
Electronic Journal of Qualitative Theory of Differential Equations
2014, No. 26, 1–12; http://www.math.u-szeged.hu/ejqtde/

Nonlinear q-fractional differential equations with
nonlocal and sub-strip type boundary conditions

Bashir AhmadB 1, Sotiris K. Ntouyas∗2, Ahmed Alsaedi1

and Hana Al-Hutami1

1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia

2Department of Mathematics, University of Ioannina 451 10, Ioannina, Greece

Received 3 January 2014, appeared 5 June 2014

Communicated by Michal Fečkan
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1 Introduction

In this paper, we introduce a sub-strip type boundary condition of the form

x(ξ) = b
∫ 1

η
x(s) dqs, 0 < ξ < η < 1,

which relates the contribution due to a sub-strip of arbitrary length with the value of the
unknown function at an arbitrary (nonlocal) point off the sub-strip. Precisely, we consider
the following boundary value problem of nonlinear fractional q-difference equations with
nonlocal and sub-strip type boundary conditions:

cDυ
q x(t) = f (t, x(t)), t ∈ [0, 1], 1 < υ ≤ 2, 0 < q < 1,

x(0) = x0 + g(x), x(ξ) = b
∫ 1

η
x(s) dqs, 0 < ξ < η < 1,

(1.1)
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where cDυ
q denotes the Caputo fractional q-derivative of order υ, f : [0, 1] × R → R and

g : C([0, 1], R) → R are given continuous functions, and b is a real constant. Here we em-
phasize that the nonlocal conditions are more plausible than the standard initial conditions to
describe some physical phenomena. In (1.1), g(x) may be understood as g(x) = ∑

p
j=1 αjx(tj)

where αj, j = 1, . . . , p, are given constants and 0 < t1 < . . . < tp ≤ 1. For more details we refer
to the work by Byszewski [1, 2].

Recent extensive studies on fractional boundary value problems indicate that it is one of
the hot topics of the present-day research. There have appeared numerous articles covering
a variety of aspects of these problems. The nonlocal nature of a fractional order differential
operator, which takes into account hereditary properties of various material and processes,
has helped to improve the mathematical modelling of many real world problems of physical
and technical sciences [3, 4]. For some recent work on the topic, please see [5–13] and the
references therein.

Fractional q-difference (q-fractional) equations are regarded as the fractional analogue of q-
difference equations. Motivated by recent interest in the study of fractional-order differential
equations, the topic of q-fractional equations has attracted the attention of many researchers.
The details of some recent development of the subject can be found in [14–20], whereas the
background material on q-fractional calculus can be found in a recent text [22].

The paper is organized as follows. In Section 2, we recall some fundamental concepts of
fractional q-calculus and establish a lemma for the linear variant of the given problem. Section
3 contains the existence results for the problem (1.1) which are shown by applying Banach’s
contraction principle and a fixed point theorem due to O’Regan. In Section 4, we consider
a new problem with a condition of the form Dqx(ξ) = b

∫ 1
η x(s) dqs (flux sub-strip condition)

instead of x(ξ) = b
∫ 1

η x(s) dqs in (1.1). Finally, some examples illustrating the applicability of
our results are presented in Section 5.

2 Preliminaries

First of all, we recall the notations and terminology for q-fractional calculus [21–23].
For a real parameter q ∈ R+ \ {1}, a q-real number denoted by [a]q is defined by

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the Pochhammer symbol (q-shifted factorial) is defined as

(a; q)0 = 1, (a; q)k =
k−1

∏
i=0

(1− aqi), k ∈N∪ {∞}.

The q-analogue of the exponent (x− y)k is

(x− y)(0) = 1, (x− y)(k) =
k−1

∏
j=0

(x− yqj), k ∈N, x, y ∈ R.

The q-gamma function Γq(y) is defined as

Γq(y) =
(1− q)(y−1)

(1− q)y−1 ,

where y ∈ R \ {0,−1,−2, . . .}. Observe that Γq(y + 1) = [y]qΓq(y).
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Definition 2.1 ([21]). Let f be a function defined on [0, 1]. The fractional q-integral of the
Riemann–Liouville type of order β ≥ 0 is (I0

q f )(t) = f (t) and

Iβ
q f (t) :=

∫ t

0

(t− qs)(β−1)

Γq(β)
f (s) dqs = tβ(1− q)β

∞

∑
k=0

qk (q
β; q)k

(q; q)k
f (tqk), β > 0, t ∈ [0, 1].

