t, \tau)+f(t) \quad(t \geq 0) \tag{2.3}
\end{equation*}
$$

with

$$
f_{0}(t, \tau)=\int_{0}^{t}(K(t, t-s)-K(\tau, t-s)) x(s) d s
$$

So according to (2.2),

$$
\begin{equation*}
x(t)=\int_{0}^{t} G_{\tau}(t-s)\left(f(s)+f_{0}(s, \tau)\right) d s=F(t)+\int_{0}^{t} G_{\tau}(t-s) f_{0}(s, \tau) d s \tag{2.4}
\end{equation*}
$$

where

$$
F(t)=\int_{0}^{t} G_{\tau}(t-s) f(s) d s
$$

With the notation

$$
w(t):=\sup _{\tau \geq 0}\left\|G_{\tau}(t)\right\|
$$

we thus get

$$
|F|_{C\left(R_{+}\right)} \leq|f|_{C\left(R_{+}\right)} \sup _{t} \int_{0}^{t} w(t-s) d s=|w|_{L^{1}\left(R_{+}\right)}|f|_{C\left(R_{+}\right)} .
$$

Due to (1.3)

$$
\left\|f_{0}(t, \tau)\right\| \leq \int_{0}^{t}\|(K(\tau, t-s)-K(t, t-s)) x(s)\| d s \leq|x|_{C(0, t)} q|t-\tau| .
$$

Now (2.4) implies

$$
\|x(t)\| \leq|w|_{L^{1}\left(R_{+}\right)}|f|_{C\left(R_{+}\right)}+q \int_{0}^{t} w(t-s)|x|_{C(0, s)}|s-\tau| d s .
$$

Take $t=\tau$. Then

$$
\|x(\tau)\| \leq|w|_{L^{1}\left(R_{+}\right)}|f|_{C\left(R_{+}\right)}+\left.q \int_{0}^{\tau} w(\tau-s)\right|_{X}|x|_{C(0, s)}(\tau-s) d s
$$

Hence,

$$
\begin{gathered}
\|x(\tau)\| \leq|w|_{L^{1}\left(R_{+}\right)}|f|_{C\left(R_{+}\right)}+|x|_{C(0, \tau)} \int_{0}^{\tau}(\tau-s) w(\tau-s) d s_{1} \leq \\
|w|_{L^{1}\left(R_{+}\right)}|f|_{C\left(R_{+}\right)}+|x|_{C(0, \tau)} \Theta,
\end{gathered}
$$

where

$$
\Theta=q \int_{0}^{\infty} s w(s) d s
$$

Therefore, for any $t_{0}>0$,

$$
\sup _{\tau \leq t_{0}}\|x(\tau)\| \leq|w|_{L^{1}\left(R_{+}\right)}|f|_{C\left(R_{+}\right)}+\sup _{\tau \leq t_{0}}|x|_{C(0, \tau)} \Theta
$$

Now condition (1.4) implies

$$
|x|_{C\left(0, t_{0}\right)} \leq \frac{|w|_{L^{1}\left(R_{+}\right)}|f|_{C\left(R_{+}\right)}}{1-\Theta} .
$$

Since the right hand part does not depend on t_{0}, inequality (1.3) follows. Besides,

$$
a_{0}=\frac{|w|_{L^{1}\left(R_{+}\right)}}{1-\Theta} .
$$

The existence of solutions is due to the Neumann series

$$
x=\sum_{k=0}^{\infty} V^{k} f,
$$

where V is the Volterra integral operator defined in (1.1). The lemma is proved.

3 The main result

First, note that

$$
t G_{\tau}(t)=t \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{z t} W_{\tau}^{-1}(z) d z=\frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} e^{z t} T(z) d z
$$

where

$$
T_{\tau}(z):=-\frac{d W_{\tau}^{-1}(z)}{d z}=W_{\tau}^{-1}(z) \frac{d W_{\tau}(z)}{d z} W_{\tau}^{-1}(z)
$$

For a number $b>0$ and $R e z>-b$, let $T_{\tau}(z)$ be regular and

$$
\begin{equation*}
\psi_{b}:=\sup _{\tau \geq 0} \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\|T_{\tau}(i y-b)\right\| d y<\infty \tag{3.1}
\end{equation*}
$$

Then

$$
\left\|t G_{\tau}(t)\right\| \leq e^{-b t} \frac{1}{2 \pi} \int_{-\infty}^{\infty}\|T(i y-b)\| d y=e^{-b t} \psi_{b}
$$

So

$$
\int_{0}^{\infty} t \sup _{\tau}\left\|G_{\tau}(t)\right\| d t \leq \psi_{b} \int_{0}^{\infty} e^{-b t} d t=\frac{\psi_{b}}{b}
$$

Now Lemma 1.1 implies our main result.
Theorem 3.1 Under condition (1.2), for a positive b and all z with $R e z>-b$, let $T_{\tau}(z)$ be regular, and the conditions (3.1) and $q \psi_{b}<b$ hold. Then Equation (1.1) is stable.

