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Abstract. In this paper, we establish a Picone-type inequality for a class of some nonlin-
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1 Introduction

Since the pioneering work of Sturm [27] in 1836, Sturmian comparison theorems have been
derived for differential equations of various types. In order to obtain Sturmian compari-
son theorems for ordinary differential equations of second order, Picone [25] established an
identity, known as the Picone identity. In the latter years, Jaroš and Kusano [15] derived
a Picone-type identity for half-linear differential equations of second order. They also de-
veloped Sturmian theory for both forced and unforced half-linear and quasilinear equations
based on this identity. Since Picone identities play an important role in the study of qual-
itative theory of differential equations, establishing Picone identities has become a popular
research topic. We refer the reader to Kreith [20, 21], Swanson [28, 29] for Picone identities
and Sturmian comparison theorems for linear elliptic equations and to Allegretto [3], Alle-
gretto and Huang [4, 5], Bognár and Došlý [9], Dunninger [12], Kusano, Jaroš and Yoshida
[22], Yoshida [32, 31, 30] for Picone identities, Sturmian comparison and/or oscillation theo-
rems for half-linear elliptic equations. In particular, we mention the paper [12] by Dunninger
which seems to be the first paper dealing with Sturmian comparison theorems for half-linear
elliptic equations.
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Recently, Yoshida [35] established Sturmian comparison and oscillation theorems for quasi-
linear undamped elliptic operators with mixed nonlinearities in the following forms,

`(u) :=
m

∑
k=1
∇ ·

(
ak(x)|

√
ak(x)∇u|α−1∇u

)
+ c(x)|u|α−1u,

L(v) :=
m

∑
k=1
∇ ·

(
Ak(x)|

√
Ak(x)∇v|α−1∇v

)
+ g(x, v)

where ak(x), Ak(x) are matrices and

g(x, v) = C(x)|v|α−1v +
`

∑
i=1

Di(x)|v|βi−1v +
m

∑
j=1

Ej(x)|v|γj−1v.

Most of the work in the literature deals with the Sturmian comparison results for elliptic
equations that contain undamped terms. In this paper, we establish Sturmian comparison
theorems for a pair of damped elliptic operators p and P defined by

p(u) := ∇ ·
(
a(x)|∇u|α−1∇u

)
+ (α + 1)|∇u|α−1b(x) · ∇u + c(x)|u|α−1u, (1.1)

P(v) := ∇ ·
(

A(x)|∇v|α−1∇v
)
+ (α + 1)|∇v|α−1B(x) · ∇v + g(x, v), (1.2)

where | · | denotes the Euclidean length, α > 0 is a constant, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)T, (the su-
perscript T denotes the transpose). It is assumed that βi > α > γj > 0 (i = 1, 2, . . . , `;
j = 1, 2, . . . , m). To the best of our knowledge, damped elliptic operators such as p(u) and
P(v) defined as above have not been studied.

Note that the principal part of (1.1) and (1.2) are reduced to the p-Laplacian∇·
(
|∇u|p−2∇u

)
,

(p = α + 1). We know that a variety of physical phenomena are modeled by equations involv-
ing the p-Laplacian [2, 7, 8, 23, 24, 26]. We refer the reader to Diaz [11] for detailed references
on physical background of the p-Laplacian.

We organize this paper as follows. In Section 2, we establish a Picone-type inequality. In
Section 3, we present comparison results for the equations p(u) = 0 and P(v) = 0 and in
Section 4, as an application we conclude some oscillation results and give a Wirtinger-type
inequality.

2 Picone-type inequalities

In this section, we establish a Picone-type inequality for the coupled operators p and P defined
by (1.1) and (1.2) respectively. Let G be a bounded domain in Rn with piecewise smooth
boundary ∂G, and assume that a(x) ∈ C(Ḡ, R+), A(x) ∈ C(Ḡ, R+), b(x) ∈ C(Ḡ, Rn), B(x) ∈
C(Ḡ, Rn), c(x) ∈ C(Ḡ, R), C(x) ∈ C(Ḡ, R), Di(x) ∈ C(Ḡ, [0, ∞)), Ej(x) ∈ C(Ḡ, [0, ∞)),
(i = 1, 2, . . . , `; j = 1, 2, . . . , m).

The domain Dp(G) of p is defined to be the set of all functions u of class C1(Ḡ, R) with
the property that a(x)|∇u|α−1∇u ∈ C1(G, Rn) ∩ C(Ḡ, Rn). The domain DP(G) of P is defined
similarly.

