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Abstract

In this paper we present a method for the numerical approximation of the

smallest eigenvalue of a nonlinear eigenvalue problem using the finite element

method. Numerical results are presented for some special domains when the

domain is bounded by a square, a ”circle”, a ”semicircle”, or a quadrant of

a ”circle”. We compare the exact solutions with the approximate solutions

when the exact solutions are known. We show a connection among the first

eigenvalues related to different domains.

1 Introduction

Consider the eigenvalue problem

−Qp = λ |u|
p−1

u in Ω, (1)

u = 0 on ∂Ω,

where Ω is a convex domain in R2 and Qp is the nonlinear operator defined by

Qp =
∂

∂x

(∣∣∣∣
∂u

∂x

∣∣∣∣
p−1

∂u

∂x

)
+

∂

∂y

(∣∣∣∣
∂u

∂y

∣∣∣∣
p−1

∂u

∂y

)
for 0 < p < ∞.

It is known ( see [2]) that (1) has a sequence of weak solutions (λk(p), uk(p)) in
R×W

1,p+1
0 (Ω) , where 0 < λk(p) < λk+1(p), k = 1, 2, ... .The first eigenvalue can

be defined by the variational principle

λ1(p) = inf
u ∈ W

1,p+1
0 (Ω)

∫
Ω

(
|ux|

p+1 + |uy|
p+1
)

dx

∫
Ω

|u|
p+1

dx
=

= inf
u ∈ W

1,p+1
0 (Ω)

‖u‖p+1 = 1

∫

Ω

(
|ux|

p+1 + |uy|
p+1
)

dx. (2)

The weak formulation of (1) is

∫

Ω

(|ux|
p−1

uxvx + |uy|
p−1

uyvy)dx = λ1(p)

∫

Ω

|u|
p−1

uvdx (3)
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for any v ∈ W
1,p+1
0 (Ω) . The unique solution (λ1(p), u1(p)) of (3) which saisfies

‖u‖p+1 = 1 is called the first eigenpair of (3) . It is known that u1(p) is positive
[1]. From (3) we have got

λ1(p) =

∫

Ω

(
|(u1(p))x|

p+1
+ |(u1(p))y|

p+1
)

dx.

The knowledge of the first eigenvalue is of considerable importance for the
designer of safe and efficient structures. Such structures may appear in microphones,
bridges, ships, or space vehicles.

The quantity λ1(p) arises in a variety of situations where it is of interest to
know its value more precisely. For example λ1(p) is the principal frequency of Ω.
We conceive Ω as the equilibrium position of a stretched membrane fixed along the
boundary ∂Ω of Ω. The frequency of the gravest proper tone of this membrane
is p+1

√
λ1(p). In the linear case, λ1(1) is the classical principal eigenvalue of the

Poisson equation ∆u + λu = 0. The quantity λ1(p) depends on shape and
size of the domain Ω. This principal frequency of vibration has been calculated
for various domains. These are: circle, square, quadrant of circle, sector of a circle
60o, rectangle, equilateral triangle, semicircle [9], [10].

Lord Rayleigh stated that of all clamped membranes with a given area A, the
circle has the minimal principal frequency [10]. This property can be expressed by
the inequality

λ1(1) ≥
πj2

0

A
(4)

with equality only for the circle and where j0 is the first positive zero of the Bessel
function of the first kind J0(x). It was a conjecture, however Rayleigh supported
it not only by numerical evidence, but also by computing the principal frequency of
almost circular membranes. G. Faber [5] and E. Krahn [7] found independently
the same proof of Rayleigh’s conjecture. Another proof was given by G. Polya and
G. Szego [9] by using the Steiner symmetrization.

E. Krahn [8] showed that the Rayleigh inequality (4) can be extended to RN

in the form

λ1(1) ≥

[
V

AN

] 2
N

j2
N−2

2

,

where V is the volume of the unit ball in RN , AN is the volume of Ω ∈ RN

and j2
N−2

2

is the first zero of the Bessel function JN−2

2

.

