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Abstract

The ”freezing” method for ordinary differential equations is extended to the Volterra
integral equations in a Banach space of the type

x(t) −

∫ t

0
K(t, t − s)x(s)ds = f(t) (t ≥ 0),

where K(t, s) is an operator valued function ”slowly” varying in the first argument. Be-
sides, sharp explicit stability conditions are derived.
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1 Introduction and statement of the basic lemma

Stability and boundedness of Volterra integral and integrodifferential equations have been ex-
tensively considered for a long time (see the well-known books [1, 4], recent papers [5, 8, 15, 16]
and papers listed below). The basic method in the theory of stability and boundedness of
Volterra integral equations is the direct Liapunov method. But finding the Liapunov function-
als is a difficult mathematical problem. The other approach is connected with an interpretation
of the Volterra equations as operator equations in appropriate spaces. Such an approach was
used in many papers, cf. [3, 6, 7, 12, 14, 16] and references therein. In this paper, for a class of
Volterra equations in a Banach space we establish explicit sufficient stability conditions which
are also necessary stability conditions when the integral operator is a convolution. Our results
improve the well known ones in the case of the considered equations.
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The approach suggested below is based on the extension of the ”freezing” method which
was introduced by V.M. Alekseev for linear ordinary differential equations cf. [2] (see also [9,
Section 3.2]). That method was already extended to difference equations [11].

Let X be a Banach space with a norm ‖.‖ and the unit operator I, R+ := [0,∞), and
C(ω,X) is the space of continuous functions defined on a set ω ⊂ R with values in X and
equipped with the sup-norm |.|C(ω) = |.|C(ω,X). L

p(ω,X) (1 ≤ p <∞) is the space of functions
defined on ω with values in X and equipped with the

|f |Lp(ω) = [

∫

ω

‖f(t)‖pdt]1/p.

Consider in X the equation

(1.1) x(t) −

∫ t

0

K(t, t− s)x(s)ds = f(t) (f ∈ C(R+, X), t ≥ 0),

where K(t, s) is a functions defined on [0 ≤ s ≤ t < ∞], whose values are bounded operators
in X, and for any fixed τ ≥ 0, K(τ, .) is integrable and bounded on R+. In addition,

(1.2)

∫ t

0

‖K(t, s) −K(τ, s)‖ds ≤ q|t− τ | (q = const; t, τ ≥ 0).

A solution of Equation (1.1) is a continuous function defined on R+ and satisfying (1.1) for all
finite t > 0. The existence of solutions under consideration is checked below.

Note that the approach suggested below enables us to consider also the equation

x(t) −

∫ t

0

K(t− s, s)x(s)ds = f(t) (t ≥ 0)

under condition (1.2). It is clear that under (1.2) the function K(τ, s), for a fixed τ , admits
the Laplace transform

K̃τ (z) :=

∫ ∞

0

e−zsK(τ, s)ds (Rez ≥ c0 = const).

Besides, it is assumed that the operator Wτ (z) := I− K̃τ (z) is invertible for all z ∈ C+ := {z ∈
C : Re z ≥ 0} and W−1

τ (iy) ∈ L1(R). Introduce the ”local Green function”

Gτ (t) :=
1

2π

∫ ∞

−∞

eiytW−1
τ (iy)dy.

We will say that Equation (1.1) is stable, if for any f ∈ C(R+, X) a solution x of (1.1) satisfies
the inequality

(1.3) |x|C(R+) ≤ a0|f |C(R+),

where the constant a0 does not depend on f .

Lemma 1.1 Under condition (1.2), let

(1.4) q

∫ ∞

0

s sup
τ≥0

‖Gτ (s)‖ds < 1.

Then Equation (1.1) is stable. Moreover, constant a0 in (1.3) is explicitly pointed below.

This lemma is proved in the next section.
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2 Proof of Lemma 1.1

Consider the equation

(2.1) x(t) −

∫ t

0

K(τ, t− s)x(s)ds = f(t) (t ≥ 0)

with a fixed τ ≥ 0. Applying to (2.1) the Laplace transform, we have

x̃(z) − K̃τ (z)x̃(z) = f̃(z),

where x̃(z) and f̃(z) are the Laplace transforms to x(t) and f(t), respectively, z is the dual
variable. Hence,

x̃(z) = W−1
τ (z)f̃(z).

So

(2.2) x(t) =

∫ t

0

Gτ (t− s)f(s)ds.

Now rewrite (1.1) in the form

(2.3) x(t) −

∫ t

0

K(τ, t− s)x(s)ds = f0(t, τ) + f(t) (t ≥ 0).

with

f0(t, τ) =

∫ t

0

(K(t, t− s) −K(τ, t− s))x(s)ds.

So according to (2.2),

(2.4) x(t) =

∫ t

0

Gτ (t− s)(f(s) + f0(s, τ))ds = F (t) +

∫ t

0

Gτ (t− s)f0(s, τ)ds,

where

F (t) =

∫ t

0

Gτ (t− s)f(s)ds.

