Sturm comparison theorems via Picone-type inequalities for some nonlinear elliptic type equations with damped terms

Aydın Tiryaki ${ }^{\boxtimes}$ and Sinem Şahiner
Department of Mathematics and Computer Science, İzmir University, Üçkuyular, İzmir, 35350, Turkey

Received 6 March 2014, appeared 22 September 2014
Communicated by László Hatvani

Abstract

In this paper, we establish a Picone-type inequality for a class of some nonlinear elliptic type equations with damped terms, and obtain Sturmian comparison theorems using the Picone-type inequality. As an application by using comparison theorem oscillation result and Wirtinger-type inequality are given.

Keywords: Picone-type inequality, elliptic equations, Sobolev space, half-linear equations, oscillation criteria, Wirtinger-type inequality.

2010 Mathematics Subject Classification: 35B05.

1 Introduction

Since the pioneering work of Sturm [27] in 1836, Sturmian comparison theorems have been derived for differential equations of various types. In order to obtain Sturmian comparison theorems for ordinary differential equations of second order, Picone [25] established an identity, known as the Picone identity. In the latter years, Jaroš and Kusano [15] derived a Picone-type identity for half-linear differential equations of second order. They also developed Sturmian theory for both forced and unforced half-linear and quasilinear equations based on this identity. Since Picone identities play an important role in the study of qualitative theory of differential equations, establishing Picone identities has become a popular research topic. We refer the reader to Kreith [20, 21], Swanson [28, 29] for Picone identities and Sturmian comparison theorems for linear elliptic equations and to Allegretto [3], Allegretto and Huang [4, 5], Bognár and Došlý [9], Dunninger [12], Kusano, Jaroš and Yoshida [22], Yoshida [32, 31, 30] for Picone identities, Sturmian comparison and/or oscillation theorems for half-linear elliptic equations. In particular, we mention the paper [12] by Dunninger which seems to be the first paper dealing with Sturmian comparison theorems for half-linear elliptic equations.

[^0]Recently, Yoshida [35] established Sturmian comparison and oscillation theorems for quasilinear undamped elliptic operators with mixed nonlinearities in the following forms,

$$
\begin{aligned}
\ell(u) & :=\sum_{k=1}^{m} \nabla \cdot\left(a_{k}(x)\left|\sqrt{a_{k}(x)} \nabla u\right|^{\alpha-1} \nabla u\right)+c(x)|u|^{\alpha-1} u, \\
L(v) & :=\sum_{k=1}^{m} \nabla \cdot\left(A_{k}(x)\left|\sqrt{A_{k}(x)} \nabla v\right|^{\alpha-1} \nabla v\right)+g(x, v)
\end{aligned}
$$

where $a_{k}(x), A_{k}(x)$ are matrices and

$$
g(x, v)=C(x)|v|^{\alpha-1} v+\sum_{i=1}^{\ell} D_{i}(x)|v|^{\beta_{i}-1} v+\sum_{j=1}^{m} E_{j}(x)|v|^{\gamma_{j}-1} v .
$$

Most of the work in the literature deals with the Sturmian comparison results for elliptic equations that contain undamped terms. In this paper, we establish Sturmian comparison theorems for a pair of damped elliptic operators p and P defined by

$$
\begin{align*}
& p(u):=\nabla \cdot\left(a(x)|\nabla u|^{\alpha-1} \nabla u\right)+(\alpha+1)|\nabla u|^{\alpha-1} b(x) \cdot \nabla u+c(x)|u|^{\alpha-1} u, \tag{1.1}\\
& P(v):=\nabla \cdot\left(A(x)|\nabla v|^{\alpha-1} \nabla v\right)+(\alpha+1)|\nabla v|^{\alpha-1} B(x) \cdot \nabla v+g(x, v), \tag{1.2}
\end{align*}
$$

where $|\cdot|$ denotes the Euclidean length, $\alpha>0$ is a constant, $\nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)^{T}$, (the superscript T denotes the transpose). It is assumed that $\beta_{i}>\alpha>\gamma_{j}>0(i=1,2, \ldots, \ell$; $j=1,2, \ldots, m)$. To the best of our knowledge, damped elliptic operators such as $p(u)$ and $P(v)$ defined as above have not been studied.

Note that the principal part of (1.1) and (1.2) are reduced to the p-Laplacian $\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)$, $(p=\alpha+1)$. We know that a variety of physical phenomena are modeled by equations involving the p-Laplacian [2, 7, 8, 23, 24, 26]. We refer the reader to Diaz [11] for detailed references on physical background of the p-Laplacian.

We organize this paper as follows. In Section 2, we establish a Picone-type inequality. In Section 3, we present comparison results for the equations $p(u)=0$ and $P(v)=0$ and in Section 4, as an application we conclude some oscillation results and give a Wirtinger-type inequality.

2 Picone-type inequalities

In this section, we establish a Picone-type inequality for the coupled operators p and P defined by (1.1) and (1.2) respectively. Let G be a bounded domain in R^{n} with piecewise smooth boundary ∂G, and assume that $a(x) \in C\left(\bar{G}, R^{+}\right), A(x) \in C\left(\bar{G}, R^{+}\right), b(x) \in C\left(\bar{G}, R^{n}\right), B(x) \in$ $C\left(\bar{G}, R^{n}\right), \quad c(x) \in C(\bar{G}, R), \quad C(x) \in C(\bar{G}, R), \quad D_{i}(x) \in C(\bar{G},[0, \infty)), E_{j}(x) \in C(\bar{G},[0, \infty))$, $(i=1,2, \ldots, \ell ; j=1,2, \ldots, m)$.