In [1] a lower bound was given for the first eigenvalue of the nonlinear elliptic
eigenvalue problem (1) :

λ1(p) ≥

[
Pj2

0

A

]p+1

2

, P = 2
p

p + 1
B

(
p

p + 1
,

p

p + 1

)
, (5)

where A is the area of Ω ∈ R2, and j0 is the first positive zero of the generalized
nonlinear Bessel function J0(x). In (5) there is equality if and only if ∂Ω is the
curve defined by the equation

|x|
1
p
+1

+ |y|
1
p
+1

= r
1
p
+1, (6)

with suitable r ∈ R+ (Figure.1 with r = 1)
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This curve is called isoperimetrix which plays the same role in case of nonlinear
problem (1) as the circle in case of the Poisson equation. Therefore later we recall
this curve as ”circle”. In the case p = 1 the inequality (5) is equivalent to (4)
and P = π. Moreover we obtained that for the simply connected convex domain
Ω ∈ R2 the inequality

λ1(p) ≥

[
A + σ

(p + 1) %A

]p+1

holds, where % is the radius of the greatest inscribed isoperimetrix of Ω, and σ

is the area of the isoperimetrix of radius % [3].
The smallest first eigenvalue λ1(p) is evaluated for the so called ”circle” in case

of nonlinear problem (1). For the linear case (p = 1) the connection among the
first eigenvalues regarding to some special domains is given by Rayleigh [10].

In this paper we examine the first eigenvalues for different domains. The exact
solution is known only for a special domain (rectangular domain).It is not known
that the problem has classical solution on other domains except rectangle. On
such a domain we can obtain approximate solutions.We shall present a method for
numerical approximation of λ1(p) based on the finite element approximation to
u1(p). Some numerical results will be presented for different special domains when
Ω is bounded by a square, a ”circle”, a ”semicircle”, a quadrant of a ”circle”.
We compare the exact solutions with the approximate solutions when the exact
solutions are known. We show that the membranes of the same area the same
connection is valid for the first eigenvalues of the nonlinear problem as of the linear
problem (p = 1).

2 Preliminary results

For the Dirichlet eigenvalue problem (1) we can find classical solutions when D is
bounded by the rectangle

D = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b} .

The eigenvalues and eigenfunctions are

λk,l = pπ̃
p+1

(
kp+1

ap+1
+

lp+1

bp+1

)
, (7)
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uk,l = Ak,lSp

(
kπ̃

a
x

)
Sp

(
lπ̃

b
y

)
, k, l = 1, 2, ..., (8)

where

π̃ =
2 π

p+1

sin π
p+1

,

Ak,l = const., and the function Sp is the solution of the differential equation

Sp”
∣∣S′

p

∣∣p−1
+ |Sp|

p−1
Sp = 0

under conditions

Sp (0) = 0, Sp (π̃) = 0.

The function Sp is the generalized sine function which plays the same role in case
of nonlinear problem (1) as the sine function in case of Poisson equation. For p = 1

S1(x) = sinx, π̃ = π.

If the domain D is bounded by a unit square, as a corollary of the above, we
get the smallest eigenvalue λ1(p) and the corresponding eigenfunction u1(p) for
the Dirichlet eigenvalue problem of (1) if we put k = l = 1 in the expressions of
λk,l and uk,l:

λ1(p) = 2pπ̃
p+1

, (9)

u1(p) = A1,1Sp(π̃x)Sp(π̃y).

The exact value of the first eigenvalue for the linear eigenvalue problem (p = 1)
was given by Rayleigh [10]:

λ1(1) = 2π2 ≈ 19.7392.

3 Finite element formulation of the problem

Let Ω be a given convex open subset of R2 and let W 1,p+1 (Ω) denotes the space
of all functions which together with their derivatives ux, uy belong to Lp+1 (Ω) .

We define the norm in W 1,p+1 (Ω) by

‖u‖W 1,p+1(Ω) =




∫

Ω

(
|u|

p+1
+ |ux|

p+1
+ |uy|

p+1
)

dx





1
p+1

for all u ∈ W 1,p+1 (Ω) .