With the notation
w(t) := sup

τ≥0
‖Gτ(t)‖

we thus get

|F |C(R+) ≤ |f |C(R+) sup
t

∫ t

0

w(t− s)ds = |w|L1(R+) |f |C(R+).

Due to (1.3)

‖f0(t, τ)‖ ≤

∫ t

0

‖(K(τ, t− s) −K(t, t− s))x(s)‖ds ≤ |x|C(0,t)q|t− τ |.

Now (2.4) implies

‖x(t)‖ ≤ |w|L1(R+) |f |C(R+) + q

∫ t

0

w(t− s)|x|C(0,s)|s− τ |ds.
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Take t = τ . Then

‖x(τ)‖ ≤ |w|L1(R+) |f |C(R+) + q

∫ τ

0

w(τ − s)|X |x|C(0,s)(τ − s)ds.

Hence,

‖x(τ)‖ ≤ |w|L1(R+) |f |C(R+) + |x|C(0,τ)

∫ τ

0

(τ − s)w(τ − s)ds1 ≤

|w|L1(R+) |f |C(R+) + |x|C(0,τ)Θ,

where

Θ = q

∫ ∞

0

sw(s)ds.

Therefore, for any t0 > 0,

sup
τ≤t0

‖x(τ)‖ ≤ |w|L1(R+) |f |C(R+) + sup
τ≤t0

|x|C(0,τ)Θ.

Now condition (1.4) implies

|x|C(0,t0) ≤
|w|L1(R+) |f |C(R+)

1 − Θ
.

Since the right hand part does not depend on t0, inequality (1.3) follows. Besides,

a0 =
|w|L1(R+)

1 − Θ
.

The existence of solutions is due to the Neumann series

x =

∞
∑

k=0

V kf,

where V is the Volterra integral operator defined in (1.1). The lemma is proved. �

3 The main result

First, note that

tGτ (t) = t
1

2πi

∫ i∞

−i∞

eztW−1
τ (z)dz =

1

2πi

∫ +i∞

−i∞

eztT (z)dz,

where

Tτ (z) := −
dW−1

τ (z)

dz
= W−1

τ (z)
dWτ (z)

dz
W−1

τ (z).

For a number b > 0 and Re z > −b, let Tτ (z) be regular and

(3.1) ψb := sup
τ≥0

1

2π

∫ ∞

−∞

‖Tτ (iy − b)‖dy <∞.
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Then

‖tGτ (t)‖ ≤ e−bt 1

2π

∫ ∞

−∞

‖T (iy − b)‖dy = e−btψb.

So
∫ ∞

0

t sup
τ

‖Gτ (t)‖dt ≤ ψb

∫ ∞

0

e−btdt =
ψb

b
.

Now Lemma 1.1 implies our main result.

Theorem 3.1 Under condition (1.2), for a positive b and all z with Re z > −b, let Tτ (z) be
regular, and the conditions (3.1) and qψb < b hold. Then Equation (1.1) is stable.

To illustrate this result, consider in X the equation

(3.2) x(t) − A(t)

∫ t

0

e−(t−s)hx(s)ds = f(t) (h = const > 0, t ≥ 0),

where A(t) is a variable bounded operator in X satisfying

(3.3) ‖A(t) −A(τ)‖ ≤ q1|t− τ | (t, τ ≥ 0).

Take K(t, s) = A(t)e−sh. Then

(3.4)

∫ t

0

‖K(t, s) −K(τ, s)‖ds ≤ q1‖A(t) − A(τ)‖

∫ t

0

e−shds ≤
q1
h
|t− τ | (t, τ ≥ 0).

So (1.2) holds with q = q1/h. We also have

K̃τ (z) := A(τ)

∫ ∞

0

e−zse−hsds =
A(τ)

z + h

and

Wτ (z) := I −
A(τ)

z + h
.

Hence,

Tτ (z) = (I −
A(τ)

z + h
)−2 A(τ)

(z + h)2
= A(τ)((z + h)I −A(τ))−2.

So

(3.5) ‖Tτ (z)‖ ≤ ‖A(τ)‖ ‖((z + h)I − A(τ))−1‖2 (τ ≥ 0).

Note that some estimates for resolvents of nonselfadjoint operators can be found in [10]. For
instance, take X = L2(0, 1) and

A(t)w(y) = a(t, y)

∫ 1

0

m(y, y1)w(y1)dy1 (y ∈ [0, 1]),

where a(t, .) for all t ≥ 0 is a scalar measurable function satisfying the conditions

sup
t≥0,y∈[0,1]

|a(t, y)| <∞
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and

(3.6) |a(t, y) − a(τ, y)| ≤ q0|t− τ | (y ∈ [0, 1]; t, τ ≥ 0).

