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Abstract

In this article, the contraction mapping principle and Liapunov’s method
are used to study qualitative properties of nonlinear Volterra equations of
the form

x(t) = a(t) −

∫ t

0
C(t, s)g(s, x(s)) ds, t ≥ 0.

In particular, the existence of bounded solutions and solutions with various
Lp properties are studied under suitable conditions on the functions involved
with this equation.

1 Introduction.

Two interesting papers that motivated us to write this article are [5, 6] of Burton.
In these two papers the author considered the scalar linear integral equation

x(t) = a(t) −

∫ t

0

C(t, s)x(s) ds, t ≥ 0, (1.1)

and studied the boundedness and various Lp properties of its solutions.
To study qualitative behavior of solutions of equation (1.1), researchers gener-

ally assume the forcing function a(t) to be bounded. The most remarkable aspect
of Burton’s work in these papers is that the function a(t) can be unbounded.

In the present article, we study boundedness and Lp properties of the scalar
nonlinear integral equation

x(t) = a(t) −

∫ t

0

C(t, s)g(s, x(s)) ds, t ≥ 0, (1.2)

under suitable conditions on the functions a, c, and g. We show the existence
of bounded solutions of (1.2) in Section 2 employing the contraction mapping
principle and the resolvent function. In our work, we assume that the resolvent
function is integrable, which is an important property by itself. The literature
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on the resolvent and the contraction mapping principle is massive. Becker [1],
Burton [2, 3], Corduneanu [7, 8], Eloe and Islam [9], Eloe et al [10], Gripenberg
[11], Gripenberg et al [12], Hino and Murakami [14], Miller [17], and Zhang [20]
contain many interesting studies on resolvents including the integrability property.
Burton [2, 3, 4], Grossman and Miller [13], Islam and Raffoul [15], and Raffoul
[18] contain various studies involving the application of the contraction mapping
principle on integral and integrodifferential equations.

In Section 3, we study Lp properties of solutions of (1.2) using a technique we
call ‘Liapunov’s method for integral equation,’ which is outlined in [6]. The liter-
ature on the Liapunov method is also huge. Classical theory and many examples
of Liapunov’s method are found, for example, in Burton [2, 3].

2 Bounded Solutions, Contraction Principle.

In this section, we show the existence of bounded solutions of (1.2) using the con-
traction mapping principle. In Theorems 2.1 and 2.2, we assume a(t) is bounded.
Then in Theorems 2.3 and 2.4, we assume a′(t) is bounded where a(t) can be un-
bounded. In Theorems 2.2 and 2.4, we use the resolvent function in the analysis,
and in all theorems in this section except Theorem 2.1, we assume there exists a
function h such that g(t, x) = x+ h(t, x) where h satisfies the following property.

(H1) h(t, 0) = 0, and there is a k > 0 such that for each (t, x, y) ∈ R+ ×R×R,
we have

|h(t, x) − h(t, y)| ≤ k|x− y|.

Throughout this section, we assume the functions a, g, and C are continuous
with respect to their arguments.

The result of our first theorem, Theorem 2.1., exists in the literature in various
forms. We start with this theorem because the basic method involving the con-
traction mapping that is used in this theorem is carried out in all other theorems
throughout this section.

Theorem 2.1. Suppose g satisfies the following properties. g(t, 0) = 0, and there
is a k > 0 such that for each (t, x, y) ∈ R+ × R × R, |g(t, x) − g(t, y)| ≤ k|x− y|.
Assume a(t) is bounded and

sup
t≥0

k

∫ t

0

|C(t, s)| ds ≤ α < 1.

Then there exists a unique bounded continuous solution of (1.2).
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Proof. Let M be the Banach space of bounded continuous functions on [0,∞)
with the supremum norm, ||.||, where ||x|| = supt≥0 |x(t)|. For each φ ∈M , define

(Tφ)(t) = a(t) −

∫ t

0

C(t, s)g(s, φ(s)) ds, t ≥ 0.

We shall show that T : M → M is a contraction map. Therefore a fixed point
of T is a solution of (1.2). It follows from the continuity assumptions on a, g, and
C that (Tφ)(t) is continuous in t.

Now

|(Tφ)(t)| ≤ |a(t)| +

∫ t

0

|C(t, s)||g(s, φ(s))| ds

≤ |a(t)| + kα||φ||

< ∞.