As usually, the symbol W
1,p+1
0 (Ω) stands for the subspace of W 1,p+1 (Ω) obtained

by closing the set of all C∞-functions with compact support in Ω. On the Sobolev
space W

1,p+1
0 (Ω) another norm can be defined by

‖u‖1,p+1 =




∫

Ω

(
|ux|

p+1
+ |uy|

p+1
)

dx





1
p+1
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which is equivalent to the norm ‖u‖W 1,p+1(Ω) . The usual norm in Lp+1 (Ω) is

denoted by ‖u‖p+1 =

(∫
Ω

|u|
p+1

dx

) 1
p+1

.

Now we form the the finite element approximation of the problem (1) and (2).
Let Vh (Ω) be the space of continuous linear functions based on regular triangu-
lation of Ω and the subspace of W

1,p+1
0 (Ω) as in [4]. The weak formulation of

the problem (1) was formulated in (3). The corresponding minimization problem
consists of finding the eigenpair (λ1h(p), uh) such that

λ1h(p) = inf
vh∈Vh(Ω)

∫
Ω

(
|vhx|

p+1
+ |vhy|

p+1
)

dx

∫
Ω

|vh|
p+1

dx
, (10)

and
∫

Ω

(|uhx|
p−1

uhxvhx + |uhy|
p−1

uhyvhy)dx = λ

∫

Ω

|uh|
p−1

uhvhdx (11)

for any vh ∈ Vh (Ω) .

The domain triangulation depends on the shape of the domain. For square
equal mesh sizes is used. For other domain the triangulation has to be generated
for each value of p and for each shape separately (Figure 2. the triangulation for
the quadrant of the so called circle is given when p = 3).
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4 Error estimation

Let the Rayleigh-Ritz projection of u ∈ W
1,p+1
0 (Ω) is denoted by Pu ∈ Vh (Ω)

and Pu is the unique finite element solution of

∫
Ω

(|Pux|
p−1

Puxvhx + |Puy|
p−1

Puyvhy)dx =

=
∫
Ω

(|ux|
p−1

uxvhx + |uy|
p−1

uyvhy)dx
(12)
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for given u ∈ W
1,p+1
0 (Ω) and for any vh ∈ Vh (Ω) . From Theorem 5.3.2 [4] follows

that

lim
h→0

‖u − Pu‖p+1 = 0. (13)

Lemma 1 Let (λ1, u1) be the first eigenpair of (1) and let

ε1h =

∣∣∣∣∣∣

∫

Ω

|u1|
p+1

dx −

∫

Ω

|Pu1|
p+1

dx

∣∣∣∣∣∣
.

Then

λ1h(p) ≤
λ1

1 − εh
1

provided ε1h < 1.

Proof. We suppose that Pu1 6= 0. If Pu1 = 0, then

ε1h =

∣∣∣∣
∫
Ω

|u1|
p+1

dx −
∫
Ω

|Pu1|
p+1

dx

∣∣∣∣ =
∫
Ω

|Pu1|
p+1

dx = 1 and condition ε1h <

1 is not satisfied. Applying (10) we get

λ1h(p) = inf
vh∈Vh(Ω)

∫
Ω

(
|vhx|

p+1
+ |vhy|

p+1
)

dx

∫
Ω

|vh|
p+1

dx
≤

∫
Ω

(
|Pu1x|

p+1
+ |Pu1y|

p+1
)

dx

∫
Ω

|Pu1|
p+1

dx

(14)

for Pu1 ∈ Vh (Ω) . Making use of (??) with vh = Pu1, the inequality [6] and the
Hölder inequality we obtain

∫
Ω

(
|Pu1x|

p+1
+ |Pu1y|

p+1
)

dx =
∫
Ω

(|u1x|
p−1

u1xPu1x + |u1y|
p−1

u1yPu1y)dx

≤
∫
Ω

[(
|u1x|

p+1 + |u1y|
p+1
) p

p+1
(
|Pu1x|

p+1 + |Pu1y|
p+1
) 1

p+1

]
dx

≤ ‖u1‖
p

1,p+1 ‖Pu1‖1,p+1

which leads to

‖Pu1‖
p+1
1,p+1 ≤ ‖u1‖

p

1,p+1 ‖Pu1‖1,p+1 ,

‖Pu1‖1,p+1 ≤ ‖u1‖
p
1,p+1 . (15)

