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1 Introduction.

Consider a system of functional differential equations

x′(t) = F (t, xt), (1.1)

in which F (t, φ), F (t, 0) = 0, is a functional defined for t ≥ 0 and φ ∈ C, where C
is the set of bounded continuous functions φ : R− → Rn, R− = (−∞, 0], with the
supremum norm ‖ · ‖ = sup{|φ(s)| : s ∈ R−}, where | · | is the Euclidean norm on
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Rn. We assume that for each t0 ≥ 0 and each φ ∈ CH , CH = {φ ∈ C : ‖φ‖ < H}
for some H > 0, there is at least one solution x = x(t, t0, φ) of (1.1) defined on an
interval [t0, α) with xt0 = φ. We may also denote the solution by xt = xt(t0, φ). Here
xt(s) = x(t+ s) for s ≤ 0. Moreover, if the solution remains bounded, then α = +∞.
We denote by C(X, Y ) the set of continuous functions φ : X → Y .

The object of this paper is to give conditions on Liapunov functionals to ensure
the asymptotic stability of the zero solution of (1.1) and to provide a new method of
constructing Liapunov functionals for the linear Volterra integrodifferential equation

x′ = Ax(t) +
∫ t

0
C(t − s)x(s)ds (1.2)

where A is a constant and C ∈ C(R+, R), R+ = [0, +∞). In fact, it was equation
(1.2) and its nonlinear perturbations which inspired this investigation. There are
many known results and applications on stability and basic theory of systems (1.1)
and (1.2) in the literature. For reference and history, we refer to the books of Burton
[3,4], Driver [8], Gripenberg, Londen, and Staffans [9], Hale [11], Hino, Murakami and
Naito [12], Kolmanovskii [16], Krasovskii [17], Kuang [19], Lakshmikantham, Wen,
and Zhang [20], Yoshizawa [24].

Let V : R × C → R+ be continuous. The upper right-hand derivative along a
solution of (1.1) is defined by

V ′
(1.1)(t, φ) = lim sup

δ→0+

{V (t + δ, xt+δ(t, φ)) − V (t, φ)}/δ

Definition 1.1. The zero solution of (1.1) is said to be stable if for each ε > 0
and t0 ≥ 0, there is a δ = δ(ε, t0) > 0 such that [φ ∈ C, ‖φ‖ < δ, t ≥ t0] imply
|x(t, t0, φ)| < ε. The zero solution of (1.1) is uniformly stable if it is stable and δ is
independent of t0.

Definition 1.2. The zero solution of (1.1) is said to be asymptotically stable if
it is stable and if for each t0 ≥ 0 there exists δ0 > 0 such that ‖φ‖ < δ0 implies that
x(t, t0, φ) → 0 as t → +∞. The zero solution is uniformly asymptotically stable if it
is uniformly stable and if there is δ1 > 0 and for each ε > 0 there exists T > 0 such
that [t0 ≥ 0, φ ∈ C, ‖φ‖ < δ1, t ≥ T + t0] imply that |x(t, t0, φ)| < ε.

Definition 1.3. W : R+ → R+ is called a wedge if W is continuous and strictly
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increasing with W (0) = 0. Throughout of this paper W and Wj(j = 1, 2, · · ·) will
denote the wedges.

Definition 1.4. A continuous function g : R+ → R+ is convex downward if
g[(t + s)/2] ≤ [g(t) + g(s)]/2 for all t, s ∈ R+.

Jensen’s inequality. Let g be convex downward and let x, p : [a, b] → R+ be
continuous with

∫ b
a p(s)ds > 0. Then

∫ b

a
p(s)ds g

[

∫ b

a
p(s)x(s)ds

/

∫ b

a
p(s)ds

]

≤
∫ b

a
p(s)g(x(s))ds.

For reference on Jensen’s inequality and its applications in stability theory, we refer
to Becker, Burton, and Zhang [1] and Natanson [22].

Lemma 1.1. Let W1 be a wedge. For any L > 0, define W0(r) =
∫ r
0 W1(s)ds/L

on [0, L]. Then W0 is a convex downward wedge such that W0(r) ≤ W1(r) for all
r ∈ [0, L].