Therefore, (Tφ) is bounded and T : M → M .
For φ, ψ ∈M ,

|(Tφ)(t) − (Tψ)(t)| ≤

∫ t

0

|C(t, s)||g(s, φ(s))− g(s, ψ(s))| ds

≤ k

∫ t

0

|C(t, s)| ds||φ− ψ||

≤ α||φ− ψ||.

Since α < 1, T is a contraction mapping, which proves (1.2) has a unique bounded
continuous solution.

Now we consider a special case, where g(t, x) = x+ h(t, x). So (1.2) becomes

x(t) = a(t) −

∫ t

0

C(t, s)[x(s) + h(s, x(s))] ds, t ≥ 0. (2.1)

Suppose R(t, s) satisfies the resolvent equation

R(t, s) = C(t, s) −

∫ t

s

R(t, u)C(u, s) du. (2.2)

Then by the variation of parameters formula, which can be found in [17, p. 191-
192], solution x(t) of equation (2.1) is given by

x(t) = a(t) −

∫ t

0

R(t, s)[a(s) + h(s, x(s))] ds, t ≥ 0,
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where a, R, and h are all continuous functions.

Theorem 2.2. Suppose h satisfies (H1). Assume a(t) is bounded and

sup
t≥0

k

∫ t

0

|R(t, s)| ds ≤ α < 1.

Then there exists a unique bounded continuous solution of (2.1).

Proof. Let M be the Banach space of bounded continuous functions on [0,∞)
with the supremum norm. For each φ ∈M , define

(Tφ)(t) = a(t) −

∫ t

0

R(t, s)[a(s) + h(s, φ(s))] ds, t ≥ 0.

It follows from the continuity assumptions on a, h, and R that (Tφ)(t) is continu-
ous in t. Also, one can easily verify from the given assumptions that |(Tφ)(t)| <∞,
and |(Tφ)(t) − (Tψ)(t)| ≤ α||φ − ψ|| for all φ, ψ ∈ M . This shows T : M → M

and T is a contraction. Therefore (2.1) has a unique bounded continuous solution.

We now consider an example showing the integrability of the resolvent R(t, s)
of (2.2). The method of proof in this example is similar to the proof of Proposition
4 of [19]. We remark that the integrability of R(t, s) is itself an important property
which is often assumed in the study of qualitative behaviors of integral equations.

Example. Suppose

sup
t≥0

∫ t

0

|C(t, s)| ds ≤ L < 1.

Then

sup
t≥0

∫ t

0

|R(t, s)| ds ≤ l <∞.

Proof. From the resolvent equation (2.2), we get

∫ t

0

|R(t, s)| ds ≤

∫ t

0

|C(t, s)| ds+

∫ t

0

∫ t

s

|R(t, u)||C(u, s)| du ds

=

∫ t

0

|C(t, s)| ds+

∫ t

0

|R(t, u)|

∫ u

0

|C(u, s)| ds du

≤ L+

∫ t

0

|R(t, u)|L du.
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Therefore

(1 − L)

∫ t

0

|R(t, s)| ds ≤ L.

So

sup
t≥0

∫ t

0

|R(t, s)| ds ≤
L

1 − L
:= l.

A number of researchers have studied the integrability of R(t, s) for various
special cases of the kernel C(t, s). For example, in [16, Theorem 6], the authors
considered the case where C(t, s) = A(t− s)B(s). They proved that

sup
t≥0

∫ t

0

|R(t, s)| ds ≤ J <∞,

provided A and B satisfy certain conditions.
For more on the integrability of R(t, s), we refer to [11] and the references

therein.

Now we assume a′(t) and Ct exist and are continuous functions. Differentiating
(2.1), we get

x′(t) = −C(t, t)x(t)−

∫ t

0

Ct(t, s)x(s) ds+[a′(t)−C(t, t)h(t, x(t))−

∫ t

0

Ct(t, s)h(s, x(s)) ds].

(2.3)
So

x(t) = x(0)e−
∫

t

0
C(s,s) ds +

∫ t

0

e−
∫

t

u
C(s,s) dsa′(u) du (2.4)

−

∫ t

0

e−
∫

t

u
C(s,s) ds

∫ u

0

Cu(u, s)x(s) ds du

−

∫ t

0

e−
∫

t

u
C(s,s) dsC(u, u)h(u, x(u)) du

−

∫ t

0

e−
∫

t

u
C(s,s) ds

∫ u

0

Cu(u, s)h(s, x(s)) ds du

= a(0)e−
∫

t

0
C(s,s) ds +

∫ t

0

e−
∫

t

u
C(s,s) dsa′(u) du

−

∫ t

0

e−
∫

t

u
C(s,s) ds

∫ u

0

Cu(u, s)[x(s) + h(s, x(s))] ds du

−

∫ t

0

e−
∫

t

u
C(s,s) dsC(u, u)h(u, x(u)) du

EJQTDE, 2008 No. 12, p. 5



where a, C, Ct, and h are continuous functions. In subsequent results, we shall
write a(0) = a0.