Let N = min{`, m} and

H(β, α, γ; D(x), E(x)) =
β− γ

α− γ

(
β− α

α− γ

) α−β
β−γ

(D(x))
α−γ
β−γ (E(x))

β−α
β−γ .

We will need the following lemmas, in order to prove our results.
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Lemma 2.1 ([22, Lemma 2.1]). The inequality

|X|α+1 + α|Y|α+1 − (α + 1)|Y|α−1X ·Y ≥ 0.

is valid for any X ∈ Rn and Y ∈ Rn, where the equality holds if and only if X = Y.

Lemma 2.2 ([32, Lemma 8.3.2]). Let F(x) ∈ C(G, R+) satisfy F(x) > α > 0. Then the inequality

|∇u− uw(x)|α+1 ≤ F(x)
F(x)− α

|∇u|α+1 +
|F(x)w(x)|α+1

F(x)− α
|u|α+1

holds for any function u ∈ C1(G, R) and any n-vector function w(x) ∈ C(G, Rn).

Theorem 2.3 (Picone-type inequality). Let F(x) ∈ C(G, R+) satisfying F(x) > α. If u ∈ Dp(G),
v ∈ DP(G) and v 6= 0 in G (that is, v has no zero in G), then the following Picone-type inequality
holds:

∇ ·
(

u
ϕ(v)

[
ϕ(v)a(x)|∇u|α−1∇u− ϕ(u)A(x)|∇v|α−1∇v

])
>
(

a(x)− α|b(x)| − A(x)
F(x)

F(x)− α

)
|∇u|α+1

+

(
C1(x)− c(x)− |b(x)| − A(x)

|F(x)B(x)/A(x)|α+1

F(x)− α

)
|u|α+1

+A(x)

[∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣u
v
∇v
∣∣∣α+1
− (α + 1)

(
∇u− uB(x)

A(x)

)
·Φ
(u

v
∇v
)]

+
u

ϕ(v)
(ϕ(v)p(u)− ϕ(u)P(v)) ,

(2.1)

where ϕ(s) = |s|α−1s, s ∈ R, Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn and

C1(x) = C(x) +
N

∑
i=1

H(βi, αi, γi; Di(x), Ei(x)).

Proof. We easily see that

∇ ·
(

ua(x)|∇u|α−1∇u
)
= a(x)|∇u|α+1 − c(x)|u|α+1

+ up(u)− (α + 1)ub(x) ·Φ(∇u).
(2.2)

We observe that the following identity holds:

−∇ ·
(

uϕ(u)
A(x)|∇v|α−1∇v

ϕ(v)

)
= −A(x)

∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+A(x)

[∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣u
v
∇v
∣∣∣α+1
− (α + 1)

(
∇u− uB(x)

A(x)

)
·Φ
(u

v
∇v
)]

+
uϕ(u)
ϕ(v)

g(x, v)− uϕ(u)
ϕ(v)

P(v).

(2.3)
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We combine (2.2) with (2.3) to obtain the following:

∇ ·
(

u
ϕ(v)

[
ϕ(v)a(x)|∇u|α−1∇u− ϕ(u)A(x)|∇v|α−1∇v

])
= a(x)|∇u|α+1 − c(x)|u|α+1 − (α + 1)ub(x) ·Φ(∇u)− A(x)

∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+A(x)

[∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣u
v
∇v
∣∣∣α+1
− (α + 1)

(
∇u− uB(x)

A(x)

)
·Φ
(u

v
∇v
)]

+
uϕ(u)
ϕ(v)

g(x, v) +
u

ϕ(v)
[ϕ(v)p(u)− ϕ(u)P(v)].

(2.4)

Using Young’s inequality we have,

uϕ(u)
ϕ(v)

g(x, v) ≥ C(x)|u|α+1 +

( N

∑
i=1

H(βi, αi, γi; Di(x), Ei(x))
)
|u|α+1

= C1(x)|u|α+1

(2.5)

and
(α + 1)ub(x) ·Φ(∇u) ≤ |b(x)|

(
|u|α+1 + α|∇u|α+1

)
. (2.6)

From Lemma 2.2, we can write

∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

≤ F(x)
F(x)− α

|∇u|α+1 +

∣∣∣F(x) B(x)
A(x)

∣∣∣α+1

F(x)− α
|u|α+1. (2.7)

We combine (2.5)–(2.7) with (2.4) to obtain the desired inequality (2.1).