The domain $\mathcal{D}_{p}(G)$ of p is defined to be the set of all functions u of class $C^{1}(\bar{G}, R)$ with the property that $a(x)|\nabla u|^{\alpha-1} \nabla u \in C^{1}\left(G, R^{n}\right) \cap C\left(\bar{G}, R^{n}\right)$. The domain $\mathcal{D}_{P}(G)$ of P is defined similarly.

Let $N=\min \{\ell, m\}$ and

$$
H(\beta, \alpha, \gamma ; D(x), E(x))=\frac{\beta-\gamma}{\alpha-\gamma}\left(\frac{\beta-\alpha}{\alpha-\gamma}\right)^{\frac{\alpha-\beta}{\beta-\gamma}}(D(x))^{\frac{\alpha-\gamma}{\beta-\gamma}}(E(x))^{\frac{\beta-\alpha}{\beta-\gamma}} .
$$

We will need the following lemmas, in order to prove our results.

Lemma 2.1 ([22, Lemma 2.1]). The inequality

$$
|X|^{\alpha+1}+\alpha|Y|^{\alpha+1}-(\alpha+1)|Y|^{\alpha-1} X \cdot Y \geq 0
$$

is valid for any $X \in R^{n}$ and $Y \in R^{n}$, where the equality holds if and only if $X=Y$.
Lemma 2.2 ([32, Lemma 8.3.2]). Let $F(x) \in C\left(G, R^{+}\right)$satisfy $F(x)>\alpha>0$. Then the inequality

$$
|\nabla u-u w(x)|^{\alpha+1} \leq \frac{F(x)}{F(x)-\alpha}|\nabla u|^{\alpha+1}+\frac{|F(x) w(x)|^{\alpha+1}}{F(x)-\alpha}|u|^{\alpha+1}
$$

holds for any function $u \in C^{1}(G, R)$ and any n-vector function $w(x) \in C\left(G, R^{n}\right)$.
Theorem 2.3 (Picone-type inequality). Let $F(x) \in C\left(G, R^{+}\right)$satisfying $F(x)>\alpha$. If $u \in \mathcal{D}_{p}(G)$, $v \in \mathcal{D}_{P}(G)$ and $v \neq 0$ in G (that is, v has no zero in G), then the following Picone-type inequality holds:

$$
\begin{align*}
& \nabla \cdot(\left.\frac{u}{\varphi(v)}\left[\varphi(v) a(x)|\nabla u|^{\alpha-1} \nabla u-\varphi(u) A(x)|\nabla v|^{\alpha-1} \nabla v\right]\right) \\
& \geqslant\left(a(x)-\alpha|b(x)|-A(x) \frac{F(x)}{F(x)-\alpha}\right)|\nabla u|^{\alpha+1} \\
& \quad+\left(C_{1}(x)-c(x)-|b(x)|-A(x) \frac{|F(x) B(x) / A(x)|^{\alpha+1}}{F(x)-\alpha}\right)|u|^{\alpha+1} \tag{2.1}\\
& \quad+A(x)\left[\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}-(\alpha+1)\left(\nabla u-\frac{u B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u}{v} \nabla v\right)\right] \\
& \quad+\frac{u}{\varphi(v)}(\varphi(v) p(u)-\varphi(u) P(v))
\end{align*}
$$

where $\varphi(s)=|s|^{\alpha-1} s, s \in R, \Phi(\xi)=|\xi|^{\alpha-1} \xi, \xi \in R^{n}$ and

$$
C_{1}(x)=C(x)+\sum_{i=1}^{N} H\left(\beta_{i}, \alpha_{i}, \gamma_{i} ; D_{i}(x), E_{i}(x)\right)
$$

Proof. We easily see that

$$
\begin{align*}
\nabla \cdot\left(u a(x)|\nabla u|^{\alpha-1} \nabla u\right)= & a(x)|\nabla u|^{\alpha+1}-c(x)|u|^{\alpha+1} \tag{2.2}\\
& +u p(u)-(\alpha+1) u b(x) \cdot \Phi(\nabla u)
\end{align*}
$$

We observe that the following identity holds:

$$
\begin{align*}
-\nabla \cdot & \left(u \varphi(u) \frac{A(x)|\nabla v|^{\alpha-1} \nabla v}{\varphi(v)}\right) \\
= & -A(x)\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1} \\
& +A(x)\left[\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}-(\alpha+1)\left(\nabla u-\frac{u B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u}{v} \nabla v\right)\right] \tag{2.3}\\
& +\frac{u \varphi(u)}{\varphi(v)} g(x, v)-\frac{u \varphi(u)}{\varphi(v)} P(v) .
\end{align*}
$$