It is well-known (see [7]) that conditions

W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, (1.3)

V ′
(1.1)(t, φ) ≤ 0

guarantee the stability of the zero solution of (1.1) and

W1(|x(t)|) ≤ V (t, xt) ≤ W2(|x(t)|) + W3(
∫ t

0
Φ(t − s)W4(|x(s)|)ds), (1.4)

V ′
(1.1)(t, xt) ≤ −W5(|x(t)|)

yield the uniform asymptotic stability, where Φ : R+ → R+ is continuous, bounded,
and Φ ∈ L1(R+).

The goal here is to weaken the lower bound of V (t, φ) to

W1(|x(t) +
∫ t

0
G(t − s)x(s)ds|) ≤ V (t, xt) (1.5)

and drop the boundedness condition on Φ(t). This will be done in section 2. As an
application of the main theorem, we construct a new Liapunov functional for (1.2) in
section 3.
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2 A General Stability Theorem

Liapunov functional of the form

V (t, xt) = |x(t)|2 +
∫ t

0
Φ(t − s)|x(s)|2ds, Φ(s) ≥ 0

may work for (1.2), but the stability condition may not be the best. Many concrete
examples and applications (see [5]) suggest that V (t, φ) should take the form

V (t, xt) = V1(t, xt) + V2(t, xt)

where

V1(t, xt) = (x(t) +
∫ t

0
G(t − s)x(s)ds)2

or a more general integral operator. A complete discussion on the construction of
such functionals for (1.2) will be given in Section 3. The following lemmas are needed
for our main theorem.

Lemma 2.1 ([9], p.14). Let G, Z : R+ → Rn×n be continuous and satisfy

Z(t) = G(t) −
∫ t

0
G(t − s)Z(s)ds. (2.1)

If y, x : R+ → Rn satisfy

y(t) = x(t) +
∫ t

0
G(t − s)x(s)ds,

then

x(t) = y(t) −
∫ t

0
Z(t − s)y(s)ds

for all t ∈ R+.

Lemma 2.2. For all the functions given in Lemma 2.1, if
∫ +∞
0 |G(u)|du < 1, then

∫ +∞
0 |Z(u)|du < +∞ and if y(t) → 0 as t → +∞, then x(t) → 0 as t → +∞.

Proof. It follows from (2.1) that

|Z(t)| ≤ |G(t)| +
∫ t

0
|G(t − s)||Z(s)|ds.
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Integrate the above inequality from 0 to ∞ and interchange variables of the second
term to obtain

∫ +∞

0
|Z(t)|dt ≤

∫ +∞

0
|G(t)|dt +

∫ +∞

0
|Z(s)|ds

∫ +∞

0
|G(t)|dt.

This yields
∫ +∞
0 |Z(t)|dt < +∞ since

∫ +∞
0 |G(t)|dt < 1. The statement y(t) → 0 as

t → +∞ implies x(t) → 0 as t → +∞ is a known result ([3], p.48). The proof is
complete.

The following result has a general lower bound on V (t, φ) and removes the bound-
edness restriction on Φ(t) in ([7], p.144).

Theorem 2.1. Suppose that there exists a continuous functional V : R+ ×
C → R+, V (t, 0) = 0, functions G, Φ ∈ C(R+, R) with

∫ +∞
0 |G(u)|du < 1 and

Φ ∈ L1(R+, R+), and wedges Wj such that the following conditions hold for t ≥ 0
and ‖xt‖ < H,

(i) W1(|x(t) +
∫ t
0 G(t − s)x(s)ds|) ≤ V (t, xt),

(ii) V (t, xt) ≤ W2(|x(t)|) + W3(
∫ t
0 Φ(t − s)W4(|x(s)|)ds)

(iii) V ′
(1.1)(t, xt) ≤ −W5(|x(t)|).

Then the zero solution of (1.1) is uniformly asymptotically stable.

Proof. Let J =
∫ +∞
0 Φ(u)du. For each 0 < B < H, we choose δ > 0 with

0 < δ < B and

W2(δ) + W3[JW4(δ)] < W1[B(1 −
∫ +∞

0
|G(u)|du)]. (2.2)

Let x(t) = x(t, t0, φ) be a solution of (1.1) with ‖φ‖ < δ and V (t) = V (t, xt). Then
for t ≥ t0, we have

W1(|x(t) +
∫ t

0
G(t − s)x(s)ds|) ≤ V (t) ≤ V (t0)

≤ W2(δ) + W3(JW4(δ)).