Observe that β = 1 in the Definition 2.1 yields q-integral

Iq f (t) :=
∫ t

0
f (s)dqs = t(1− q)

∞

∑
k=0

qk f (tqk).

For more details on q-integral and fractional q-integral, see Section 1.3 and Section 4.2 respec-
tively in [22].

Remark 2.2. The q-fractional integration possesses the semigroup property ([22, Proposition
4.3]):

Iγ
q Iβ

q f (t) = Iβ+γ
q f (t); γ, β ∈ R+.

Further, it was shown in Lemma 6 of [23] that

Iβ
q (x)(σ) =

Γq(σ + 1)
Γq(β + σ + 1)

(x)(β+σ), 0 < x < a, β ∈ R+, σ ∈ (−1, ∞).

Before giving the definition of fractional q-derivative, we recall the concept of q-derivative.
We know that the q-derivative of a function f (t) is defined as

(Dq f )(t) =
f (t)− f (qt)

t− qt
, t 6= 0, (Dq f )(0) = lim

t→0
(Dq f )(t).

Furthermore,

D0
q f = f , Dn

q f = Dq(Dn−1
q f ), n = 1, 2, 3, . . . (2.1)

Definition 2.3 ([22]). The Caputo fractional q-derivative of order β > 0 is defined by

cDβ
q f (t) = Idβe−β

q Ddβeq f (t),

where dβe is the smallest integer greater than or equal to β.

Next we recall some properties involving Riemann–Liouville q-fractional integral and
Caputo fractional q-derivative ([22, Theorem 5.2]).

Iβ
q

cDβ
q f (t) = f (t)−

dβe−1

∑
k=0

tk

Γq(k + 1)
(Dk

q f )(0+), ∀ t ∈ (0, a], β > 0; (2.2)

cDβ
q Iβ

q f (t) = f (t), ∀ t ∈ (0, a], β > 0. (2.3)

Lemma 2.4. Let y ∈ C([0, 1], R). Then the following problem
cDυ

q x(t) = y(t), 1 < υ ≤ 2,

x(0) = y0, x(ξ) = b
∫ 1

η
x(s)dqs, y0 ∈ R, t ∈ [0, 1],

(2.4)
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is equivalent to an integral equation:

x(t) =
∫ t

0

(t− qs)(υ−1)

Γq(υ)
y(s)dqs

+
t
B

{
b
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
y(u)dqu

)
dqs−

∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
y(s)dqs

}

+ y0

[
1 +

t
B
(
b(1− η)− 1

)]
,

(2.5)

where

B = ξ − b(1− η2)

1 + q
6= 0. (2.6)

Proof. Applying the operator Iυ
q on the equation cDυ

q x(t) = y(t) and using (2.2), we get

x(t) =
∫ t

0

(t− qs)(υ−1)

Γq(υ)
y(s) dqs + a0t + a1, (2.7)

where a0, a1 ∈ R are arbitrary constants. Using the given boundary conditions, it is found
that a1 = y0, and

a0 =
1
B

{
b
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
y(u)dqu

)
dqs−

∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
y(s) dqs

}
+

y0

B

(
b(1− η)− 1

)
.

(2.8)

Substituting the values of a0, a1 in (2.7) yields (2.5). Conversely, applying the operator cDυ
q on

(2.5) and taking into account (2.3), it follows that cDυ
q x(t) = y(t). From (2.5), it is easy to verify

that the boundary conditions x(0) = y0, x(ξ) = b
∫ 1

η x(s) dqs are satisfied. This establishes
the equivalence between (2.4) and (2.5).

3 Main results

We denote by C = C([0, 1], R) the Banach space of all continuous functions from [0, 1] → R

endowed with a topology of uniform convergence with the norm defined by

‖x‖ = sup{|x(t)| : t ∈ [0, 1]}.

Also by L1([0, 1], R) we denote the Banach space of measurable functions x : [0, 1]→ R which
are Lebesgue integrable and normed by ‖x‖L1 =

∫ 1
0 |x(t)| dt.