We combine (2.2) with (2.3) to obtain the following:

$$
\begin{align*}
\nabla \cdot(& \left.\frac{u}{\varphi(v)}\left[\varphi(v) a(x)|\nabla u|^{\alpha-1} \nabla u-\varphi(u) A(x)|\nabla v|^{\alpha-1} \nabla v\right]\right) \\
= & a(x)|\nabla u|^{\alpha+1}-c(x)|u|^{\alpha+1}-(\alpha+1) u b(x) \cdot \Phi(\nabla u)-A(x)\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1} \\
& +A(x)\left[\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}-(\alpha+1)\left(\nabla u-\frac{u B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u}{v} \nabla v\right)\right] \tag{2.4}\\
& +\frac{u \varphi(u)}{\varphi(v)} g(x, v)+\frac{u}{\varphi(v)}[\varphi(v) p(u)-\varphi(u) P(v)] .
\end{align*}
$$

Using Young's inequality we have,

$$
\begin{align*}
\frac{u \varphi(u)}{\varphi(v)} g(x, v) & \geq C(x)|u|^{\alpha+1}+\left(\sum_{i=1}^{N} H\left(\beta_{i}, \alpha_{i}, \gamma_{i} ; D_{i}(x), E_{i}(x)\right)\right)|u|^{\alpha+1} \tag{2.5}\\
& =C_{1}(x)|u|^{\alpha+1}
\end{align*}
$$

and

$$
\begin{equation*}
(\alpha+1) u b(x) \cdot \Phi(\nabla u) \leq|b(x)|\left(|u|^{\alpha+1}+\alpha|\nabla u|^{\alpha+1}\right) . \tag{2.6}
\end{equation*}
$$

From Lemma 2.2, we can write

$$
\begin{equation*}
\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1} \leq \frac{F(x)}{F(x)-\alpha}|\nabla u|^{\alpha+1}+\frac{\left|F(x) \frac{B(x)}{A(x)}\right|^{\alpha+1}}{F(x)-\alpha}|u|^{\alpha+1} . \tag{2.7}
\end{equation*}
$$

We combine (2.5)-(2.7) with (2.4) to obtain the desired inequality (2.1).
Theorem 2.4. If $v \in \mathcal{D}_{P}(G)$, and $v \neq 0$ in G, then the following inequality holds for any $u \in C^{1}(G, R)$:

$$
\begin{align*}
-\nabla \cdot & \left(\frac{u \varphi(u)}{\varphi(v)} A(x)|\nabla v|^{\alpha-1} \nabla v\right) \\
\geq & -A(x)\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1} \\
& +A(x)\left[\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}-(\alpha+1)\left(\nabla u-\frac{u B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u}{v} \nabla v\right)\right] \tag{2.8}\\
& +C_{1}(x)|u|^{\alpha+1}-\frac{u \varphi(u)}{\varphi(v)} P(v),
\end{align*}
$$

where $\varphi(s), \Phi(\xi)$ and $C_{1}(x)$ are defined as in Theorem 2.3.
Proof. Combining (2.3) with (2.5) yields the desired inequality (2.8).

3 Sturmian comparison theorems

In this section we present some Sturmian comparison results on the basis of the Picone-type inequality obtained in Section 2.

Theorem 3.1 (Sturmian comparison theorem). Let $F(x) \in C\left(G, R^{+}\right)$satisfy $F(x)>\alpha$. If there exists a nontrivial solution $u \in \mathcal{D}_{p}(G)$ of $p(u)=0$ such that $u=0$ on ∂G and

$$
\begin{align*}
V(u):=\int_{G} & {\left[\left(a(x)-\alpha|b(x)|-A(x) \frac{F(x)}{F(x)-\alpha}\right)|\nabla u|^{\alpha+1}\right.} \tag{3.1}\\
& \left.+\left(C_{1}(x)-c(x)-|b(x)|-A(x) \frac{|F(x) B(x) / A(x)|^{\alpha+1}}{F(x)-\alpha}\right)|u|^{\alpha+1}\right] d x \geq 0
\end{align*}
$$

then every solution $v \in \mathcal{D}_{P}(G)$ of $P(v)=0$ must vanish at some point of \bar{G}.
Proof. Suppose that, contrary to our claim there exists a solution $v \in \mathcal{D}_{P}(G)$ of $P(v)=0$ satisfying $v \neq 0$ on \bar{G}. We integrate (2.1) over G and then apply the divergence theorem to obtain

$$
\begin{align*}
0 \geq V(u)+\int_{G} A(x)\left[\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}\right. & +\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1} \\
& \left.-(\alpha+1)\left(\nabla u-\frac{u B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u}{v} \nabla v\right)\right] d x \geq 0 \tag{3.2}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\int_{G} A(x)\left[\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}-(\alpha+1)\left(\nabla u-\frac{u B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u}{v} \nabla v\right)\right] d x=0 . \tag{3.3}
\end{equation*}
$$

From Lemma 2.1, we see that

$$
\begin{equation*}
\nabla u-\frac{u B(x)}{A(x)} \equiv \frac{u}{v} \nabla v \text { or } \nabla\left(\frac{u}{v}\right)-\frac{B(x)}{A(x)} \frac{u}{v} \equiv 0 \text { in } G, \tag{3.4}
\end{equation*}
$$

then it follows from a result of Jaroš, Kusano and Yoshida [17] that

$$
\begin{equation*}
\frac{u}{v}=C_{0} e^{\alpha(x)} \text { on } \bar{G} \tag{3.5}
\end{equation*}
$$

for some constant C_{0} and some continuous function $\alpha(x)$. Since $u=0$ on ∂G, we see that $C_{0}=0$, which contradicts the fact that u is nontrivial. The proof is complete.