Theorem 2.4. If v ∈ DP(G), and v 6= 0 in G, then the following inequality holds for any
u ∈ C1(G, R):

−∇ ·
(

uϕ(u)
ϕ(v)

A(x)|∇v|α−1∇v
)

≥ −A(x)
∣∣∣∣∇u− uB(x)

A(x)

∣∣∣∣α+1

+A(x)

[∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣u
v
∇v
∣∣∣α+1
− (α + 1)

(
∇u− uB(x)

A(x)

)
·Φ
(u

v
∇v
)]

+C1(x)|u|α+1 − uϕ(u)
ϕ(v)

P(v),

(2.8)

where ϕ(s), Φ(ξ) and C1(x) are defined as in Theorem 2.3.

Proof. Combining (2.3) with (2.5) yields the desired inequality (2.8).

3 Sturmian comparison theorems

In this section we present some Sturmian comparison results on the basis of the Picone-type
inequality obtained in Section 2.



Sturm–Picone theorems for elliptic damped equations 5

Theorem 3.1 (Sturmian comparison theorem). Let F(x) ∈ C(G, R+) satisfy F(x) > α. If there
exists a nontrivial solution u ∈ Dp(G) of p(u) = 0 such that u = 0 on ∂G and

V(u) :=
∫

G

[(
a(x)− α|b(x)| − A(x)

F(x)
F(x)− α

)
|∇u|α+1

+

(
C1(x)− c(x)− |b(x)| − A(x)

|F(x)B(x)/A(x)|α+1

F(x)− α

)
|u|α+1

]
dx ≥ 0

(3.1)

then every solution v ∈ DP(G) of P(v) = 0 must vanish at some point of Ḡ.

Proof. Suppose that, contrary to our claim there exists a solution v ∈ DP(G) of P(v) = 0
satisfying v 6= 0 on Ḡ. We integrate (2.1) over G and then apply the divergence theorem to
obtain

0 ≥ V(u) +
∫

G
A(x)

[ ∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣u
v
∇v
∣∣∣α+1

− (α + 1)
(
∇u− uB(x)

A(x)

)
·Φ
(u

v
∇v
)]

dx ≥ 0 (3.2)

and therefore

∫
G

A(x)

[ ∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣u
v
∇v
∣∣∣α+1
− (α + 1)

(
∇u− uB(x)

A(x)

)
·Φ
(u

v
∇v
)]

dx = 0. (3.3)

From Lemma 2.1, we see that

∇u− uB(x)
A(x)

≡ u
v
∇v or ∇

(u
v

)
− B(x)

A(x)
u
v
≡ 0 in G, (3.4)

then it follows from a result of Jaroš, Kusano and Yoshida [17] that

u
v
= C0eα(x) on Ḡ (3.5)

for some constant C0 and some continuous function α(x). Since u = 0 on ∂G, we see that
C0 = 0, which contradicts the fact that u is nontrivial. The proof is complete.

Corollary 3.2. Let F(x) ∈ C(G, R+) satisfy F(x) > α. Assume that

a(x) ≥ α|b(x)|+ A(x)
F(x)

F(x)− α
(3.6)

and

C1(x) ≥ c(x) + |b(x)|+ A(x)

∣∣∣F(x) B(x)
A(x)

∣∣∣α+1

F(x)− α
(3.7)

in G. If there exists a nontrivial solution u ∈ Dp(G) of p(u) = 0 such that u = 0 on ∂G, then every
solution v ∈ DP(G) of P(v) = 0 must vanish at some point of Ḡ.
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Theorem 3.3. If there exists a nontrivial function u ∈ C1(Ḡ, R) such that u = 0 on ∂G and

M(u) :=
∫

G

{
A(x)

∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣α+1

− C1(x)|u|α+1
}

dx ≤ 0 (3.8)

then every solution v ∈ DP(G) of P(v) = 0 must vanish at some point of G unless u = C0eα(x)v,
where C0 6= 0 is a constant and ∇α(x) = B(x)

A(x) in G.

Proof. Suppose that there exists a solution v ∈ DP(G) of P(v) = 0 satisfying v 6= 0 in G.
Since ∂G ∈ C1, u ∈ C1(Ḡ, R) and u = 0 on ∂G, we find that u belongs to the Sobolev space
W1,α+1

0 (G) which is the closure in the norm

‖w‖ :=
(∫

G

[
|w|α+1 + |∇w|α+1

]
dx
) 1

α+1

(3.9)

of the class C∞
0 (G) of infinitely differentiable functions with compact supports in G [1, 13].