In view of Lemma 2.4, we can transform the problem (1.1) into an equivalent fixed point
problem: Fx = x, where the operator F : C → C is defined by

(Fx)(t) =
∫ t

0

(t− qs)(υ−1)

Γq(υ)
f (s, x(s)) dqs

+
t
B

{
b
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
f (u, x(u))dqu

)
dqs

−
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
f (s, x(s)) dqs

}

+
[
1 +

t
B
(
b(1− η)− 1

)]
(x0 + g(x)), t ∈ [0, 1].

(3.1)
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Observe that the existence of a fixed point for the operator F implies the existence of a solution
for the problem (1.1).

For convenience we introduce the notations:

µ0 :=
1

Γq(υ + 1)
+

1
|B|

{
|b|(1− ηυ+1)

Γq(υ + 2)
+

ξυ

Γq(υ + 1)

}
, (3.2)

and
k0 := 1 +

1
|B| |b(1− η)− 1|. (3.3)

Furthermore, we assume that the condition (2.6): B = ξ − b(1−η2)
1+q 6= 0 holds throughout the

forthcoming analysis.

Theorem 3.1. Assume that

(A1) f : [0, 1]×R→ R be a continuous function such that

| f (t, x)− f (t, y)| ≤ L|x− y|, ∀t ∈ [0, 1], L > 0, x, y ∈ R;

(A2) g : C([0, 1], R)→ R is a continuous function satisfying the condition

|g(u)− g(v)| ≤ `‖u− v‖ ∀ u, v ∈ C([0, 1], R), ` > 0;

(A3) δ := Lµ0 + k0` < 1.

Then the boundary value problem (1.1) has a unique solution.

Proof. For x, y ∈ C and for each t ∈ [0, 1], from the definition of F and assumptions (A1) and
(A2), we obtain

|(Fx)(t)− (Fy)(t)|

≤
∫ t

0

(t− qs)(υ−1)

Γq(υ)
| f (s, x(s))− f (s, y(s))|dqs

+
1
|B|

{
|b|
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
| f (u, x(u))− f (u, y(u))|dqu

)
dqs

+
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
| f (s, x(s))− f (s, y(s))|dqs

}

+

[
1 +

1
|B| |b(1− η)− 1|

]
|g(x)− g(y)|

≤ L‖x− y‖
[ ∫ t

0

(t− qs)(υ−1)

Γq(υ)
dqs +

1
|B|

{
|b|
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
dqu
)

dqs

+
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
dqs

}]

+

[
1 +

1
|B| |b(1− η)− 1|

]
`‖x− y‖

≤ L‖x− y‖
[

1
Γq(υ + 1)

+
1
|B|

{
|b|(1− ηυ+1)

Γq(υ + 2)
+

ξυ

Γq(υ + 1)

}]



6 B. Ahmad, S. K. Ntouyas, A. Alsaedi and H. Al-Hutami

+

[
1 +

1
|B| |b(1− η)− 1|

]
`‖x− y‖

=
(

Lµ0 + k0`
)
‖x− y‖.

Hence
‖(Fx)− (Fy)‖ ≤ δ‖x− y‖.

As δ < 1 by (A3), the operator F is a contraction map from the Banach space C into itself.
Hence the conclusion of the theorem follows by the contraction mapping principle (Banach
fixed point theorem).

Our next existence result relies on a fixed point theorem due to O’Regan in [24].

Lemma 3.2. Let U be an open set in a closed, convex set C of a Banach space E. Assume 0 ∈ U. Also
assume that F (Ū) is bounded and that F : Ū → C is given by F = F1 + F2, in which F1 : Ū → E
is continuous and completely continuous and F2 : Ū → E is a nonlinear contraction (i.e., there exists
a continuous nondecreasing function ϑ : [0, ∞) → [0, ∞) satisfying ϑ(z) < z for z > 0, such that
‖F2(x)−F2(y)‖ ≤ ϑ(‖x− y‖) for all x, y ∈ Ū). Then, either

(C1) F has a fixed point u ∈ Ū; or

(C2) there exist a point u ∈ ∂U and κ ∈ (0, 1) with u = κF (u), where Ū and ∂U, respectively,
represent the closure and boundary of U on C.

In the sequel, we will use Lemma 3.2 by taking C to be E. For more details of such fixed
point theorems, we refer a paper [25] by Petryshyn.