To illustrate this result, consider in X the equation

$$
\begin{equation*}
x(t)-A(t) \int_{0}^{t} e^{-(t-s) h} x(s) d s=f(t)(h=\text { const }>0, t \geq 0) \tag{3.2}
\end{equation*}
$$

where $A(t)$ is a variable bounded operator in X satisfying

$$
\begin{equation*}
\|A(t)-A(\tau)\| \leq q_{1}|t-\tau| \quad(t, \tau \geq 0) \tag{3.3}
\end{equation*}
$$

Take $K(t, s)=A(t) e^{-s h}$. Then

$$
\begin{equation*}
\int_{0}^{t}\|K(t, s)-K(\tau, s)\| d s \leq q_{1}\|A(t)-A(\tau)\| \int_{0}^{t} e^{-s h} d s \leq \frac{q_{1}}{h}|t-\tau|(t, \tau \geq 0) \tag{3.4}
\end{equation*}
$$

So (1.2) holds with $q=q_{1} / h$. We also have

$$
\tilde{K}_{\tau}(z):=A(\tau) \int_{0}^{\infty} e^{-z s} e^{-h s} d s=\frac{A(\tau)}{z+h}
$$

and

$$
W_{\tau}(z):=I-\frac{A(\tau)}{z+h} .
$$

Hence,

$$
T_{\tau}(z)=\left(I-\frac{A(\tau)}{z+h}\right)^{-2} \frac{A(\tau)}{(z+h)^{2}}=A(\tau)((z+h) I-A(\tau))^{-2} .
$$

So

$$
\begin{equation*}
\left\|T_{\tau}(z)\right\| \leq\|A(\tau)\|\left\|((z+h) I-A(\tau))^{-1}\right\|^{2} \quad(\tau \geq 0) \tag{3.5}
\end{equation*}
$$

Note that some estimates for resolvents of nonselfadjoint operators can be found in [10]. For instance, take $X=L^{2}(0,1)$ and

$$
A(t) w(y)=a(t, y) \int_{0}^{1} m\left(y, y_{1}\right) w\left(y_{1}\right) d y_{1} \quad(y \in[0,1])
$$

where $a(t,$.$) for all t \geq 0$ is a scalar measurable function satisfying the conditions

$$
\sup _{t \geq 0, y \in[0,1]}|a(t, y)|<\infty
$$

and

$$
\begin{equation*}
|a(t, y)-a(\tau, y)| \leq q_{0}|t-\tau|(y \in[0,1] ; t, \tau \geq 0) \tag{3.6}
\end{equation*}
$$

In addition, the scalar function $m(.,$.$) satisfies the condition$

$$
N_{m}:=\left[\int_{0}^{1} \int_{0}^{1}\left|m\left(y, y_{1}\right)\right|^{2} d y d y_{1}\right]^{1 / 2}<\infty .
$$

That is, we consider the equation

$$
\begin{equation*}
u(t, y)=f(t, y)+a(t, y) \int_{0}^{t} e^{-h(t-s)} \int_{0}^{1} m\left(y, y_{1}\right) u\left(s, y_{1}\right) d y_{1} d s \quad(0 \leq y \leq 1 ; t \geq 0) \tag{3.7}
\end{equation*}
$$

where $f(t,.) \in L^{2}(0,1)$. By the Schwarz inequaliy, for any $w \in L^{2}(0,1)$ we get

$$
\|(A(t)-A(\tau)) w\|^{2}=\int_{0}^{1}\left|(a(t, y)-a(\tau, y)) \int_{0}^{1} m\left(y, y_{1}\right) w\left(y_{1}\right) d y_{1}\right|^{2} d y \leq\left(q_{0}|t-\tau| N_{m}\right)^{2}\|w\|^{2}
$$