Then there is a sequence uk of functions in C∞
0 (G) converging to u in the norm (3.9). Integrat-

ing (2.8) with u = uk over G, then applying the divergence theorem, we have

M(uk) ≥
∫

G
A(x)

[ ∣∣∣∣∇uk −
ukB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣uk

v
∇v
∣∣∣α+1

− (α + 1)
(
∇uk −

ukB(x)
A(x)

)
·Φ
(uk

v
∇v
)]

dx ≥ 0. (3.10)

We first claim that limk→+∞ M(uk) = M(u) = 0. Since A(x), C(x), D(x) and E(x) are
bounded on Ḡ, there exists a constant K1 > 0 such that

A(x) ≤ K1 and |C1(x)| ≤ K1. (3.11)

It is easy to check that

|M(uk)−M(u)| ≤ K1

∫
G

∣∣∣∣∣
∣∣∣∣∇uk −

ukB(x)
A(x)

∣∣∣∣α+1

−
∣∣∣∣∇u− uB(x)

A(x)

∣∣∣∣α+1
∣∣∣∣∣ dx

+ K1

∫
G

∣∣∣|uk|α+1 − |u|α+1
∣∣∣ dx.

(3.12)

From the mean value theorem we see that∣∣∣∣∣
∣∣∣∣∇uk −

ukB(x)
A(x)

∣∣∣∣α+1

−
∣∣∣∣∇u− uB(x)

A(x)

∣∣∣∣α+1
∣∣∣∣∣

≤ (α + 1)
(∣∣∣∣∇uk −

ukB(x)
A(x)

∣∣∣∣+ ∣∣∣∣∇u− uB(x)
A(x)

∣∣∣∣)α ∣∣∣∣∇(uk − u) +
B(x)
A(x)

(uk − u)
∣∣∣∣

≤ (α + 1)
(
|∇uk|+ |∇u|+ |B(x)|

A(x)
|uk|+

|B(x)|
A(x)

|u|
)α (

|∇(uk − u)|+ |B(x)|
A(x)

|uk − u|
)

.

Since also B(x) is bounded on Ḡ, then there is a constant K2 such that |B(x)|
A(x) ≤ K2 on Ḡ. Let

us take K3 = max{1, K2}. From the above inequality we have∣∣∣∣∣
∣∣∣∣∇uk −

ukB(x)
A(x)

∣∣∣∣α+1

−
∣∣∣∣∇u− uB(x)

A(x)

∣∣∣∣α+1
∣∣∣∣∣

≤ (α + 1)Kα+1
3 (|∇uk|+ |∇u|+ |uk|+ |u|)α (|∇(uk − u)|+ |uk − u|) .

(3.13)
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Using (3.13) and applying Hölder’s inequality, we get

∫
G

∣∣∣∣∣
∣∣∣∣∇uk −

ukB(x)
A(x)

∣∣∣∣α+1

−
∣∣∣∣∇u− uB(x)

A(x)

∣∣∣∣α+1
∣∣∣∣∣ dx

≤ (α + 1)Kα+1
3

(∫
G
(|∇uk|+ |∇u|+ |uk|+ |u|)α+1 dx

) α
α+1

×
(∫

G
(|∇(uk − u)|+ |uk − u|)α+1 dx

) 1
α+1

≤ (α + 1)Kα+1
3 ‖uk − u‖ (‖uk‖+ ‖u‖)α .

(3.14)

Similarly, we obtain∫
G

∣∣∣|uk|α+1 − |u|α+1
∣∣∣ dx ≤ (α + 1) (‖uk‖+ ‖u‖)α ‖uk − u‖. (3.15)

Combining (3.12), (3.14) and (3.15), we have

|M(uk)−M(u)| ≤ K4 (‖uk‖+ ‖u‖)α ‖uk − u‖ (3.16)

for some positive constant K4 = K4(K1, K2, K3) and so that limk→+∞ M(uk) = M(u). We get
from (3.10) that M(u) ≥ 0 which together with (3.8) implies M(u) = 0.