To apply Lemma 3.2, we define Fi : C → C, i = 1, 2 by

(F1x)(t) =
∫ t

0

(t− qs)(υ−1)

Γq(υ)
f (s, x(s)) dqs

+
t
B

{
b
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
f (u, x(u)) dqu

)
dqs

−
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
f (s, x(s)) dqs

}
,

(3.4)

and
(F2x)(t) =

[
1 +

t
B
(
b(1− η)− 1

)]
(x0 + g(x)). (3.5)

Clearly
(Fx)(t) = (F1x)(t) + (F2x)(t), t ∈ [0, 1]. (3.6)

Theorem 3.3. Suppose that (A2) holds. In addition, we assume that:

(A4) g(0) = 0;

(A5) Let f : [0, 1] × R → R be a continuous function, and there exist a nonnegative function
p ∈ C([0, 1], R) and a nondecreasing function χ : [0, ∞)→ (0, ∞) such that

| f (t, u)| ≤ p(t)χ(|u|) for any (t, u) ∈ [0, 1]×R;



Nonlinear q-fractional differential equations 7

(A6) sup
r∈(0,∞)

r
k0|x0|+ µ0χ(r)‖p‖ >

1
1− k0`

, where µ0 and k0 are defined in (3.2) and (3.3) respec-

tively.

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. By the assumption (A6), there exists a number r0 > 0 such that

r0

k0|x0|+ µ0χ(r0)‖p‖ >
1

1− k0`
. (3.7)

We shall show that the operators F1 and F2 defined by (3.4) and (3.5) respectively, satisfy all
the conditions of Lemma 3.2.

Step 1. The operator F1 is continuous and completely continuous. Let us consider the set

Ω̄r0 = {x ∈ C([0, 1], R) : ‖x‖ ≤ r0},

and show that F1(Ω̄r0) is bounded. For any x ∈ Ω̄r0 , we have

‖F1x‖ ≤
∫ t

0

(t− qs)(υ−1)

Γq(υ)
| f (s, x(s))| dqs

+
1
|B|

{
|b|
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
| f (u, x(u))|dqu

)
dqs

+
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
| f (s, x(s))| dqs

}

≤ ‖p‖χ(r0)

[
1

Γq(υ + 1)
+

1
|B|

{
|b|(1− ηυ+1)

Γq(υ + 2)
+

ξυ

Γq(υ + 1)

}]
≤ ‖p‖χ(r0)µ0.

Thus the operator F1(Ω̄r0) is uniformly bounded. For any t1, t2 ∈ [0, 1], t1 < t2, we have

|(F1x)(t2)− (F1x)(t1)|

≤ 1
Γq(υ)

∫ t1

0
[(t2 − qs)(υ−1) − (t1 − qs)(υ−1)]| f (s, x(s))| dqs

+
1

Γq(υ)

∫ t2

t1

(t2 − qs)(υ−1)| f (s, x(s))| dqs

+
|t2 − t1|
|B|

{
|b|
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γ(υ)
| f (u, x(u))|dqu

)
dqs

+
∫ ξ

0

(ξ − qu)(υ−1)

Γq(υ)
| f (s, x(s))| dqs

}

≤ ‖p‖χ(r0)

Γq(υ)

∫ t1

0
[(t2 − qs)(υ−1) − (t1 − qs)(υ−1)] dqs +

‖p‖χ(r0)

Γq(υ)

∫ t2

t1

(t2 − qs)(υ−1) dqs

+
‖p‖χ(r0)|t2 − t1|

|B|

{
|b|
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
dqu
)

dqs +
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
dqs

}
which is independent of x and tends to zero as t2− t1 → 0. Thus, F1 is equicontinuous. Hence,
by the Arzelà–Ascoli theorem, F1(Ω̄r0) is a relatively compact set. Now, let xn ⊂ Ω̄r0 with
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‖xn− x‖ → 0. Then the limit ‖xn(t)− x(t)‖ → 0 is uniformly valid on [0, 1]. From the uniform
continuity of f (t, x) on the compact set [0, 1]× Ω̄r0 , it follows that ‖ f (t, xn(t))− f (t, x(t))‖ → 0
is uniformly valid on [0, 1]. Hence ‖F1xn −F1x‖ → 0 as n → ∞ which proves the continuity
of F1. This completes the proof of Step 1.