Theorem 2.3. Suppose h satisfies (H1). Assume a′(t) is bounded and continuous,
∫ t

0
C(s, s) ds→ ∞ as t→ ∞,

∫ t

0
e−

∫

t

u
C(s,s) ds du is bounded, and

sup
t≥0

(k+1)

∫ t

0

e−
∫

t

u
C(s,s) ds

∫ u

0

|Cu(u, s)| ds du+k

∫ t

0

e−
∫

t

u
C(s,s) ds|C(u, u)|du ≤ α < 1.

Then there exists a unique bounded, continuous solution of (2.1).

Proof. Let M be the Banach space of bounded continuous functions on [0,∞).
For each φ ∈M , define

(Tφ)(t) = a0e
−

∫

t

0
C(s,s) ds +

∫ t

0

e−
∫

t

u
C(s,s) dsa′(u) du

−

∫ t

0

e−
∫

t

u
C(s,s) ds

∫ u

0

Cu(u, s)[φ(s) + h(s, φ(s))] ds du

−

∫ t

0

e−
∫

t

u
C(s,s) dsC(u, u)h(u, φ(u)) du, t ≥ 0.

It follows from the continuity assumptions on a, h, C and Ct that (Tφ)(t) is
continuous in t.

Now

|(Tφ)(t)| ≤ |a0|e
−

∫

t

0
C(s,s) ds +

∫ t

0

e−
∫

t

u
C(s,s) ds|a′(u)| du+ α||φ||

< ∞

So (Tφ) is bounded and T : M →M .
For φ, ψ ∈M ,

|(Tφ)(t) − (Tψ)(t)| ≤ |

∫ t

0

e−
∫

t

u
C(s,s) ds

∫ u

0

Cu(u, s)[φ(s)− ψ(s) + h(s, φ(s) − h(s, ψ(s))] ds|

+|

∫ t

0

e−
∫

t

u
C(s,s) dsC(u, u)[h(u, φ(u))− h(u, ψ(u))] du|

≤
[

(k + 1)

∫ t

0

e−
∫

t

u
C(s,s) ds

∫ u

0

|Cu(u, s)| ds du

+k

∫ t

0

e−
∫

t

u
C(s,s) ds|C(u, u)|du

]

||φ− ψ||

≤ α||φ− ψ||.
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Therefore T is a contraction map. So (2.4) has a unique bounded solution. Since
(2.4) is equivalent to (2.1), where x(0) = a(0), (2.1) has a unique bounded contin-
uous solution.

One resolvent equation for

x′(t) = −C(t, t)x(t) −

∫ t

0

Ct(t, s)x(s) ds

is

Zs(t, s) = Z(t, s)C(s, s) +

∫ t

s

Z(t, u)Ct(u, s)du , Z(t, t) = 1

with resolvent Z(t, s). Then from (2.3), we obtain by the variation of parameters
formula

x(t) = Z(t, 0)a0+

∫ t

0

Z(t, s)[a′(s)−C(s, s)h(s, x(s))−

∫ s

0

Cs(s, u)h(u, x(u)) du] ds.

(2.5)

Theorem 2.4. Suppose h satisfies (H1). Assume a′(t) is a bounded, continuous
function, Z(t, 0) is bounded,

sup
t≥0

∫ t

0

|Z(t, s)| ds <∞, (2.6)

and

sup
t≥0

k

∫ t

0

|Z(t, s)|
[

|C(s, s)| +

∫ s

0

|Cs(s, u)| du
]

ds ≤ α < 1.

Then there exists a unique bounded, continuous solution of (2.1).

Proof. Let M be the Banach space of bounded continuous functions on [0,∞).
For each φ ∈M , define

(Tφ)(t) = Z(t, 0)a0 +

∫ t

0

Z(t, s)[a′(s) − C(s, s)h(s, φ(s))

−

∫ s

0

Cs(s, u)h(u, φ(u)) du] ds, t ≥ 0.