We claim that |x(t)| < B for all t ≥ t0. Note that |x(u)| < δ < B for all 0 ≤ u ≤ t0.
If there exists the first t̂ > t0 such that |x(t̂)| = B and |x(s)| < B for t0 ≤ s < t̂, then

W1[B(1 −
∫ +∞

0
|G(u)|du)] ≤ W1(|x(t̂) +

∫ t̂

0
G(t̂ − s)x(s)ds|)

≤ W2(δ) + W3[JW4(δ)],

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 30, p. 5



which contradicts (2.2). Thus, the zero solution of (1.1) is uniformly stable. By (iii),
we have V (t) − V (τ) ≤ − ∫ t

τ W5(|x(s)|)ds for t ≥ τ ≥ t0. Since

V (τ) ≤ W2(B) + W3(JW4(B)) =: B∗

for any τ ≥ t0, we have
∫ t

τ
W5(|x(s)|)ds ≤ V (τ) ≤ B∗.

This implies for each σ > 0 there exists L > 0 such that W5(|x(τ ∗)|) < σ for some
τ ∗ ∈ [τ, τ + L]. Now let σ > 0 be fixed and find h > 0 so that

(B + W4(B))
∫ +∞

h
Φ(u)du < σ. (2.3)

By the definition of L, we can choose a sequence {tn} satisfying the following condi-
tions:

tn−1 + h ≤ tn ≤ tn−1 + h + L

and
|x(tn)| < σ

for n = 1, 2, · · ·. Define K = sup{Φ(u) : 0 ≤ u ≤ h}. By (i), we have

V (tj) ≤ W2(|x(tj)|)

+W3

(

∫ tj−h

0
Φ(tj − s)W4(|x(s)|)ds +

∫ tj

tj−h
Φ(tj − s)W4(|x(s)|)ds

)

< W2(σ) + W3

(

W4(B)
∫ +∞

h
Φ(s)ds + K

∫ tj

tj−h
W4(|x(s)|)ds

)

≤ W2(σ) + W3

(

σ + K
∫ tj

tj−h
W4(|x(s)|)ds

)

.

Since

V (tn) − V (t0) ≤ −
∫ tn

t0

W5(|x(s)|)ds ≤ −
n

∑

j=1

∫ tj

tj−h
W5(|x(s)|)ds,

we have
+∞
∑

j=1

∫ tj

tj−h
W5(|x(s)|)ds ≤ V (t0) ≤ B∗.

This implies there exists a positive integer N such that
∫ tN

tN−h
W5(|x(s)|)ds < σ.
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By Lemma 1.1 , there exists a convex downward wedge W6 with W6(r) ≤ W5[W
−1
4 (r)]

for 0 ≤ r ≤ W4(B). This yields
∫ tN

tN−h
W5(|x(s)|)ds =

∫ tN

tN−h
W5(W

−1
4 )[W4(|x(s)|)]ds ≥

∫ tN

tN−h
W6[W4(|x(s)|)ds.

Apply Jensen’s inequality to obtain
∫ tN

tN−h
W6[W4(|x(s)|)]ds ≥ hW6

[1

h

∫ tN

tN−h
W4(|x(s)|)ds].

Thus,
∫ tN

tN−h
W4(|x(s)|)ds < hW−1

6 (σ/h)

and
V (t) ≤ V (tN) ≤ W2(σ) + W3

(

σ + KhW−1
6 (σ/h)

)

for all t ≥ tN . Therefore,

W1(|x(t) +
∫ t

0
G(t − s)x(s)ds|) ≤ W2(σ) + W3

(

σ + KhW−1
6 (σ/h)

)

and

|x(t) +
∫ t

0
G(t − s)x(s)ds| ≤ W−1

1

(

W2(σ) + W3[σ + KhW−1
6 (σ/h)]

)

=: σ∗.