Corollary 3.2. Let $F(x) \in C\left(G, R^{+}\right)$satisfy $F(x)>\alpha$. Assume that

$$
\begin{equation*}
a(x) \geq \alpha|b(x)|+A(x) \frac{F(x)}{F(x)-\alpha} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}(x) \geq c(x)+|b(x)|+A(x) \frac{\left|F(x) \frac{B(x)}{A(x)}\right|^{\alpha+1}}{F(x)-\alpha} \tag{3.7}
\end{equation*}
$$

in G. If there exists a nontrivial solution $u \in \mathcal{D}_{p}(G)$ of $p(u)=0$ such that $u=0$ on ∂G, then every solution $v \in \mathcal{D}_{P}(G)$ of $P(v)=0$ must vanish at some point of \bar{G}.

Theorem 3.3. If there exists a nontrivial function $u \in C^{1}(\bar{G}, R)$ such that $u=0$ on ∂G and

$$
\begin{equation*}
M(u):=\int_{G}\left\{A(x)\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}-C_{1}(x)|u|^{\alpha+1}\right\} d x \leq 0 \tag{3.8}
\end{equation*}
$$

then every solution $v \in \mathcal{D}_{P}(G)$ of $P(v)=0$ must vanish at some point of G unless $u=C_{0} e^{\alpha(x)} v$, where $C_{0} \neq 0$ is a constant and $\nabla \alpha(x)=\frac{B(x)}{A(x)}$ in G.
Proof. Suppose that there exists a solution $v \in \mathcal{D}_{P}(G)$ of $P(v)=0$ satisfying $v \neq 0$ in G. Since $\partial G \in C^{1}, u \in C^{1}(\bar{G}, R)$ and $u=0$ on ∂G, we find that u belongs to the Sobolev space $W_{0}^{1, \alpha+1}(G)$ which is the closure in the norm

$$
\begin{equation*}
\|w\|:=\left(\int_{G}\left[|w|^{\alpha+1}+|\nabla w|^{\alpha+1}\right] d x\right)^{\frac{1}{\alpha+1}} \tag{3.9}
\end{equation*}
$$

of the class $C_{0}^{\infty}(G)$ of infinitely differentiable functions with compact supports in $G[1,13]$. Then there is a sequence u_{k} of functions in $C_{0}^{\infty}(G)$ converging to u in the norm (3.9). Integrating (2.8) with $u=u_{k}$ over G, then applying the divergence theorem, we have

$$
\begin{align*}
M\left(u_{k}\right) \geq \int_{G} A(x)\left[\left|\nabla u_{k}-\frac{u_{k} B(x)}{A(x)}\right|^{\alpha+1}\right. & +\alpha\left|\frac{u_{k}}{v} \nabla v\right|^{\alpha+1} \\
& \left.-(\alpha+1)\left(\nabla u_{k}-\frac{u_{k} B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u_{k}}{v} \nabla v\right)\right] d x \geq 0 . \tag{3.10}
\end{align*}
$$

We first claim that $\lim _{k \rightarrow+\infty} M\left(u_{k}\right)=M(u)=0$. Since $A(x), C(x), D(x)$ and $E(x)$ are bounded on \bar{G}, there exists a constant $K_{1}>0$ such that

$$
\begin{equation*}
A(x) \leq K_{1} \quad \text { and } \quad\left|C_{1}(x)\right| \leq K_{1} . \tag{3.11}
\end{equation*}
$$

It is easy to check that

$$
\begin{align*}
\left|M\left(u_{k}\right)-M(u)\right| \leq & \left.K_{1} \int_{G}| | \nabla u_{k}-\left.\frac{u_{k} B(x)}{A(x)}\right|^{\alpha+1}-\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1} \right\rvert\, d x \tag{3.12}\\
& +\left.K_{1} \int_{G}| | u_{k}\right|^{\alpha+1}-|u|^{\alpha+1} \mid d x .
\end{align*}
$$

From the mean value theorem we see that

$$
\begin{aligned}
& \left|\left|\nabla u_{k}-\frac{u_{k} B(x)}{A(x)}\right|^{\alpha+1}-\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}\right| \\
& \quad \leq(\alpha+1)\left(\left|\nabla u_{k}-\frac{u_{k} B(x)}{A(x)}\right|+\left|\nabla u-\frac{u B(x)}{A(x)}\right|\right)^{\alpha}\left|\nabla\left(u_{k}-u\right)+\frac{B(x)}{A(x)}\left(u_{k}-u\right)\right| \\
& \quad \leq(\alpha+1)\left(\left|\nabla u_{k}\right|+|\nabla u|+\frac{|B(x)|}{A(x)}\left|u_{k}\right|+\frac{|B(x)|}{A(x)}|u|\right)^{\alpha}\left(\left|\nabla\left(u_{k}-u\right)\right|+\frac{|B(x)|}{A(x)}\left|u_{k}-u\right|\right) .
\end{aligned}
$$