It follows from the continuity assumptions on a, h, R, C and Ct that (Tφ)(t) is
continuous in t.
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Now

|(Tφ)(t)| = |Z(t, 0)a0 +

∫ t

0

Z(t, s)[a′(s) − [C(s, s)h(s, φ(s))

+

∫ s

0

Cs(s, u)h(u, φ(u)) du]] ds|

≤ |Z(t, 0)||a0| +

∫ t

0

|Z(t, s)||a′(s)| ds

+k

∫ t

0

|Z(t, s)||C(s, s)| ds||φ||

+k

∫ t

0

|Z(t, s)|

∫ s

0

|Cs(s, u)| du ds||φ||

≤ |Z(t, 0)||a0| +

∫ t

0

|Z(t, s)||a′(s)| ds+ α||φ||

< ∞.

So (Tφ) is bounded and T : M →M .
For φ, ψ ∈M ,

|(Tφ)(t) − (Tψ)(t)| ≤ |

∫ t

0

|Z(t, s)||C(s, s)||h(s, φ(s))− h(s, ψ(s))| ds

+

∫ t

0

|Z(t, s)|

∫ s

0

|Cs(s, u)||h(u, φ(u))− h(u, ψ(u))| duds

≤ k

∫ t

0

|Z(t, s)|
[

|C(s, s)| +

∫ s

0

|Cs(s, u)| du
]

ds||φ− ψ||

≤ α||φ− ψ||.

Therefore T is a contraction map, showing (2.5) has a unique bounded continuous
solution. Since (2.5) is equivalent to (2.3), which is equivalent to (2.1), (2.1) has a
unique bounded continuous solution.

We conclude this section by referring to a couple of known results relating to
the integrability condition (2.6). Let A(t) = −C(t, t) and B(t, s) = −Ct(t, s). In
[20, Example 2.1], it is shown that if there exists positive constants α and K > 1
such that

A(t) +K

∫ t

0

|B(t, s)| ds ≤ −α, t ≥ 0, (2.7)

then

sup
t≥0

∫ t

0

|Z(t, s)|(1 + |A(s)|) ds ≤
1

k
,
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where k = min{(1 − 1
K

), α
K
}. This shows the integrability condition (2.6) holds if

A(s) is bounded, which is equivalent to

sup
t≥0

∫ t

0

|B(t, s)| ds <∞. (2.8)

We remark that if (2.8) holds, then (2.7) is equivalent to

A(t) +

∫ t

0

|B(t, s)| ds ≤ −α, t ≥ 0. (2.9)

In [9, Theorem 2], it is shown that the integrability condition (2.6) holds if (2.9)
holds.

3 Lp Solutions, Liapunov’s Method.

In this section, we employ a technique outlined in [6]. Particularly, we construct
Liapunov type functions that are suitable for integral equations. Various Lp prop-
erties of solutions are then obtained under appropriate assumptions on a, C, and
g.

Theorem 3.1. Assume that equation (1.2) has a solution x(t), t ≥ 0. Suppose
there exists a constant k ≥ 0 such that

|g(t, x)| ≤ k|x|,

and

k

∫ ∞

0

|C(u+ t, t)| du ≤ α < 1.

Then the solution x ∈ L1[0,∞) if a ∈ L1[0,∞).

Proof. From (1.2) it follows that

|x(t)| ≤ |a(t)| +

∫ t

0

|C(t, s)||g(s, x(s))| ds

≤ |a(t)| + k

∫ t

0

|C(t, s)||x(s)| ds.

Therefore

−k

∫ t

0

|C(t, s)||x(s)| ds ≤ |a(t)| − |x(t)|.
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Let

V (t) = k

∫ t

0

∫ ∞

t−s

|C(u+ s, s)| du|x(s)| ds.

Then

V ′(t) = k

∫ ∞

0

|C(u+ t, t)| du|x(t)| −

∫ t

0

k|C(t, s)||x(s)| ds

≤ α|x(t)| − (|x(t)| − |a(t)|)

= (α− 1)|x(t)| + |a(t)|.

Integrating from 0 to t,

V (t) − V (0) ≤ (α− 1)

∫ t

0

|x(s)| ds+

∫ t

0

|a(s)| ds.

Since V (t) ≥ 0, V (0) = 0 and (α− 1) < 0,

(1 − α)

∫ t

0

|x(s)| ds ≤

∫ t

0

|a(s)| ds.

This shows that x ∈ L1 if a ∈ L1.

