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1 Introduction

It is well-known that differential equations appear in mathematical models of various phenom-
ena in physics, economy, biology, engineering, and other fields of science. Many illustrative
examples of such models can be found in the literature (see, e.g., [1, 5–8] and the references
therein).

We consider the functional differential equation of the form

x′(t) = g(x)(t) + f (t, x(t)), t ∈ [a, b] (1.1)

x(a) = x0, (1.2)

where the following conditions hold:

(C1) x0 ∈ R, f : C([a, b]×R)→ R;

(C2) there exists L f > 0 such that

| f (t, u1)− f (t, u2)| ≤ L f |u1 − u2| , ∀t ∈ [a, b], u1, u2 ∈ R;
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(C3) g : C([a, b], R)→ C([a, b], R) is an abstract Volterra operator and there exists Lg > 0 and
τ > 0 with τ > Lg + L f , such that

‖g(x)− g(y)‖τ ≤ Lg ‖x− y‖τ , ∀x, y ∈ C([a, b], R),

where ‖·‖τ is the Bielecki norm defined by

‖x‖τ = sup
t∈[a,b]

(‖x(t)‖ e−τ(t−a)), τ > 0.

The present paper is motivated by a recent paper [9] where the author studied a differential
equation with abstract Volterra operator of the form

x′(t) = f (t, x(t), V(x)(t)), t ∈ [a, b].

The aim of our paper is to apply the technique from [2–4, 13, 14] to a functional differential
equation that includes an abstract Volterra operator.

The equation involving abstract Volterra operators have been investigated by many au-
thors. The results on the existence and uniqueness, continuous dependence of solutions of
Cauchy’s problem and even more specialized topics can be found in [2, 9, 14] and the refer-
ences therein.

The novelty of our paper consist in applying the weakly Picard operators technique for an
equation written as a sum of two operators.

The paper is organized as follows. In Section 2, we recall some definitions and results
concerning the weakly Picard operator theory. In Section 3 we prove first the existence and
uniqueness theorem and then we obtain some properties regarding the data dependence of
the solution. In the last section an example is given.

2 Preliminaries

In this section we will use the terminologies and notations extracted from [10–12]. For the
convenience of the reader some of them are recalled below.

Let (X, d) be a metric space and A : X → X an operator. We denote by:
FA := {x ∈ X | A(x) = x} the fixed points set of A;
I(A) := {Y ⊂ X | A(Y) ⊂ Y, Y 6= ∅} the family of the nonempty invariant subsets of A;
An+1 := A ◦ An, A0 = 1X, A1 = A, n ∈N the iterate operators of the operator A.

Definition 2.1. Let (X, d) be a metric space. An operator A : X → X is a Picard operator (PO)
if there exists x∗ ∈ X such that:

(i) FA = {x∗};

(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 2.2. Let (X, d) be a metric space. An operator A : X → X is a weakly Picard
operator (WPO) if the sequence (An(x))n∈N converges for all x ∈ X, and its limit (which may
depend on x) is a fixed point of A.

Definition 2.3. If A is weakly Picard operator then we consider the operator A∞ defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).
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Remark 2.4. It is clear that A∞(X) = FA.

The following results are very useful in the sequel.

Lemma 2.5. Let (X, d,≤) be an ordered metric space and A : X → X an operator. We suppose that:

(i) A is WPO;

(ii) A is increasing.

Then, the operator A∞ is increasing.

Lemma 2.6 (Abstract Gronwall lemma). Let (X, d,≤) be an ordered metric space and A : X → X
an operator. We suppose that:

(i) A is WPO;

(ii) A is increasing.

If we denote by x∗A the unique fixed point of A, then:

(a) x ≤ A(x) =⇒ x ≤ x∗A;

(b) x ≥ A(x) =⇒ x ≥ x∗A.

Lemma 2.7 (Abstract comparison lemma). Let (X, d,≤) an ordered metric space and A, B, C : X →
X be such that:

(i) the operator A, B, C are WPOs;

(ii) A ≤ B ≤ C;

(iii) the operator B is increasing.

Then x ≤ y ≤ z implies that A∞(x) ≤ B∞(y) ≤ C∞(z).

Another important notion is the following.

Definition 2.8. Let (X, d) be a metric space, A : X → X be a weakly Picard operator and
c ∈ R∗+. The operator A is c-weakly Picard operator iff

d(x, A∞(x)) ≤ cd(x, A(x)), ∀x ∈ X.