Since also $B(x)$ is bounded on \bar{G}, then there is a constant K_{2} such that $\frac{|B(x)|}{A(x)} \leq K_{2}$ on \bar{G}. Let us take $K_{3}=\max \left\{1, K_{2}\right\}$. From the above inequality we have

$$
\begin{align*}
& \left|\left|\nabla u_{k}-\frac{u_{k} B(x)}{A(x)}\right|^{\alpha+1}-\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}\right| \tag{3.13}\\
& \quad \leq(\alpha+1) K_{3}^{\alpha+1}\left(\left|\nabla u_{k}\right|+|\nabla u|+\left|u_{k}\right|+|u|\right)^{\alpha}\left(\left|\nabla\left(u_{k}-u\right)\right|+\left|u_{k}-u\right|\right) .
\end{align*}
$$

Using (3.13) and applying Hölder's inequality, we get

$$
\begin{align*}
\int_{G}| | & \left.\nabla u_{k}-\left.\frac{u_{k} B(x)}{A(x)}\right|^{\alpha+1}-\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1} \right\rvert\, d x \\
\leq & (\alpha+1) K_{3}^{\alpha+1}\left(\int_{G}\left(\left|\nabla u_{k}\right|+|\nabla u|+\left|u_{k}\right|+|u|\right)^{\alpha+1} d x\right)^{\frac{\alpha}{\alpha+1}} \tag{3.14}\\
& \times\left(\int_{G}\left(\left|\nabla\left(u_{k}-u\right)\right|+\left|u_{k}-u\right|\right)^{\alpha+1} d x\right)^{\frac{1}{\alpha+1}} \\
& \leq(\alpha+1) K_{3}^{\alpha+1}\left\|u_{k}-u\right\|\left(\left\|u_{k}\right\|+\|u\|\right)^{\alpha}
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\left.\int_{G}| | u_{k}\right|^{\alpha+1}-|u|^{\alpha+1} \mid d x \leq(\alpha+1)\left(\left\|u_{k}\right\|+\|u\|\right)^{\alpha}\left\|u_{k}-u\right\| \tag{3.15}
\end{equation*}
$$

Combining (3.12), (3.14) and (3.15), we have

$$
\begin{equation*}
\left|M\left(u_{k}\right)-M(u)\right| \leq K_{4}\left(\left\|u_{k}\right\|+\|u\|\right)^{\alpha}\left\|u_{k}-u\right\| \tag{3.16}
\end{equation*}
$$

for some positive constant $K_{4}=K_{4}\left(K_{1}, K_{2}, K_{3}\right)$ and so that $\lim _{k \rightarrow+\infty} M\left(u_{k}\right)=M(u)$. We get from (3.10) that $M(u) \geq 0$ which together with (3.8) implies $M(u)=0$.

Let \mathcal{B} be an arbitrary ball with $\overline{\mathcal{B}} \subset G$ and define

$$
\begin{align*}
Q_{\mathcal{B}}(w):=\int_{\mathcal{B}} A(x)\left[\left|\nabla w-\frac{w B(x)}{A(x)}\right|^{\alpha+1}+\right. & \alpha\left|\frac{w}{v} \nabla v\right|^{\alpha+1} \\
& \left.-(\alpha+1)\left(\nabla w-\frac{w B(x)}{A(x)}\right) \cdot \Phi\left(\frac{w}{v} \nabla v\right)\right] d x \tag{3.17}
\end{align*}
$$

for $w \in C^{1}(G, R)$.
It is easy to check that

$$
\begin{equation*}
0 \leq Q_{\mathcal{B}}\left(u_{k}\right) \leq Q_{G}\left(u_{k}\right) \leq M\left(u_{k}\right) \tag{3.18}
\end{equation*}
$$

where $Q_{G}\left(u_{k}\right)$ denotes the right-hand side of (3.17) with $w=u_{k}$ and with \mathcal{B} replaced by G.
A simple calculation yields

$$
\begin{align*}
\left|Q_{\mathcal{B}}\left(u_{k}\right)-Q_{\mathcal{B}}(u)\right| \leq & K_{5}\left(\left\|u_{k}\right\|_{\mathcal{B}}+\|u\|_{\mathcal{B}}\right)^{\alpha}\left\|u_{k}-u\right\|_{\mathcal{B}}+K_{6}\left(\left\|u_{k}\right\|_{\mathcal{B}}\right)^{\alpha}\left\|u_{k}-u\right\|_{\mathcal{B}} \\
& +K_{7}\left\|\varphi\left(u_{k}\right)-\varphi(u)\right\|_{L_{(\mathcal{B})}^{q}}\|u\|_{\mathcal{B}}, \tag{3.19}
\end{align*}
$$

where $q=\frac{\alpha+1}{\alpha}$, the constants K_{5}, K_{6} and K_{7} are independent of k and the subscript \mathcal{B} indicates the integrals involved in the norm (3.9) are to be taken over \mathcal{B} instead of G. It is known that the Nemitski operator $\varphi: L^{\alpha+1}(G) \rightarrow L^{q}(G)$ is continuous [6] and it is clear that $\left\|u_{k}-u\right\|_{\mathcal{B}} \rightarrow 0$ as $\left\|u_{k}-u\right\|_{G} \rightarrow 0$.