In addition, the scalar function m(., .) satisfies the condition

Nm := [

∫ 1

0

∫ 1

0

|m(y, y1)|
2dy dy1]

1/2 <∞.

That is, we consider the equation

(3.7) u(t, y) = f(t, y) + a(t, y)

∫ t

0

e−h(t−s)

∫ 1

0

m(y, y1)u(s, y1)dy1ds (0 ≤ y ≤ 1; t ≥ 0),

where f(t, .) ∈ L2(0, 1). By the Schwarz inequaliy, for any w ∈ L2(0, 1) we get

‖(A(t) − A(τ))w‖2 =

∫ 1

0

|(a(t, y) − a(τ, y))

∫ 1

0

m(y, y1)w(y1)dy1|
2dy ≤ (q0|t− τ |Nm)2‖w‖2.

That is, (3.3) holds with q1 = q0Nm. So according to (3.4), condition (1.2) is valid with
q = q0Nm/h. Furthermore, clearly,

‖A(τ)‖ ≤ c(a,m) := sup
τ,y

|a(τ, y)|Nm (τ ≥ 0).

Assume that

(3.8) 2c(a,m) < h

and take b = h/2. Then by (3.5),

‖Tτ (−b+ iy)‖ ≤
c(a,m)

(
√

y2 + h2/4 − c(a,m))2
(τ ≥ 0).

So we have the inequality ψb ≤ ψ̃h, where

ψ̃h :=
c(a,m)

2π

∫ ∞

−∞

dy

(
√

y2 + h2/4 − c(a,m))2
<∞.

Thus under conditions (3.6) and (3.8), thanks to Theorem 3.1, Equation (3.7) is stable provided
2q0Nmψ̃h < h2.

References

[1] Burton, T. A., Volterra Integral and Differential Equations, Acad. Press, New York,
1983.

[2] Bylov, B. F., Grobman, B. M., Nemyckii V. V. and Vinograd R.E. The Theory of
Lyapunov Exponents, Nauka, Moscow, 1966. (In Russian).

EJQTDE, 2008 No. 17, p. 6



[3] Becker, L. C. Function bounds for solutions of Volterra equations and exponential
asymptotic stability. Nonlinear Anal., Theory Methods Appl. 67, No. 2 (A), 382-397
(2007).

[4] Corduneanu, C., Integral Equations and Applications. Cambridge Univ. Press, Cam-
bridge, 1990.

[5] Crisci, M.R., V.B. Kolmanovskii, E. Russo, A. Vecchio, Stability of continuous and
discrete Volterra integro-differential equations by Lyapunov approach, J. Integral
Equations Appl., 7 (4), 393-411 (1995).

[6] Diamandescu, A., On the Ψ-stability of a nonlinear Volterra integro-differential sys-
tem. Electron. J. Differ. Equ. 2005, Paper No. 56, 14 p., electronic only (2005).

[7] Diamandescu, A., On the Ψ-conditional asymptotic stability of the solutions of a
nonlinear Volterra integro-differential system. Electron. J. Differ. Equ. 2007, Paper
No. 29, 13 p., electronic only (2007)

[8] Funakubo, M, Hara, T. and Sakata, S., On the uniform asymptotic stability for a
linear integro-differential equation of Volterra type. J. Math. Anal. Appl. 324, No. 2,
1036-1049 (2006).

[9] Gil’, M. I., Stability of Finite and Infinite Dimensional Systems, Kluwer Academic
Publishers, Boston-Dordrecht-London, 1998.

[10] Gil’, M. I., Operator Functions and Localization of Spectra, Lecture Notes In Mathe-
matics, Vol. 1830, Springer Verlag, 2003.

[11] Gil’, M. I. Difference Equations in Normed Spaces. Stability and Oscillations, North-
Holland, Mathematics Studies 206, Elsevier, Amsterdam, 2007.

[12] Gil’, M.I. and Kloeden P. E., Solution estimates of nonlinear vector Volterra-Stieltjes
equations, Analysis and Appl., 1, No 2, 165-175 (2003).

[13] Islam, M. and Raffoul, Y., Stability properties of linear Volterra integrodifferential
equations with nonlinear perturbation, Commun. Appl. Anal. 7, No. 3, 405-416 (2003).

[14] Islam, M., Raffoul, Y., Stability in linear Volterra integrodifferential equations with
nonlinear perturbation, J. Integral Equations Appl. 17, No. 3, 259-276 (2005).

[15] Weng, P., Existence and global stability of positive periodic solution in a logistic
integrodifferential equation with feedback control. Ann. Differ. Equations 16, No.3,
281-290 (2000).

[16] Zhang, Bo, Necessary and sufficient conditions for stability in Volterra equations of
nonconvolution type. Dyn. Syst. Appl. 14, No. 3-4, 525-550 (2005).

(Received February 14, 2008)

EJQTDE, 2008 No. 17, p. 7