Let B be an arbitrary ball with B̄ ⊂ G and define

QB(w) :=
∫
B

A(x)

[ ∣∣∣∣∇w− wB(x)
A(x)

∣∣∣∣α+1

+ α
∣∣∣w

v
∇v
∣∣∣α+1

− (α + 1)
(
∇w− wB(x)

A(x)

)
·Φ
(w

v
∇v
)]

dx (3.17)

for w ∈ C1(G, R).
It is easy to check that

0 ≤ QB(uk) ≤ QG(uk) ≤ M(uk), (3.18)

where QG(uk) denotes the right-hand side of (3.17) with w = uk and with B replaced by G.
A simple calculation yields

|QB(uk)−QB(u)| ≤ K5 (‖uk‖B + ‖u‖B)α ‖uk − u‖B + K6 (‖uk‖B)α ‖uk − u‖B
+ K7‖ϕ(uk)− ϕ(u)‖Lq

(B)
‖u‖B ,

(3.19)

where q = α+1
α , the constants K5, K6 and K7 are independent of k and the subscript B indicates

the integrals involved in the norm (3.9) are to be taken over B instead of G. It is known that the
Nemitski operator ϕ : Lα+1(G) → Lq(G) is continuous [6] and it is clear that ‖uk − u‖B → 0
as ‖uk − u‖G → 0.

Therefore, letting k→ ∞ in (3.18), we find that QB(u) = 0. Since A(x) > 0 in B, it follows
that[∣∣∣∣∇u− uB(x)

A(x)

∣∣∣∣α+1

+ α
∣∣∣u
v
∇v
∣∣∣α+1
− (α + 1)

(
∇u− uB(x)

A(x)

)
·Φ
(u

v
∇v
)]
≡ 0 in B, (3.20)
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from which Lemma 2.1 implies that

∇u− uB(x)
A(x)

≡ u
v
∇v or ∇

(u
v

)
− B(x)

A(x)
u
v
≡ 0 in B.

Hence we observe that u
v = C0eα(x) in B for some constant C0 and some continuous func-

tion α(x) as in the proof of Theorem 3.1. Since B is an arbitrary ball with B̄ ⊂ G, we conclude
that u

v = C0eα(x) in G where C0 6= 0.

Corollary 3.4 (Sturmian comparison theorem). Let F(x) ∈ C(G, R+) satisfy F(x) > α. If there
exists a nontrivial solution u ∈ Dp(G) of p(u) = 0 for which u = 0 on ∂G and (3.1) hold, then every
solution v ∈ DP(G) of P(v) = 0 must vanish at some point of G unless u = C0eα(x)v, where C0 6= 0
is a constant and ∇α(x) = B(x)

A(x) in G.

Proof. By using (2.2), (2.6), (2.7), (3.8) and Corollary 3.2 we obtain

M(u) ≤
∫

G

[
∇ ·

(
ua(x)|∇u|α−1∇u]

)
− up(u)

]
dx = 0.

Hence the result follows from Theorem 3.3.

Remark 3.5. When we take α = 1, b(x) ≡ B(x) ≡ 0 and Di(x) ≡ Ei(x) ≡ 0, (i = 1, 2, . . . , `,
j = 1, 2, . . . , m) that is, in the linear elliptic equation case, and b(x) ≡ B(x) ≡ 0 and Di(x) ≡
Ei(x) ≡ 0, (i = 1, 2, . . . , `, j = 1, 2, . . . , m) that is, in the half-linear elliptic equation case, our
results cannot be reduced to the well-known results. Hence our results are indeed a partial
extension of the results that are given in the literature. Improvement of our results is left as
an open problem to the researchers.

4 Applications

Let Ω be an exterior domain in Rn, that is, Ω ⊃ {x ∈ Rn : |x| ≥ r0} for some r0 > 0. We
consider the following equations:

p(u) = 0 in Ω (4.1)

and

P(v) = 0 in Ω (4.2)

where the operators p and P are defined in Section 1 and a, A ∈ C(Ω, R+), b, B ∈ C(Ω, Rn),
c, C ∈ C(Ω, R), Di, Ej ∈ C(Ω, [0, ∞)), (i = 1, 2, . . . , `; j = 1, 2, . . . , m).

The domain Dp(Ω) of p is defined to be the set of all functions u of class C1(Ω, R) with
the property that a(x)|∇u|α−1∇u ∈ C1(Ω, Rn). The domain DP(Ω) of P is defined similarly.

A solution u ∈ Dp(Ω) of (4.1) (or v ∈ DP(Ω) of (4.2)) is said to be oscillatory in Ω if it has
a zero in Ωr for any r > 0, where

Ωr = Ω ∩ {x ∈ Rn : |x| > r}.