For the c-POs and c-WPOs we have the following lemma.

Lemma 2.9. Let (X, d) be a metric space and A, B : X → X be two operators. We suppose that:

(i) A is c-PO with FA = {x∗A};

(ii) there exists η ∈ R∗+ such that d(A(x), B(x)) ≤ η, ∀x ∈ X.

If x∗B ∈ FB, then d(x∗B, x∗A) ≤ cη.

Lemma 2.10. Let (X, d) be a metric space and A, B : X → X be two operators. We suppose that:

(i) the operators A and B are c-WPOs;
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(ii) there exists η ∈ R∗+ such that d(A(x), B(x)) ≤ η, ∀x ∈ X.

Then Hd(FA, FB) ≤ cη, where Hd stands for the Pompeiu–Hausdorff functional with respect to d.

The following result is the characterization theorem of weakly Picard operators.

Theorem 2.11. An operator A is a weakly Picard operator if and only if there exists a partition of X,
X =

⋃
λ∈Λ

Xλ, such that

(a) Xλ ∈ I(A), ∀λ ∈ Λ;

(b) A|Xλ
: Xλ → Xλ is a Picard operator, ∀λ ∈ Λ.

For some examples of WPOs see [10–12].

3 Main result

We remark that if x ∈ C1([a, b], R) is a solution of the problem (1.1)–(1.2), then x is a solution
of

x(t) = x0 +
∫ t

a
g(x)(s) ds +

∫ t

a
f (s, x(s)) ds, t ∈ [a, b] (3.1)

and if x ∈ C([a, b], R) is a solution of (3.1), then x ∈ C1([a, b], R) and is a solution of (1.1)–(1.2).
Also, if x ∈ C1([a, b], R) is a solution of (1.1), then x is a solution of

x(t) = x(a) +
∫ t

a
g(x)(s) ds +

∫ t

a
f (s, x(s)) ds, t ∈ [a, b] (3.2)

and if x ∈ C([a, b], R) is a solution of (3.2), then x ∈ C1([a, b], R) and is a solution of (1.1).
Let us consider the following operators B f , E f : C([a, b], R) → C([a, b], R) defined by

B f (x)(t) := the right-hand side of (3.1) and E f (x)(t) := the right-hand side of (3.2).
The first result of the paper is the following:

Theorem 3.1. We suppose that the conditions (C1), (C2), and (C3) are satisfied. Then

(a) the problem (1.1)–(1.2) has in C([a, b], R) a unique solution;

(b) the operator B f is PO in C([a, b], R);

(c) the operator E f is WPO in C([a, b], R).

Proof. Consider on X = C([a, b], R) the Bielecki norm ‖·‖τ defined by

‖x‖τ = sup
t∈[a,b]

(
‖x(t)‖ e−τ(t−a)), τ > 0.

For x0 ∈ R, we consider
Xx0 := {x ∈ C[a, b] | x(a) = x0}.

We remark that X = ∪x0∈RXx0 is a partition of C[a, b] and

(1) B f (X) ⊂ Xx0 and E f (Xx0) ⊂ Xx0 , ∀x0 ∈ R;

(2) B f |Xx0
= E f |Xx0

, ∀x0 ∈ R.
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We have ∥∥B f (x)− B f (y)
∥∥

τ
≤ 1

τ (Lg + L f ) ‖x− y‖τ , ∀x, y ∈ X.

On the other hand, for a suitable choice of τ > 0 such that 1
τ (Lg + L f ) < 1, we have that B f

is a contraction in (X, ‖·‖τ). So, we obtain (a) and (b). Moreover the operator E f |Xx0
: Xx0 →

Xx0 is a contraction and from the characterization theorem of WPO (Theorem 2.11) we have
that E f is c-WPO with c =

[
1− 1

τ (Lg + L f )
]−1.

Next we study the relation between the solution of the problem (1.1)–(1.2) and the subso-
lution of the same problem. We have the following theorem.

Theorem 3.2 (Theorem of Čaplygin type). We suppose that:

(a) the conditions (C1), (C2) and (C3) are satisfied;

(b) f (x, ·) : R→ R is increasing;

(c) g : C([a, b], R)→ C([a, b], R) is increasing.

Let x be a solution of equation (1.1) and y a solution of the inequality

y′(t) ≤ g(y)(t) + f (t, y(t)), t ∈ [a, b].