Let y(t) = x(t) +
∫ t
0 G(t − s)x(s)ds. By Lemmas 2.1 and 2.2, we have

|x(t)| = |y(t) −
∫ t

0
Z(t − s)y(s)ds|

≤ σ∗ +
∫ tN

0
|Z(t − s)||y(s)|ds +

∫ t

tN

|Z(t − s)||y(s)|ds

≤ σ∗ + 2B
∫ t

tN

|Z(u)|du + σ∗
∫ +∞

0
|Z(u)|du

for t ≥ tN . Note that tN ≤ t0 + N(h + L). We also choose N large enough so that

2B
∫ +∞

N(h+L)
|Z(u)|du < σ∗.

Define Γ =
∫ +∞
0 |Z(u)|du. Then |x(t)| < (2 + Γ)σ∗ for all t ≥ tN . For any ε > 0,

choose σ > 0 so that σ∗ = ε/(2 + Γ). Letting T = N(h + L), we get |x(t)| < ε for all
t ≥ T + t0. This proves the zero solution of (1.1) is uniformly asymptotically stable.
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Remark 2.1. It is clear from the proof that Theorem 2.1 can be extended to
nonconvolution type with modifications on G and Φ. For more discussions on such
extension, we refer the reader to Lakshmikantham, Wen, and Zhang [20].

3 Construction of a Liapunov functional

Consider the linear scalar Volterra integrodifferential equation

x′(t) = Ax(t) +
∫ t

0
C(t − s)x(s)ds (3.1)

where A is a constant and C : R+ → R is continuous. We will construct a Liapunov
functional that is more general than those exist in the literature (see [6], [14]) and
provides a stability region that is closer to the one given by the characteristic equation
of (3.1). Our method here is inspired by the work of Knyazhishche and Shcheglov
[15] who investigated the linear scalar differential equations with finite delay.

Theorem 3.1. Suppose there exists a constant α ≤ 0 such that
Gα(t) =

∫ +∞
t C(u)eαudue−αt exists with

∫ +∞
0 |Gα(u)|du < 1 and

∫ +∞
0 u|Gα(u)|du <

+∞. If

A +
∫ +∞

0
C(u)eαudu + |α|

∫ +∞

0
|Gα(u)|du < 0, (3.2)

then the zero solution of (3.1) is uniformly asymptotically stable.

Proof. Let x(t) = x(t, t0, φ) be a solution of (3.1) and define

V1(t) =
1

2

(

x(t) +
∫ t

0
Gα(t − s)x(s)ds

)2
(3.3)

for t ≥ t0. Taking the derivative along the solution, we obtain

V ′
1(t) = (x(t) +

∫ t

0
Gα(t − s)x(s)ds)

(

Ax(t) +
∫ t

0
C(t − s)x(s)ds (3.4)

+
∫ +∞

0
C(u)eαudu x(t) −

∫ t

0
C(t − s)x(s)ds − α

∫ t

0
Gα(t − s)x(s)ds

)

= (x(t) +
∫ t

0
Gα(t − s)x(s)ds)

(

a1x(t) − α
∫ t

0
Gα(t − s)x(s)ds

)

= a1x
2(t) + (a1 − α)x(t)

∫ t

0
Gα(t − s)x(s)ds − α

(

∫ t

0
Gα(t − s)x(s)ds

)2
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where a1 = A +
∫ +∞
0 C(u)eαudu. It follows from Cauchy’s inequality

(

∫ t

0
Gα(t − s)x(s)ds

)2 ≤
∫ t

0
|Gα(t − s)|ds

∫ t

0
|Gα(t − s)|x2(s)ds.

Thus, for any constant δ > 0 we have

V ′
1(t) ≤ a1x

2(t) + (a1 − α)x(t)
∫ t

0
Gα(t−s)x(s)ds

+|α|
∫ t

0
|Gα(t−s)|ds

∫ t

0
|Gα(t−s)|x2(s)ds

≤ a1x
2(t) +

(a1 − α)2

4δ
x2(t)

+(|α| + δ)
∫ t

0
|Gα(t − s)|ds

∫ t

0
|Gα(t − s)|x2(s)ds. (3.5)

Next, define

V2(t) = p
∫ t

0

∫ +∞

t−s
|Gα(u)|dux2(s)ds (3.6)

where p is a positive constant and set

V (t) = V1(t) + V2(t).