Since
∫

Ω

|Pu1|
p+1

dx =

∫

Ω

|u1|
p+1

dx +

∫

Ω

( |Pu1|
p+1 − |u1|

p+1)dx ≥

≥ 1 −

∣∣∣∣∣∣

∫

Ω

(|Pu1|
p+1

− |u1|
p+1

)dx

∣∣∣∣∣∣
= 1 − ε1h
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we obtain the following estimate from (14) with (15)

λ1h(p) ≤

∫
Ω

(
|u1x|

p+1
+ |u1y|

p+1
)

dx

∫
Ω

|Pu1|
p+1

dx
≤

λ1

1 − ε1h

which has to be proved.

Lemma 2 There exists a constant α > 0 depending on p and u, such that

ε1h ≤ α ‖u1‖
p

1,p+1 ‖u1 − Pu1‖p+1 . (16)

Proof. Applying the inequality

∣∣xp+1 − yp+1
∣∣ ≤ (p + 1) |x − y| (|x|

p−1
x − |y|

p−1
y) for p > 0, x ≥ 0, y ≥ 0.

for ε1h we get

ε1h =

∣∣∣∣
∫
Ω

|u1|
p+1

dx −
∫
Ω

|Pu1|
p+1

dx

∣∣∣∣
≤ (p + 1) ‖u1 − Pu1‖p+1 (‖u1‖

p

p+1 + ‖Pu1‖
p

p+1).

By the Poincare inequality [1]

∫

Ω

|Pu1|
p+1

dx ≤ C1

∫

Ω

(
|Pu1x|

p+1
+ |Pu1y|

p+1
)

dx with C1 = const.

and (15) we have

ε1h ≤ (p + 1) ‖u1 − Pu1‖p+1 (‖u1‖
p

p+1 + C
p
1 ‖u1‖

p

p+1) ≤

≤ α ‖u1‖
p
p+1 ‖u1 − Pu1‖p+1 .

Thus we can give error estimates for the first eigenvalue

Theorem 3 Let (λ1, u1) be the first eigenpair of (1) and let (λ1h(p), u1h) is the
counterpart of (λ1, u1) for (10) and (11) then

lim
h→0

λ1h(p) = λ1. (17)

Proof. We can choose h small enough so that ε1h < 1
2 , then

1

1 − ε1h

≤ 1 + 2ε1h

and by Lemma1 we get

λ1 ≤ λ1h(p) ≤
λ1

1 − ε1h

≤ λ1(1 + 2ε1h).

Using Lemma 2 we obtain that

λ1 ≤ λ1(1 + 2ε1h) ≤

≤ λ1 + 2λ1α ‖u1‖
p
p+1 ‖u1 − Pu1‖p+1

which gives (17) with (13).
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5 Numerical results

The functions Ni, i = 1, 2, ..., m will denote a finite element basis of the m

dimensional space Vh, thus

Vh =





m∑

i=1

xiNi |(x1, x2, ..., xm) ∈ Rm





.

The finite element approximation of u1 is

uh =

m∑

i=1

xiNi = xT NT ,

∇uh =

m∑

i=1

∇(Nixi) = xT BT ,

and from the normalization formula
∫
Ω

|uh|
p+1

dx = 1 we obtain

∫

Ω

|N x|
p+1

dx = 1.

For arbitrary ũh = N x̃ = N (xa), where a 6= 0, we have got

∫

Ω

|ũh|
p+1

dx =

∫

Ω

|N xa|
p+1

dx =

∫

Ω

|N x|
p+1

|a|
p+1

dx,

therefore

|a| =




∫

Ω

|ũh|
p+1

dx





1
p+1

, and x =
x̃

a
.