Therefore, letting $k \rightarrow \infty$ in (3.18), we find that $Q_{\mathcal{B}}(u)=0$. Since $A(x)>0$ in \mathcal{B}, it follows that

$$
\begin{equation*}
\left[\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}-(\alpha+1)\left(\nabla u-\frac{u B(x)}{A(x)}\right) \cdot \Phi\left(\frac{u}{v} \nabla v\right)\right] \equiv 0 \text { in } B, \tag{3.20}
\end{equation*}
$$

from which Lemma 2.1 implies that

$$
\nabla u-\frac{u B(x)}{A(x)} \equiv \frac{u}{v} \nabla v \text { or } \nabla\left(\frac{u}{v}\right)-\frac{B(x)}{A(x)} \frac{u}{v} \equiv 0 \text { in } \mathcal{B} .
$$

Hence we observe that $\frac{u}{v}=C_{0} e^{\alpha(x)}$ in \mathcal{B} for some constant C_{0} and some continuous function $\alpha(x)$ as in the proof of Theorem 3.1. Since \mathcal{B} is an arbitrary ball with $\overline{\mathcal{B}} \subset G$, we conclude that $\frac{u}{v}=C_{0} e^{\alpha(x)}$ in G where $C_{0} \neq 0$.

Corollary 3.4 (Sturmian comparison theorem). Let $F(x) \in C\left(G, R^{+}\right)$satisfy $F(x)>\alpha$. If there exists a nontrivial solution $u \in \mathcal{D}_{p}(G)$ of $p(u)=0$ for which $u=0$ on ∂G and (3.1) hold, then every solution $v \in D_{P}(G)$ of $P(v)=0$ must vanish at some point of G unless $u=C_{0} e^{\alpha(x)} v$, where $C_{0} \neq 0$ is a constant and $\nabla \alpha(x)=\frac{B(x)}{A(x)}$ in G.

Proof. By using (2.2), (2.6), (2.7), (3.8) and Corollary 3.2 we obtain

$$
\left.M(u) \leq \int_{G}\left[\nabla \cdot\left(u a(x)|\nabla u|^{\alpha-1} \nabla u\right]\right)-u p(u)\right] d x=0 .
$$

Hence the result follows from Theorem 3.3.
Remark 3.5. When we take $\alpha=1, b(x) \equiv B(x) \equiv 0$ and $D_{i}(x) \equiv E_{i}(x) \equiv 0,(i=1,2, \ldots, \ell$, $j=1,2, \ldots, m)$ that is, in the linear elliptic equation case, and $b(x) \equiv B(x) \equiv 0$ and $D_{i}(x) \equiv$ $E_{i}(x) \equiv 0,(i=1,2, \ldots, \ell, j=1,2, \ldots, m)$ that is, in the half-linear elliptic equation case, our results cannot be reduced to the well-known results. Hence our results are indeed a partial extension of the results that are given in the literature. Improvement of our results is left as an open problem to the researchers.

4 Applications

Let Ω be an exterior domain in R^{n}, that is, $\Omega \supset\left\{x \in R^{n}:|x| \geq r_{0}\right\}$ for some $r_{0}>0$. We consider the following equations:

$$
\begin{equation*}
p(u)=0 \text { in } \Omega \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P(v)=0 \text { in } \Omega \tag{4.2}
\end{equation*}
$$

where the operators p and P are defined in Section 1 and $a, A \in C\left(\Omega, R^{+}\right), b, B \in C\left(\Omega, R^{n}\right)$, $c, C \in C(\Omega, R), D_{i}, E_{j} \in C(\Omega,[0, \infty)),(i=1,2, \ldots, \ell ; j=1,2, \ldots, m)$.

The domain $\mathcal{D}_{p}(\Omega)$ of p is defined to be the set of all functions u of class $C^{1}(\Omega, R)$ with the property that $a(x)|\nabla u|^{\alpha-1} \nabla u \in C^{1}\left(\Omega, R^{n}\right)$. The domain $\mathcal{D}_{P}(\Omega)$ of P is defined similarly.

A solution $u \in D_{p}(\Omega)$ of (4.1) (or $v \in \mathcal{D}_{P}(\Omega)$ of (4.2)) is said to be oscillatory in Ω if it has a zero in Ω_{r} for any $r>0$, where

$$
\Omega_{r}=\Omega \cap\left\{x \in R^{n}:|x|>r\right\} .
$$

A bounded domain G with $\bar{G} \subset \Omega$ is said to be a nodal domain for the equation (4.1), if there exists a nontrivial function $u \in \mathcal{D}_{p}(G)$ such that $p(u)=0$ in G and $u=0$ on ∂G. The equation (4.1) is called nodally oscillatory in Ω, if (4.1) has a nodal domain contained in Ω_{r} for any $r>0$.