Step 2. The operator F2 : Ω̄r0 → C([0, 1], R) is contractive. This is a consequence of (A2).
Step 3. The set F (Ω̄r0) is bounded. The assumptions (A2) and (A4) imply that

‖F2(x)‖ ≤ k0(|x0|+ `r0),

for any x ∈ Ω̄r0 . This, with the boundedness of the set F1(Ω̄r0) implies that the set F (Ω̄r0) is
bounded.

Step 4. Finally, it will be shown that the case (C2) in Lemma 3.2 does not hold. On the contrary,
we suppose that (C2) holds. Then, we have that there exist κ ∈ (0, 1) and x ∈ ∂Ωr0 such that
x = κFx. So, we have ‖x‖ = r0 and

x(t) = κ
∫ t

0

(t− qs)(υ−1)

Γq(υ)
f (s, x(s)) dqs

+
κt
B

{
b
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
f (u, x(u))dqu

)
dqs−

∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
f (s, x(s)) dqs

}

+ κ
[
1 +

t
B
(
b(1− η)− 1

)]
(x0 + g(x)), t ∈ [0, 1].

Using the assumptions (A2) and (A4)–(A6), we get

|x(t)| ≤ ‖p‖χ(‖x‖)
[ ∫ 1

0

(t− qs)(υ−1)

Γq(υ)
dqs +

1
|B|

{
|b|
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
dqu
)

dqs

+
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
dqs

}]
+
[
1 +

1
|B|

(
b(1− η)− 1

)]
(|x0|+ `‖x‖).

Taking the supremum over t ∈ [0, 1], and using the definition of Ω̄r0 , we obtain

r0 ≤ ‖p‖χ(r0)

[ ∫ 1

0

(1− qs)(υ−1)

Γq(υ)
dqs +

1
|B|

{
|b|
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
dqu
)

dqs

+
∫ ξ

0

(ξ − qs)(υ−1)

Γq(υ)
dqs

}]
+
[
1 +

1
|B|

(
b(1− η)− 1

)]
(|x0|+ `r0),

which yields
r0 ≤ µ0χ(r0)‖p‖+ k0|x0|+ `r0k0.

Thus, we get a contradiction:

r0

µ0χ(r0)‖p‖+ k0|x0|
≤ 1

1− k0`
.

Thus the operators F1 and F2 satisfy all the conditions of Lemma 3.2. Hence, the operator F
has at least one fixed point x ∈ Ω̄r0 , which is the solution of the problem (1.1). This completes
the proof.
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Remark 3.4. If we consider the equation of the form (cDυ
q + λ)x(t) = f (t, x(t)), λ ∈ R

in the problem (1.1), then the condition (A3) in the statement of Theorem 3.1 modifies to
δ := (L + λ)µ0 + k0` < 1 whereas the condition (A6) in the statement of Theorem 3.3 takes
the form

sup
r∈(0,∞)

r
k0|x0|+ µ0χ(r)‖p‖ >

1
1− (|λ|µ0 + k0`)

.

We emphasize that the equations similar to one considered in this remark appear in applied
problems, for example, see [26, 27].

4 A boundary value problem with flux sub-strip conditions

In this section, we discuss the existence of solutions for a boundary value problem of nonlinear
fractional q-difference equations with nonlocal and flux sub-strip type boundary conditions.
Precisely, we consider the following boundary value problem

cDυ
q x(t) = f (t, x(t)), t ∈ [0, 1], 1 < υ ≤ 2, 0 < q < 1

x(0) = x0 + g(x), Dqx(ξ) = b
∫ 1

η
x(s) dqs, 0 < ξ < η < 1,

(4.1)

where cDυ
q denotes the Caputo fractional q-derivative of order υ, f : [0, 1] × R → R and

g : C([0, 1], R)→ R are given continuous functions, and b, λ are real constants.
As before, we can convert the problem (4.1) into an equivalent fixed point problem as

F ′x = x, where the operator F ′ : C → C is defined by

(F ′x)(t) =
∫ t

0

(t− qs)(υ−1)

Γq(υ)
f (s, x(s)) dqs

+
t
B

{
b
∫ 1

η

( ∫ s

0

(s− qu)(υ−1)

Γq(υ)
f (u, x(u)) dqu

)
dqs

−
∫ ξ

0

(ξ − qs)(υ−2)

Γq(υ− 1)
f (s, x(s)) dqs

}
+
[
1 +

t
B

b(1− η)
]
(x0 + g(x)).