A bounded domain G with Ḡ ⊂ Ω is said to be a nodal domain for the equation (4.1), if
there exists a nontrivial function u ∈ Dp(G) such that p(u) = 0 in G and u = 0 on ∂G. The
equation (4.1) is called nodally oscillatory in Ω, if (4.1) has a nodal domain contained in Ωr

for any r > 0.
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Theorem 4.1. Let F(x) ∈ C(G, R+) satisfy F(x) > α. Assume that

a(x) ≥ α|b(x)|+ A(x)
F(x)

F(x)− α
(4.3)

and

C1(x) ≥ c(x) + |b(x)|+ A(x)

∣∣∣F(x) B(x)
A(x)

∣∣∣α+1

F(x)− α
(4.4)

in Ω. If (4.1) is nodally oscillatory in Ω, then every solution v ∈ DP(G) of (4.2) is oscillatory in Ω.

Proof. Since (4.1) in nodally oscillatory in Ω, there exist a nodal domain G ⊂ Ωr for any r > 0,
and hence there exists a nontrivial function u ∈ Dp(G) such that p(u) = 0 in G and u = 0
on ∂G. The conditions (4.3) and (4.4) ensures that V(u) ≥ 0 is satisfied. From Corollary 3.2
it follows that every solution v ∈ DP(Ω) of (4.2) vanishes at some point of Ḡ, that is, v must
have a zero in Ωr for any r > 0. This implies that v is oscillatory in Ω.

The following is an immediate consequence of Theorem 4.1 by choosing F(x) = α + 1,
b(x) ≡ B(x) ≡ 0 and m = 1.

Corollary 4.2. If the equation

∇ ·
(

a(x)|∇u|α−1∇u
)
+

{
C(x) +

β− γ

α− γ

( β− α

α− γ

) α−β
β−γ (

D(x)
) α−γ

β−γ
(
E(x)

) β−α
β−γ

}
|u|α−1u = 0 (4.5)

is nodally oscillatory in Ω, then every solution v ∈ DP(Ω) of the equation

∇ ·
(

a(x)|∇v|α−1∇v
)
+

1
α + 1

g(x, v) = 0

is oscillatory in Ω, where D1(x) ≡ D(x), E1(x) ≡ E(x), α1 ≡ α, γ1 ≡ γ.
Various criteria for nodal oscillation can be found in [32]. For example for linear elliptic

equations of the form
4u + c(x)u = 0, x ∈ R2, (4.6)

c(x) being a continuous function in R2, have been given by Kreith and Travis [19]. They
showed that (4.6) is nodally oscillatory if∫

R2
c(x) dx = ∞.

Applying this result to the equation (4.5) with α = 1, a(x) ≡ 1 we have the following result.

Corollary 4.3. If one of the following holds; either∫
R2

C(x) dx = ∞

or ∫
R2

C(x) dx exists, and
∫

R2

(
D(x)

) 1−γ
β−γ
(
E(x)

) β−1
β−γ dx = ∞,

then the equation (4.5) with α = 1, a(x) ≡ 1 is nodally oscillatory in Ω.

When we take α = 1, m = 1, a(x) ≡ 1, C(x) ≡ 0, Corollaries 4.2–4.3 reduce to Corollaries
3–4 given in [16], respectively.

Inequality (2.8) is utilized to establish Wirtinger-type inequality concerning the elliptic type
nonlinear equation P(v) = 0. We know that a typical Wirtinger inequality is the following.
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Theorem 4.4 ([14]). If u(t) ∈ C1([a, b]) and u(a) = u(b) = 0 then∫ b

a
u′2(t) dt ≥

(
π

b− a

)2 ∫ b

a
u2(t) dt

where equality holds if and only if

u(t) = k0 sin
π(t− a)

b− a
for some constant k0.

Using Theorem 3.3 , the following Wirtinger-type inequality can be easily obtained.

Theorem 4.5. Let ∂G ∈ C1. Assume that there exists a solution v of DP(G) of P(v) = 0 such that
v 6= 0 in Ḡ. If u ∈ C1(Ḡ, R) and u = 0 on ∂G, then

∫
G

A(x)
∣∣∣∣∇u− uB(x)

A(x)

∣∣∣∣α+1

dx ≥
∫

G
C1(x)|u|α+1 dx. (4.7)

Remark 4.6. Note that when we take B(x) ≡ 0, we have 0 ≤ M(u) = M(c0v) = 0, we observe
that M(u) = 0. When B(x) ≡ 0, Di(x) ≡ Ej(x) ≡ 0, (i = 1, 2, . . . , `; j = 1, 2, . . . , m), Theorem
4.5 gives Corollary 4.2 in [34].
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