Observe that

V ′
2(t) = p

∫ +∞

0
|Gα(u)|dux2(t) − p

∫ t

0
|Gα(t − s)|x2(s)ds.

Combining with (3.5), this yields

V ′(t) ≤
(

a1 +
(a1 − α)2

4δ
+ p

∫ +∞

0
|Gα(u)|du

)

x2(t) (3.7)

+ [(|α| + δ)
∫ +∞

0
|Gα(u)|du − p]

∫ t

0
|Gα(t − s)|x2(s)ds.

We will choose the best δ and p so that

a1 +
(a1 − α)2

4δ
+ p

∫ +∞

0
|Gα(u)|du < 0 (3.8)

and

(|α| + δ)
∫ +∞

0
|Gα(u)|du − p ≤ 0. (3.9)
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Notice that if
∫ +∞
0 |Gα(u)|du 6= 0, then (3.8) and (3.9) hold if and only if

(|α| + δ)
(

∫ +∞

0
|Gα(u)|du

)2 ≤ p
∫ +∞

0
|Gα(u)|du < |a1| −

(a1 − α)2

4δ
.

This implies that we choose δ > 0 so that

(|α| + δ)
(

∫ +∞

0
|Gα(u)|du

)2
< |a1| −

(a1 − α)2

4δ
. (3.10)

Let Q = (
∫ +∞
0 |Gα(u)|du)2. We may assume that Gα(u) 6≡ 0 since Gα(u) ≡ 0 for all

u ∈ R+ implies C(u) ≡ 0 for all u ∈ R+. Thus we assume that Q > 0. It is clear that
(3.10) is equivalent to

4Qδ2 + 4(|α|Q − |a1|)δ + (a1 − α)2 < 0. (3.11)

The quadratic function of δ on the left-hand side of (3.11) has its minimum at

δ∗ =
|a1| − |α|Q

2Q
.

Since
∫ +∞
0 |Gα(u)|du < 1, we have 0 < Q < 1 and

|a1| − |α|Q = −A −
∫ +∞

0
C(u)eαudu − |α|Q

≥ −
(

A +
∫ +∞

0
C(u)eαudu + |α|

∫ +∞

0
|Gα(u)|du

)

> 0

by (3.2). Thus δ∗ > 0 and

4Qδ2
∗ + 4(|α|Q − |a1|)δ∗ + (a1 − α)2

=
(|a1| − |α|Q)2

Q
− 2(|a1| − |α|Q)2

Q
+ (a1 − α)2

=
Q − 1

Q
[|a1|2 − Q|α|2]

=
Q − 1

Q
(|a1| +

√

Q|α|)(|a1| −
√

Q|α|)

=
1 − Q

Q

(

|a1| +
√

Q|α|)(A +
∫ +∞

0
C(u)eαudu + |α|

∫ +∞

0
|Gα(u)|du

)

< 0.

Let

γ1 =: (|α| + δ∗)Q = (|α| + |a1| − |α|Q
2Q

)Q =
|a1| + |α|Q

2
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and

γ2 =: |a1| −
(a1 − α)2

4δ∗
=

|a1|2 − α2Q + (1 − Q)|a1|2
2(|a1| − |α|Q)

.

Define

p =
γ1 + γ2

2
√

Q
=

(1 − Q)|a1|2 + 2|a1|2 − Q(1 + Q)|α|2
4(|a1| − |α|Q)

√
Q

. (3.12)

We now obtain

a1 +
(a1 − α)2

4δ∗
+ p

√

Q = −(1 − Q)(|a1|2 − α2Q)

4(|a1| − |α|Q)

and

(|α| + δ∗)Q − p
√

Q = −(1 − Q)(|a1|2 − α2Q)

4(|a1| − |α|Q)
.

Define

β =
(1 − Q)(|a1|2 − α2Q)

4(|a1| − |α|Q)
min{1, 1√

Q
}.