Theorem 4.1. Let $F(x) \in C\left(G, R^{+}\right)$satisfy $F(x)>\alpha$. Assume that

$$
\begin{equation*}
a(x) \geq \alpha|b(x)|+A(x) \frac{F(x)}{F(x)-\alpha} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}(x) \geq c(x)+|b(x)|+A(x) \frac{\left|F(x) \frac{B(x)}{A(x)}\right|^{\alpha+1}}{F(x)-\alpha} \tag{4.4}
\end{equation*}
$$

in Ω. If (4.1) is nodally oscillatory in Ω, then every solution $v \in \mathcal{D}_{P}(G)$ of (4.2) is oscillatory in Ω.
Proof. Since (4.1) in nodally oscillatory in Ω, there exist a nodal domain $G \subset \Omega_{r}$ for any $r>0$, and hence there exists a nontrivial function $u \in D_{p}(G)$ such that $p(u)=0$ in G and $u=0$ on ∂G. The conditions (4.3) and (4.4) ensures that $V(u) \geq 0$ is satisfied. From Corollary 3.2 it follows that every solution $v \in \mathcal{D}_{P}(\Omega)$ of (4.2) vanishes at some point of \bar{G}, that is, v must have a zero in Ω_{r} for any $r>0$. This implies that v is oscillatory in Ω.

The following is an immediate consequence of Theorem 4.1 by choosing $F(x)=\alpha+1$, $b(x) \equiv B(x) \equiv 0$ and $m=1$.

Corollary 4.2. If the equation

$$
\begin{equation*}
\nabla \cdot\left(a(x)|\nabla u|^{\alpha-1} \nabla u\right)+\left\{C(x)+\frac{\beta-\gamma}{\alpha-\gamma}\left(\frac{\beta-\alpha}{\alpha-\gamma}\right)^{\frac{\alpha-\beta}{\beta-\gamma}}(D(x))^{\frac{\alpha-\gamma}{\beta-\gamma}}(E(x))^{\frac{\beta-\alpha}{\beta-\gamma}}\right\}|u|^{\alpha-1} u=0 \tag{4.5}
\end{equation*}
$$

is nodally oscillatory in Ω, then every solution $v \in \mathcal{D}_{P}(\Omega)$ of the equation

$$
\nabla \cdot\left(a(x)|\nabla v|^{\alpha-1} \nabla v\right)+\frac{1}{\alpha+1} g(x, v)=0
$$

is oscillatory in Ω, where $D_{1}(x) \equiv D(x), E_{1}(x) \equiv E(x), \alpha_{1} \equiv \alpha, \gamma_{1} \equiv \gamma$.
Various criteria for nodal oscillation can be found in [32]. For example for linear elliptic equations of the form

$$
\begin{equation*}
\triangle u+c(x) u=0, \quad x \in R^{2}, \tag{4.6}
\end{equation*}
$$

$c(x)$ being a continuous function in R^{2}, have been given by Kreith and Travis [19]. They showed that (4.6) is nodally oscillatory if

$$
\int_{R^{2}} c(x) d x=\infty .
$$

Applying this result to the equation (4.5) with $\alpha=1, a(x) \equiv 1$ we have the following result.
Corollary 4.3. If one of the following holds; either

$$
\int_{R^{2}} C(x) d x=\infty
$$

or

$$
\int_{R^{2}} C(x) d x \text { exists, and } \int_{R^{2}}(D(x))^{\frac{1-\gamma}{\beta-\gamma}}(E(x))^{\frac{\beta-1}{\beta-\gamma}} d x=\infty,
$$

then the equation (4.5) with $\alpha=1, a(x) \equiv 1$ is nodally oscillatory in Ω.
When we take $\alpha=1, m=1, a(x) \equiv 1, C(x) \equiv 0$, Corollaries 4.2-4.3 reduce to Corollaries 3-4 given in [16], respectively.

Inequality (2.8) is utilized to establish Wirtinger-type inequality concerning the elliptic type nonlinear equation $P(v)=0$. We know that a typical Wirtinger inequality is the following.

Theorem 4.4 ([14]). If $u(t) \in C^{1}([a, b])$ and $u(a)=u(b)=0$ then

$$
\int_{a}^{b} u^{\prime 2}(t) d t \geq\left(\frac{\pi}{b-a}\right)^{2} \int_{a}^{b} u^{2}(t) d t
$$

where equality holds if and only if

$$
u(t)=k_{0} \sin \frac{\pi(t-a)}{b-a}
$$

for some constant k_{0}.
Using Theorem 3.3, the following Wirtinger-type inequality can be easily obtained.
Theorem 4.5. Let $\partial G \in C^{1}$. Assume that there exists a solution v of $\mathcal{D}_{P}(G)$ of $P(v)=0$ such that $v \neq 0$ in \bar{G}. If $u \in C^{1}(\bar{G}, R)$ and $u=0$ on ∂G, then

$$
\begin{equation*}
\int_{G} A(x)\left|\nabla u-\frac{u B(x)}{A(x)}\right|^{\alpha+1} d x \geq \int_{G} C_{1}(x)|u|^{\alpha+1} d x . \tag{4.7}
\end{equation*}
$$

Remark 4.6. Note that when we take $B(x) \equiv 0$, we have $0 \leq M(u)=M\left(c_{0} v\right)=0$, we observe that $M(u)=0$. When $B(x) \equiv 0, D_{i}(x) \equiv E_{j}(x) \equiv 0,(i=1,2, \ldots, \ell ; j=1,2, \ldots, m)$, Theorem 4.5 gives Corollary 4.2 in [34].