Then y(a) ≤ x(a) implies that y ≤ x.

Proof. We have the following two relations

x = E f (x) and y ≤ E f (y).

From the conditions (C1), (C2), and (C3) follows that the operator E f is WPO. Also, from
conditions (b) and (c) we have that E f is an increasing operator. Applying Lemma 2.5 we
obtain that E∞

f is increasing. Let x0 ∈ R, then we denote by x̃0 the following function

x̃0 : [a, b]→ R, x̃0(t) = x0, ∀t ∈ [a, b]. (3.3)

From Theorem 3.1 we have that E f (Xx0) ⊂ Xx0 , ∀x0 ∈ R. E f |Xx0
is a contraction and since

x̃0 ∈ Xx0 then
E∞

f (x̃0) = E∞
f (y), ∀y ∈ Xx0 .

Let y ≤ E f (y), since E f is increasing, from the Gronwall lemma (Lemma 2.6) we get y ≤
E∞

f (y). Also, y, ỹ(a) ∈ Xy(a), so E∞
f (y) = E∞

f (ỹ(a)). But y(a) ≤ x(a), E∞
f is increasing and

E∞
f (x̃(a)) = E∞

f (x) = x. So

y ≤ E∞
f (y) = E∞

f (ỹ(a)) ≤ E∞
f (x̃(a)) = x.

So the proof is completed.

Now we study the monotony of the system (1.1)–(1.2) with respect to f . For this we use
Lemma 2.7.

Theorem 3.3 (Comparison theorem). We suppose that fi ∈ C([a, b]×R, R), i = 1, 2, 3 satisfy the
conditions (C1), (C2), and (C3). Furthermore, we suppose that:

(i) f1 ≤ f2 ≤ f3 and g1 ≤ g2 ≤ g3;
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(ii) f2(t, ·) : R→ R is increasing;

(iii) g2 : C([a, b], R)→ C([a, b], R) is increasing.

Let xi ∈ C1([a, b], R) be a solution of the equation

x′i(t) = gi(x)(t) + fi(t, x(t)), t ∈ [a, b] and i = 1, 2, 3.

If x1(a) ≤ x2(a) ≤ x3(a), then x1 ≤ x2 ≤ x3.

Proof. From Theorem 3.1 we have that the operators E fi , i = 1, 2, 3, are WPOs. From the
condition (ii) the operator E f2 is monotone increasing. From the condition (i) it follows that
E f1 ≤ E f2 ≤ E f3 .

Let x̃i(a) ∈ C([a, b], R) be defined by x̃i(a)(t) = xi(a), ∀t ∈ [a, b]. It is clear that

x̃1(a)(t) ≤ x̃2(a)(t) ≤ x̃3(a)(t), ∀t ∈ [a, b].

From Lemma 2.7 we have that E∞
f1
(x̃1(a)) ≤ E∞

f2
(x̃2(a)) ≤ E∞

f3
(x̃3(a)).

But xi = E∞
f i(x̃i(a)), i = 1, 2, 3 and therefore applying Lemma 2.7 we get that x1 ≤ x2 ≤

x3.

Consider the Cauchy problem (1.1)–(1.2) and suppose the conditions of Theorem 3.1 are
satisfied. Denote by x∗(·; x0, g, f ), the solution of this problem. We have the following result.

Theorem 3.4 (Data dependence theorem). We suppose that x0i, gi, fi, i = 1, 2 satisfy the conditions
(C1), (C2), and (C3). Furthermore, we suppose that there exist ηi > 0, i = 1, 2, 3 such that

(i) |x01(t)− x02(t)| ≤ η1, ∀t ∈ [a, b];

(ii) |g1(u)− g2(u)| ≤ η2, ∀t ∈ [a, b], u ∈ C([a, b], R);

(iii) | f1(t, v)− f2(t, v)| ≤ η3, ∀t ∈ [a, b], v ∈ R.

Then

‖x∗1(t; x01, g1, f1)− x∗2(t; x02, g2, f2)‖ ≤
η1 + (b− a)(η2 + η3)

1− 1
τ (Lg + L f )

,

where x∗i (t; x0i, gi, fi), i = 1, 2 are the solution of the problem (1.1)–(1.2) with respect to x0i, gi, fi,
L f = max{L f1 , L f2} and Lg = max{Lg1 , Lg2}.