Combining (3.3), (3.6), and (3.7), we have

V (t) =
1

2

(

x(t) +
∫ t

0
Gα(t − s)x(s)ds

)2
+ p

∫ t

0

∫ +∞

t−s
|Gα(u)|dux2(s)ds

≤ x2(t) +
∫ t

0

(

|Gα(t − s)| + p
∫ +∞

t−s
|Gα(u)|du

)

x2(s)ds

=: x2(t) +
∫ t

0
Φ(t − s)x2(s)ds (3.13)

and

V ′(t) ≤ −βx2(t) − β
∫ t

0
|Gα(t − s)|x2(s)ds (3.14)

where p is given in (3.12) and

Φ(t) = |Gα(t)| + p
∫ +∞

t
|Gα(u)|du.

One can show by interchanging the order of integration that
∫ +∞

0

∫ +∞

s
|Gα(u)|duds =

∫ +∞

0
u|Gα(u)|du < +∞. (3.15)
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Thus, Φ ∈ L1(R+). By Theorem 2.1, the zero solution of (3.1) is uniformly asymp-
totically stable. This completes the proof.

When α = 0, Theorem 3.1 takes the following form.

Corollary 3.1. Suppose that

A +
∫ +∞

0
C(u)du < 0,

∫ ∞

0

∣

∣

∣

∫ ∞

t
C(u)du

∣

∣

∣dt < 1,

and
∫ ∞

0
s

∣

∣

∣

∫ +∞

s
C(u)du

∣

∣

∣ds < +∞. (3.16)

Then the zero solution of (3.1) is uniformly asymptotically stable.

In ([6], p.162) Burton and Mahfoud proved the following theorem. Brauer [2],
Jordan [13], and Krisztin [18] also investigated the same problem in one or higher
dimensions using the characteristic equation of (3.1).

Theorem B1. Suppose that

A +
∫ +∞

0
C(u)du < 0, (3.17)

∫ ∞

0
|
∫ ∞

t
C(u)du|dt < 1, (3.18)

and
∫ ∞

0
u|C(u)|du < +∞. (3.19)

Then the zero solution of (3.1) is uniformly asymptotically stable.

Although (3.19) is weaker than (3.16) for C(u) with constant sign, one can show
that (3.19) implies (3.16) for α < 0. In fact, if (3.19) holds, we have

∫ +∞

0
u|Gα(u)|du ≤

∫ +∞

0
u

∫ +∞

u
|C(s)|eα(s−u)dsdu
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=
∫ +∞

0

∫ s

0
ue−αudu|C(s)|eαsds

=
∫ +∞

0

( 1

|α|se
−αs − 1

α2
e−αs +

1

α2

)

|C(s)|eαsds

≤ α∗
∫ +∞

0
(s + 1)|C(s)|ds < +∞

where α∗ = max{ 1
|α|

, 1
α2 }.

Corollary 3.2. Suppose (3.19) holds and there exists a constant α < 0 such that
∫ +∞

0
|Gα(u)|du < 1 (3.20)

and

A +
∫ +∞

0
C(u)eαudu + |α|

∫ +∞

0
|Gα(u)|du < 0, (3.21)

then the zero solution of (3.1) is uniformly asymptotically stable.

It is known (see [10],[21]) that the zero solution of (3.1) is uniformly asymptotically
stable if and only if

|z − A − C∗(z)| 6= 0

for Re(z) ≥ 0, where z is a complex number and C∗ is the Laplace transform of C
defined by C∗(z) =

∫ +∞
0 e−ztC(t)dt. Thus, condition (3.17) is necessary for uniform

asymptotic stability. The following example shows that (3.18) does not hold, but
(3.20) and (3.21) are satisfied for an appropriate α. Consider

x′(t) = 0.06x(t) −
∫ t

0
e−0.9(t−s)x(s)ds. (3.22)

Let A = 0.06 and C(t) = −e−0.9t. Then
∫ +∞

0
|
∫ +∞

t
C(u)du|dt =

∫ +∞

0

1

0.9
e−0.9tdt =

1

(0.9)2
> 1.

Thus, (3.18) fails. Letting α = −0.8, we have

Gα(t) =
∫ +∞

t
C(u)eαudue−αt = − 1

1.7
e−0.9t,

∫ +∞

0
|Gα(u)|du =

1

1.7

∫ +∞

0
e−0.9tdt =

1

1.53
< 1,
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and

A +
∫ +∞

0
C(u)eαudu + |α|

∫ +∞

0
|Gα(u)|du

= 0.06 −
∫ +∞

0
e−1.7udu +

0.8

1.53
< −0.005.