References

[1] R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2nd edition, Pure and Applied Mathematics (Amsterdam), Vol. 140, Academic Press, 2003. MR2424078
[2] N. Ahmed, D. K. Sunada, Nonlinear flow in porous media, J. Hydraulics Division Proc. Amer. Soc. Civil Eng. 95(1969), 1847-1857.
[3] W. Allegretto, Sturm theorems for degenerate elliptic equations, Proc. Amer. Math. Soc. 129(2001), 3031-3035. MR1840109
[4] W. Allegretto, Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., 32(1998), 819-830. MR1618334
[5] W. Allegretto, Y. X. Huang, Principal eigenvalues and Sturm comparison via Picone's identity, J. Differential Equations 156(1999), 427-438. MR1705379
[6] A. Ambrosetti, A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge University Press, Cambridge, 2007. MR2292344
[7] R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts. Vols. I and II, Clarendon Press, Oxford, 1975.
[8] G. Astarita, G. Marruci, Principles of non-Newtonian fluid mechanics, McGraw-Hill, New York, 1974.
[9] G. Bognár, O. Došlý, The application of Picone-type identity for some nonlinear elliptic differential equations, Acta Math. Univ. Comenian. 72(2003), 45-57. MR2020577
[10] C. Clark, C. A. Swanson Comparison theorems for elliptic differential equations, Proc. Amer. Math. Soc. 16(1965), 886-890. MR0180753
[11] J. I. Diaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, Vol. 106, Pitman, London, 1985. MR0853732
[12] D. R. Dunninger, A Sturm comparison theorem for some degenerate quasilinear elliptic operators, Boll. Un. Mat. Ital. A (7) 9(1995), 117-121. MR1324611
[13] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. MR1625845
[14] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, 1988.
[15] J. Jaroš and T. Kusano, A Picone type identity for second order half-linear differential equations, Acta Marth. Univ. Comenian. 68(1999), 137-151. MR1711081
[16] J. Jaroš, T. Kusano, N. Yoshida, Picone-type inequalities for nonlinear elliptic equations and their applications, J. Inequal. Appl. 6(2001), 387-404. MR1888432
[17] J. Jaroš, T. Kusano, N. Yoshida, Picone-type inequalities for elliptic equations with first order terms and their applications, J. Inequal. Appl. 2006, Art. ID 52378, 1-17. MR2215467
[18] K. Kreith, A strong comparison theorem for self adjoint elliptic equations, Proc. Amer. Math. Soc. 19(1968) 989-990.
[19] K. Kreith, C. C. Travis, Oscillation criteria for selfadjoint elliptic equations, Pacific J. Math., 41(1972) 743-753. MR0318642
[20] K. Kreith, Oscillation Theory, Lecture Notes in Mathematics, Vol. 324, Springer-Verlag, Berlin, 1973.
[21] K. Kreith, Picone's identity and generalizations, Rend. Mat. (6) 8(1975), 251-261. MR0374561
[22] T. Kusano, J. Jaroš, N. Yoshida, A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order, Nonlinear Anal., Ser A: Theory Methods 40(2000), 381-395. MR1768900
[23] J. T. Oden, Existence theorems and approximations in nonlinear elasticity, in: E. Lakshmikantham (Ed.), Nonlinear Equations in Abstract Space, North-Holland, 1978.
[24] M.-C. Pélissier, Sur quelques problèmes non linéaries en glaciologie (in French) [On some nonlinear problems of glaciology], U. E. R. Mathématique, Université Paris XI, Orsay, 1975. MR0439015
[25] M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine (in Italian) [On exceptional values of a parameter which depends on the linear ordinary differential equation of second order], Ann. Scuola Norm. Sup. Pisa 11(1910), 144 pp. MR1556637
[26] M. Schoenauer, A monodimensional model for fracturing, in: A. Fasano, M. Primicerio (editors), Free Boundary Problems: Theory, Applications, Res. Notes Math., Vol. 79, Pitman, London, 1983, 701-711. MR714899
[27] C. Sturm, Sur les équations différentielles linéaires du second ordre (in French) [On second order linear differential equations], J. Math. Pures. Appl. 1(1836), 106-186.
[28] C. A. Swanson, A comparison theorem for elliptic differential equations, Proc. Amer. Math. Soc. 17(1966), 611-616. MR0201781
[29] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968. MR0463570
[30] N. Yoshida, Oscillation of half-linear partial differential equations with first order terms, Stud. Univ. Žilina Math. Ser. 17(2003), 177-184. MR2064993
[31] N. Yoshida, Oscillation criteria for half-linear partial differential equations via Picone's identity, in: Proceedings of Equadiff-11, 2005, 589-598.
[32] N. Yoshida, Oscillation theory of partial differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR2485076
[33] N. Yoshida, Sturmian comparison and oscillation theorems for a class of half-linear elliptic equations, Nonlinear Anal. 71(2009), e1354-e1359. MR2671922
[34] N. Yoshida, A Picone identity for half-linear elliptic equations and its applications to oscillatory theory, Nonlinear Anal. 71(2009), 4935-4951.
[35] N. Yoshida, Sturmian comparsion and oscillation theorems for quasilinear elliptic equations with mixed nonlinearites via Picone-type inequality, Toyama Math. J. 33(2010), 21-41. MR2893644

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: aydin.tiryaki@izmir.edu.tr