Proof. Consider the operators Bx0i ,gi , fi = x0i +
∫ t

a gi(x)(s)ds+
∫ t

a fi(s, x(s)) ds, i = 1, 2. From

Theorem 3.1 these operators are ci-POs with ci =
[
1− 1

τ (Lg + L f )
]−1

. On the other hand∥∥Bx01,g1, f1(x)− Bx02,g2, f2(x)
∥∥ ≤ η1 + (b− a)(η2 + η3), ∀x ∈ C[a, b].

Now the proof follows from Lemma 2.9.

Applying Lemma 2.10 we have the theorem:

Theorem 3.5. We suppose that f1 and f2 satisfy the conditions (C1), (C2), and (C3). Let SE f1
, SE f2

be
the solution set of system (1.1) corresponding to f1 and f2. Suppose that there exist ηi > 0, i = 1, 2,
such that

|g1(u)− g2(u)| ≤ η1 and | f1(t, v)− f2(t, v)| ≤ η2 (3.4)

for all t ∈ [a, b], u ∈ C([a, b], R), v ∈ R. Then

H‖·‖C

(
SE f1

, SE f2

)
≤ (b− a)(η1 + η2)

1− 1
τ (Lg + L f )

,

where L f = max{L f1 , L f2}, Lg = max{Lg1 , Lg2} and H‖·‖C
denotes the Pompeiu–Hausdorff func-

tional with respect to ‖·‖C on C[a, b].
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4 Application

Next we give an application concerning the results from the main section.

Example 4.1. Consider the following functional-differential equation (see [6])

x′(t) =
∫ t

0
K (t, s, x(s), x(λs)) ds + f (t, x(t)), t ∈ [0, 1]. (4.1)

For this equation the conditions (C1)–(C3) have the form

(a) λ ∈ (0, 1), K : C([0, 1]× [0, 1]×R2)→ R, f : C([0, 1]×R)→ R;

(b) there exists L f > 0 such that

| f (t, u1)− f (t, u2)| ≤ L f |u1 − u2| , ∀t ∈ [0, 1], u1, u2 ∈ R;

(c) there exists LK > 0 such that

|K (t, s, u1, u2)− K (t, s, v1, v2)| ≤ Lg(|u1 − v1|+ |u2 − v2|),
∀t, s ∈ [0, 1], u1, v1, u2, v2 ∈ R;

(d) there exists τ > 0 such that 2LK
τ2 +

L f
τ ≤ 1.

If x ∈ C1([0, 1], R) is a solution of (4.1), then x is a solution of

x(t) = x(0) +
∫ t

0

∫ p

0
K (p, s, x(s), x(λs)) ds dp +

∫ t

0
f (s, x(s)) ds, t ∈ [0, 1] (4.2)

and if x ∈ C([0, 1], R) is a solution of (4.2) then x ∈ C1([0, 1], R) and is a solution of (4.1).
Let us consider the following operator E f : C([0, 1], R)→ C([0, 1], R) defined by

E f (x)(t) := x(0) +
∫ t

0

∫ p

0
K (p, s, x(s), x(λs)) ds dp +

∫ t

0
f (s, x(s)) ds, t ∈ [0, 1].

Consider on X = C([0, 1], R) the Bielecki norm ‖·‖τ defined by

‖x‖τ = sup
t∈[0,1]

(‖x(t)‖ e−τt),

with τ > 0 from (d). For α ∈ R, we consider Xα := {x ∈ C[0, 1] | x(0) = α}.
We remark that X = ∪α∈RXα is a partition of C[0, 1] and E f (Xα) ⊂ Xα, ∀α ∈ R. From the

conditions of Theorem 3.1 we have that the operator E f is WPO in C([0, 1], R). Also one can
apply the Theorems 3.2, 3.3 and 3.5 for the study of Čaplygin inequalities, monotony and data
dependence of the solution of equation (4.1).

Acknowledgements

The work of the second author was partially supported by a grant of the Romanian National
Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-
0094.



8 D. Otrocol and V. A. Ilea

References

[1] N. V. Azbelev (editor), Functional-differential equations (in Russian), Perm. Politekh. Inst.,
Perm, 1985. MR0931083

[2] C. Corduneanu, Abstract Volterra equations: a survey. Nonlinear operator theory, Math.
Comput. Modelling 32(2000), 1503–1528. MR1800673
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