It is obvious that
∫ +∞
0 u|Gα(u)|du < +∞. By Theorem 3.1, the zero solution of (3.22)

is uniformly asymptotically stable.

Generalizations of Theorem B1 to systems and noncovolution type of equations
can be found in Burton and Mahfoud [6] and Zhang [24]. The author has not yet
obtained a satisfactory extension of Theorem 3.1 to systems and will pursue further
investigation. Finally we present a theorem on asymptotic stability.

Theorem 3.2. Suppose there exists a constant α ≤ 0 such that (3.20) and (3.21)
hold. Then the zero solution of (3.1) is asymptotically stable.

Proof. It is clear that the zero solution of (3.1) is stable by (3.13) and (3.14).
Let x(t) = x(t, t0, φ) be a solution of (3.1). We will show that x(t) → 0 as t → +∞.
Indeed, by (3.14) and Cauchy’s inequality, we have

V ′(t) ≤ −β

2

(

x(t) +
∫ t

0
Gα(t − s)x(s)ds

)2
. (3.23)

This implies that

γ(t) =:
(

x(t) +
∫ t

0
Gα(t − s)x(s)ds

)2 ∈ L1(R+). (3.24)

By (3.4), we have

|γ′(t)| = 2
∣

∣

∣a1x
2(t) + (a1−α)x(t)

∫ t

0
Gα(t − s)x(s)ds − α

(

∫ t

0
Gα(t − s)x(s)ds

)2∣
∣

∣

≤ (2|a1| + |a1 − α|)x2(t) + (2|α| + |a1 − α|)
∫ t

0
|Gα(t − s)|x2(s)ds. (3.25)

Combining (3.24) and (3.25), we get |γ ′(t)| ∈ L1(R+). Therefore, limt→+∞ γ(t) = 0.
Let y(t) = x(t) +

∫ t
0 Gα(t − s)x(s)ds. By Lemmas 2.1 and 2.2, we have

|x(t)| = |y(t) −
∫ t

0
Z(t − s)y(s)ds|
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≤ |y(t)| + |
∫ t

0
Z(t − s)y(s)ds| → 0

since Z ∈ L1(R+) and y(t) → 0 as t → +∞. This completes the proof.

Corollary 3.3. If

A +
∫ +∞

0
C(u)du < 0

and
∫ ∞

0
|
∫ ∞

t
C(u)du|dt < 1,

then the zero solution of (3.1) is asymptotically stable.

Corollary 3.4. If

A +
∫ +∞

0
|C(u)|du < 0, (3.26)

then the zero solution of (3.1) is asymptotically stable.

Proof. If (3.26) holds, we can choose α sufficiently large so that conditions of
Theorem 3.2 will be satisfied. In fact, for α < 0 we have

|α|
∫ +∞

0
|Gα(u)|du ≤ −α

∫ +∞

0

∫ +∞

t
|C(u)|eαudue−αtdt

=
(

∫ +∞

t
|C(u)|eαudu

)

e−αt
∣

∣

∣

+∞

0
+

∫ +∞

0
|C(u)|du

= −
∫ +∞

0
|C(u)|eαudu +

∫ +∞

0
|C(u)|du.

This yields
∫ +∞

0
|Gα(u)|du ≤ 1

|α|
∫ +∞

0
|C(u)|du

for α < 0. If
∫ +∞
0 |C(u)|du < |α|, then

∫ +∞
0 |Gα(u)|du < 1. By (3.26), we also have

A +
∫ +∞

0
C(u)eαudu + |α|

∫ +∞

0
|Gα(u)|du

≤ A +
∫ +∞

0
C(u)eαudu −

∫ +∞

0
|C(u)|eαudu +

∫ +∞

0
|C(u)|du

≤ A +
∫ +∞

0
|C(u)|du < 0.
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By Theorem 3.2, the zero solution of (3.1) is asymptotically stable.

Burton and Mahfoud ([6], p.146) showed that (3.26) yields uniform asymptotic
stability by proving that x(t) ∈ L1(R+, R).
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