Theorem 3.2 Assume that (1.2) has a nonnegative solution x(t), t ≥ 0. Also,
assume there exists a constant k > 0 such that 0 ≤ g(t, x) ≤ kx, for x ≥ 0, t ≥ 0.
Let C(t, s) ≥ 0, Cs(t, s) ≥ 0, Cst(t, s) ≤ 0, and Ct(t, 0) ≤ 0. Then x ∈ L2[0,∞) if
a ∈ L2[0,∞).

Proof. For x(t), a nonnegative solution of (1.2), let

V (t) =

∫ t

0

Cs(t, s)
(

∫ t

s

g(u, x(u)) du
)2

ds+ C(t, 0)
(

∫ t

0

g(s, x(s)) ds
)2

.

Then

V ′(t) =

∫ t

0

Cst(t, s)
(

∫ t

s

g(u, x(u)) du
)2

ds

+

∫ t

0

Cs(t, s)2
(

∫ t

s

g(u, x(u)
)

dug(t, x(t)) ds

+Ct(t, 0)
(

∫ t

0

g(s, x(s)) ds
)2

+ 2C(t, 0)

∫ t

0

g(s, x(s)) dsg(t, x(t)).
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Integrating the second term of V ′(t) by parts, we get

2g(t, x)
[

C(t, s)

∫ t

s

g(u, x(u)) du
∣

∣

∣

s=t

s=0
+

∫ t

0

C(t, s)g(s, x(s)) ds
]

= 2g(t, x)
[

0 − C(t, 0)

∫ t

0

g(u, x(u)) du+

∫ t

0

C(t, s)g(s, x(s)) ds
]

.

Therefore we get

V ′(t) =

∫ t

0

Cst(t, s)
(

∫ t

s

g(u, x(u))du
)2

ds

+2g(t, x)

∫ t

0

C(t, s)g(s, x(s)) ds

+Ct(t, 0)
(

∫ t

0

g(s, x(s)) ds
)2

.

Now from (1.2), a(t) − x(t) =
∫ t

0
C(t, s)g(s, x(s)) ds. Notice that a(t) − x(t) ≥ 0

by our positivity assumptions on C and g.
So

V ′(t) =

∫ t

0

Cst(t, s)
(

∫ t

s

g(u, x(u)) du
)2

ds

+Ct(t, 0)
(

∫ t

0

g(s, x(s)) ds
)2

+2g(t, x)[a(t) − x(t)]

≤ 2g(t, x)[a(t) − x(t)]

≤ 2kx(t)[a(t) − x(t)]

≤ k[a2(t) + x2(t) − 2x2(t)]

= ka2(t) − kx2(t).

Integrating from 0 to t, we obtain

V (t) ≤ V (0) + k

∫ t

0

a2(s) ds− k

∫ t

0

x2(s) ds.

This implies x ∈ L2[0,∞) if a ∈ L2[0,∞).

Now suppose both Ct and a′(t) are continuous. We can then write (1.2) as

x′(t) = a′(t) − C(t, t)g(t, x) −

∫ t

0

Ct(t, s)g(s, x(s)) ds. (3.1)
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Theorem 3.3 Assume (3.1) has a nonnegative solution x(t), t ≥ 0. Suppose there
exists a constant m > 0 such that g(t, x) ≥ mxp, for x ≥ 0, t ≥ 0, where p is a
positive integer. Let Ct(t, s) < 0, and

−C(t, t) +

∫ ∞

0

|C1(u+ t, t)| du ≤ −α

for some α > 0. Then x ∈ Lp[0,∞) if a′ ∈ L1[0,∞). Moreover, the solution x(t)
is bounded.

Proof. For x(t), a nonnegative solution of (3.1), let

V (t) = x(t) +

∫ t

0

∫ ∞

t−s

|C1(u+ s, s)| dug(s, x(s)) ds.

Then

V ′(t) = x′(t) +

∫ ∞

0

|C1(u+ t, t)| dug(t, x(t)) −

∫ t

0

|Ct(t, s)|g(s, x(s)) ds

= a′(t) − C(t, t)g(t, x(t)) −

∫ t

0

Ct(t, s)g(s, x(s)) ds

+

∫ ∞

0

|C1(u+ t, t)| dug(t, x(t)) −

∫ t

0

|Ct(t, s)|g(s, x(s)) ds

= a′(t) + [−C(t, t) +

∫ ∞

0

|C1(u+ t, t)| du]g(t, x(t))

−

∫ t

0

Ct(t, s)g(s, x(s)) ds−

∫ t

0

|Ct(t, s)|g(s, x(s)) ds

= a′(t) + [−C(t, t) +

∫ ∞

0

|C1(u+ t, t)| du]g(t, x(t))

≤ |a′(t)| − αmxp(t).