For the sequel, we set

µ′0 :=
1

Γq(υ + 1)
+

1
|B|

{
|b|(1− ηυ+1)

Γq(υ + 2)
+

ξυ−1

Γq(υ)

}
, (4.2)

k′0 := 1 +
∣∣∣ b
B

∣∣∣(1− η). (4.3)

Now we are in a position to give the existence results for the problem (4.1). We do not
provide the proofs for these results as the method of proof is similar to the one employed in
the preceding section.

Theorem 4.1. Let the assumptions (A1)–(A3) hold with µ′0 and k′0 in place of µ0 and k0, where µ′0
and k′0 are given by (4.2) and (4.3) respectively. Then the boundary value problem (4.1) has a unique
solution.

Theorem 4.2. Assume that (A2), (A4)–(A6) hold with µ′0 and k′0 in place of µ0 and k0, where µ′0 and
k′0 are given by (4.2) and (4.3) respectively. Then there exists at least one solution for the problem (4.1)
on [0, 1].



10 B. Ahmad, S. K. Ntouyas, A. Alsaedi and H. Al-Hutami

5 Examples

In this section we present some examples to illustrate our results.

Example 5.1. Consider the following q-fractional boundary value problem
cD3/2

q x(t) =
1
9

tan−1 x(t) + t2, t ∈ [0, 1],

x(0) =
1
3
+

1
12

tan−1(x(θ)), x
(

1
4

)
=

1
7

∫ 1

3/4
x(s) dqs.

(5.1)

Now, υ = 3/2, q = 1/2, b = 1/7, ξ = 1/4, η = 3/4, ` = 1/12, 0 < θ < 1, and f (t, x) =
1
9 tan−1 x + t2. Note that (A1) is satisfied with L = 1/9, since | f (t, x)− f (t, y)| ≤ (1/9)|x− y|.
It is found that B = 0.208333, µ0 ≈ 1.52327, k0 = 5.62857, and δ = Lµ0 + k0` ≈ 0.6383 < 1.
Thus, the conclusion of Theorem 3.1 applies and the boundary value problem (5.1) has a
unique solution on [0, 1].

Example 5.2. Consider the q-fractional boundary value problem given by
cD3/2

q x(t) =
1√

t + 25
e(1+| sin x(t)|), t ∈ [0, 1],

x(0) =
1
12

x(σ), x
(

1
4

)
=

1
5

∫ 1

3/4
x(s) dqs.

(5.2)

Here, υ = 3/2, q = 1/2, b = 1/5, ξ = 1/4, η = 3/4, ` = 1/12, 0 < σ < 1, and
f (t, x) = 1√

t+25
e(1+| sin x(t)|). With the given values, it is found that B = 0.191667, µ0 ≈ 1.66069,

k0 = 5.95652 and the condition

r0

k0|x0|+ µ0χ(r0)‖p‖ >
1

1− k0`

implies that r0 > 4.87306. Clearly all the conditions of Theorem 3.3 are satisfied and hence by
the conclusion of Theorem 3.3, the problem (5.2) has a solution on [0, 1].
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and Mittag-Leffler function, Fract. Calc. Appl. Anal. 10(2007), 359–373. MR2378985

[24] D. O’Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett. 9(1996),
1–8. MR1389589

[25] W. V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Rational
Mech. Anal. 40(1970/1971), 312–328. MR0273480

[26] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A
372(2008), 6309–6320. MR2462401

[27] W. Okrasinski, L. Plociniczak, A nonlinear mathematical model of the corneal shape,
Nonlinear Anal. Real World Appl. 13(2012), 1498–1505. MR2863975

http://www.ams.org/mathscinet-getitem?mr=0247389
http://www.ams.org/mathscinet-getitem?mr=2963764
http://www.ams.org/mathscinet-getitem?mr=2378985
http://www.ams.org/mathscinet-getitem?mr=1389589
http://www.ams.org/mathscinet-getitem?mr=0273480
http://www.ams.org/mathscinet-getitem?mr=2462401
http://www.ams.org/mathscinet-getitem?mr=2863975

	Introduction
	Preliminaries
	Main results 
	A boundary value problem with flux sub-strip conditions
	Examples