That is, (3.3) holds with $q_{1}=q_{0} N_{m}$. So according to (3.4), condition (1.2) is valid with $q=q_{0} N_{m} / h$. Furthermore, clearly,

$$
\|A(\tau)\| \leq c(a, m):=\sup _{\tau, y}|a(\tau, y)| N_{m}(\tau \geq 0)
$$

Assume that

$$
\begin{equation*}
2 c(a, m)<h \tag{3.8}
\end{equation*}
$$

and take $b=h / 2$. Then by (3.5),

$$
\left\|T_{\tau}(-b+i y)\right\| \leq \frac{c(a, m)}{\left(\sqrt{y^{2}+h^{2} / 4}-c(a, m)\right)^{2}} \quad(\tau \geq 0)
$$

So we have the inequality $\psi_{b} \leq \tilde{\psi}_{h}$, where

$$
\tilde{\psi}_{h}:=\frac{c(a, m)}{2 \pi} \int_{-\infty}^{\infty} \frac{d y}{\left(\sqrt{y^{2}+h^{2} / 4}-c(a, m)\right)^{2}}<\infty .
$$

Thus under conditions (3.6) and (3.8), thanks to Theorem 3.1, Equation (3.7) is stable provided $2 q_{0} N_{m} \tilde{\psi}_{h}<h^{2}$.

References

[1] Burton, T. A., Volterra Integral and Differential Equations, Acad. Press, New York, 1983.
[2] Bylov, B. F., Grobman, B. M., Nemyckii V. V. and Vinograd R.E. The Theory of Lyapunov Exponents, Nauka, Moscow, 1966. (In Russian).
[3] Becker, L. C. Function bounds for solutions of Volterra equations and exponential asymptotic stability. Nonlinear Anal., Theory Methods Appl. 67, No. 2 (A), 382-397 (2007).
[4] Corduneanu, C., Integral Equations and Applications. Cambridge Univ. Press, Cambridge, 1990.
[5] Crisci, M.R., V.B. Kolmanovskii, E. Russo, A. Vecchio, Stability of continuous and discrete Volterra integro-differential equations by Lyapunov approach, J. Integral Equations Appl., 7 (4), 393-411 (1995).
[6] Diamandescu, A., On the Ψ-stability of a nonlinear Volterra integro-differential system. Electron. J. Differ. Equ. 2005, Paper No. 56, 14 p., electronic only (2005).
[7] Diamandescu, A., On the Ψ-conditional asymptotic stability of the solutions of a nonlinear Volterra integro-differential system. Electron. J. Differ. Equ. 2007, Paper No. 29, 13 p., electronic only (2007)
[8] Funakubo, M, Hara, T. and Sakata, S., On the uniform asymptotic stability for a linear integro-differential equation of Volterra type. J. Math. Anal. Appl. 324, No. 2, 1036-1049 (2006).
[9] Gil', M. I., Stability of Finite and Infinite Dimensional Systems, Kluwer Academic Publishers, Boston-Dordrecht-London, 1998.
[10] Gil', M. I., Operator Functions and Localization of Spectra, Lecture Notes In Mathematics, Vol. 1830, Springer Verlag, 2003.
[11] Gil', M. I. Difference Equations in Normed Spaces. Stability and Oscillations, NorthHolland, Mathematics Studies 206, Elsevier, Amsterdam, 2007.
[12] Gil', M.I. and Kloeden P. E., Solution estimates of nonlinear vector Volterra-Stieltjes equations, Analysis and Appl., 1, No 2, 165-175 (2003).
[13] Islam, M. and Raffoul, Y., Stability properties of linear Volterra integrodifferential equations with nonlinear perturbation, Commun. Appl. Anal. 7, No. 3, 405-416 (2003).
[14] Islam, M., Raffoul, Y., Stability in linear Volterra integrodifferential equations with nonlinear perturbation, J. Integral Equations Appl. 17, No. 3, 259-276 (2005).
[15] Weng, P., Existence and global stability of positive periodic solution in a logistic integrodifferential equation with feedback control. Ann. Differ. Equations 16, No.3, 281-290 (2000).
[16] Zhang, Bo, Necessary and sufficient conditions for stability in Volterra equations of nonconvolution type. Dyn. Syst. Appl. 14, No. 3-4, 525-550 (2005).
(Received February 14, 2008)

[^0]: * This research was supported by the Kameah fund.