Integrating the above relation from 0 to t yields

V (t) ≤ V (0) +

∫ t

0

|a′(s)| ds− αm

∫ t

0

xp(s) ds. (3.2)

Since V (t) ≥ 0, we get

αm

∫ t

0

xp(s) ds ≤ V (0) +

∫ t

0

|a′(s)| ds.
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This shows that x ∈ Lp[0,∞) if a′ ∈ L1[0,∞). From the definition of V (t), one
can easily see that x(t) ≤ V (t). Thus the boundedness of x(t) follows from (3.2).

In the next theorem we show the existence of nonnegative solutions of (1.2)
using the contraction mapping principle.

Theorem 3.4. Assume a, g, and C satisfy the conditions stated in Theorem 2.1.
Also assume C(t, s) ≥ 0 for 0 ≤ s ≤ t <∞, and g(t, x) > 0 for x > 0. Suppose

a(t) − k

∫ t

0

C(t, s)a(s)ds ≥ 0.

Then (1.2) has a unique nonnegative solution.

Proof. Let BCP = {x(t) such that x(t) is bounded, continuous, and x(t) ≥ 0}.
For each x, y ∈ BCP , let ρ(x, y) = supt≥0 |x(t)−y(t)|. Then ρ is a metric and BCP

is a complete metric space. Now let M = {y ∈ BCP : a(t) − k
∫ t

0
C(t, s)y(s) ds ≥

0}. The setM is closed. To see this, let {yn(t)} be a sequence of functions inM and
yn(t) → y(t) as n → ∞. By the definition of the metric, yn(t) → y(t) uniformly
on [0,∞) as n→ ∞. Therefore y(t) is continuous, bounded, and y(t) ≥ 0.

Now we shall show that

a(t) −

∫ t

0

C(t, s)y(s) ds ≥ 0.

Since yn(t) ∈M for every n, we have

a(t) −

∫ t

0

C(t, s)yn(s) ds ≥ 0. (3.3)

For each fixed t ≥ 0, the function C(t, s) is a bounded function of s on [0, t] because
C(t, s) is continuous. This means that when yn(s) → y(s) uniformly on [0, t], then
C(t, s)yn(s) → C(t, s)y(s) uniformly on [0, t]. Therefore taking the limit on (3.3),
we obtain

a(t) −

∫ t

0

lim
n→∞

C(t, s)yn(s) ds ≥ 0,

which implies

a(t) −

∫ t

0

C(t, s)y(s) ds ≥ 0.

This proves that M is closed.
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Now define T : M →M by

(Tφ)(t) = a(t) −

∫ t

0

C(t, s)g(s, φ(s)) ds.

It follows from the continuity assumptions on a, C, and g that (Tφ)(t) is continuous
in t. Since (Tφ)(t) ≤ a(t) and a(t) is bounded, then (Tφ)(t) is bounded. Now we
show (Tφ)(t) ≥ 0.

(Tφ)(t) = a(t) −

∫ t

0

C(t, s)g(s, φ(s)) ds

≥ a(t) − k

∫ t

0

C(t, s)φ(s) ds

≥ 0

by definition of M because φ ∈M .
We also need to show (Tφ) satisfies the condition of M , i.e.

a(t) − k

∫ t

0

C(t, s)(Tφ)(s) ds ≥ 0.

a(t) − k

∫ t

0

C(t, s)(Tφ)(s) ds = a(t) − k

∫ t

0

C(t, s)[a(s)

−

∫ s

0

C(s, u)g(u, φ(u))du] ds

= a(t) − k

∫ t

0

C(t, s)a(s) ds

+k

∫ t

0

C(t, s)
[

∫ s

0

C(s, u)g(u, φ(u)) du
]

ds

≥ 0.

Therefore (Tφ)(t) satisfies all conditions of M , hence T : M →M .
Now we show T is a contraction. Let φ, ψ ∈M . Then

|(Tφ)(t) − (Tψ)(t)| ≤

∫ t

0

C(t, s)|g(s, φ(s))− g(s, ψ(s))| ds

≤ k

∫ t

0

C(t, s)||φ− ψ|| ds

≤ α||φ− ψ||.

Therefore T is a contraction, which proves there exists a unique nonnegative solu-
tion x(t) of (1.2).
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