After normalization we obtain

λ1h(p) =

∫

Ω

|B x|
p+1

dx. (18)

From ∂λh

∂xi
= 0 (i = 1, 2, ..., m) we get

0 =



∫

Ω

BT |B x|
p
dx





∫

Ω

|N x|
p+1

dx


 −



∫

Ω

|B x|
p+1

dx





∫

Ω

NT |N x|
p
dx




and using (18) we obtain

0 =

∫

Ω

BT |B x|
p
dx − λh

∫

Ω

NT |N x|
p
dx. (19)
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Since (19) is nonlinear we get

0 =

∫

Ω

BT |B xj |
p
dx − λh,j

∫

Ω

NT |N xj |
p
dx + p

∫

Ω

BT |B xj |
p−1

B dx (x − xj)

(20)

by using the Newton’s method for given xj . Applying the following notations

Hj = p

∫

Ω

BT |B xj |
p−1

B dx,

fN =

∫

Ω

NT |N xj |
p
dx,

fB =

∫

Ω

BT |B xj |
p
dx,

∆xj = (x − xj) ,

and we can write (20) as follows

Hj ∆xj = λ1h,jfN − fB .

In order to give initial values for the eigenfunction and eigenvalue we solve
a linear eigenvalue problem (p = 1). Then the non-linearity is gradually imposed
on the equations, that means, that p is increased or decreased up to the required
value.

We briefly describe the algorithm below
1. Start with an initial approximation x1 (x1 6= 0).
2. For given xj , calculate Hj ∆xj = λ1h,jfN − fB , then ∆xj .

3. Evaluate x̃j+1 = xj + ∆xj .

4. Evaluate xj+1 =
exj+1

"
R

Ω

|N xj+1|
p+1dx

# 1
p+1

.

5. Calculate λ1h,j+1 =
∫
Ω

|B xj+1|
p+1

dx.

6. Terminate when
|λ1h,j+1−λ1h,j |

λ1h,j+1
is smaller then a predetermined tolerance.

An experimental computer code written in FORTRAN source language was used
for the solution of the approximate eigenvalues. The eigenvalues are calculated by
h-version of the finite element method.

In the second section we showed solutions of the nonlinear eigenvalue problem
(1) for the unit square. Here the exact values of the first eigenvalues λ1 are known
as a function of p in (9) . Using the finite element method we calculated the
approximate values of λ1 for various values of p for different shape of domain
Ω in twodimension. These domains are the unit square, the ”unit circle” defined
in (6) , and the ”semicircle”, and the quadrant of the ”circle” with radius 1. The
exact values for λ1 are known from [10] for the linear case (p = 1) . In the tables
below we give the finite element approximations of the first eigenvalue for different
number of nodal points n, when the mesh size is different. The first computation
was made for the unit square. The values are reported in Table 1.
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p\n 9 16 64 256
0.5 14.1856 11.1788 10.7632 10.6683
0.75 18.5345 15.4269 14.8608 14.7285
1 24.0000 20.7733 19.9941 19.8027
2 64.0000 59.7528 57.5335 56.8420
3 164.5714 154.1444 148.9242 146.9674
5 1063.3840 890.3235 862.0190 850.2630

Table 1.

In case p = 1 the known value is λ1(1) = 2π2 ≈ 19.7392. Our approximation
differs from the known value by 0.32 %. In case of square domain we can evaluate
the relative error for any value of p since we have the formula (9) . The relative
error is less then 1 % when p ∈ [0.25, 10] . Similar formula is not known for the other
domains. Thus we can compare the approximate solution with the exact solution
only when p = 1. The approximate values are reported in Table 2 for the unit
”circle”.

p\n 67 227 835 3203
0.5 4.1774 4.0573 4.0277 4.0203
0.75 5.0962 4.9366 4.8978 4.8882
1 6.0646 5.8522 5.8004 5.7875
2 10.5134 10.0104 9.8780 9.8435
3 15.9061 15.0216 14.7739 14.7095
5 29.4856 27.6169 27.0521 26.8875

Table 2.

In the linear case the exact solution is 5.7831 [10]. Here the difference between
the exact and finite element solution is 0.08 %. For the ”semicircle” The calculated
values are presented in Table 3.

p\n 33 113 417 1601
0.5 8.2958 7.8851 7.7885 7.7645
0.75 11.5277 10.9784 10.8399 10.8066
1 15.7835 14.9546 14.7500 14.6989
2 50.7108 46.2403 44.9594 44.6189
3 150.3274 130.6471 124.0847 122.1544
5 1168.4845 921.3901 822.6043 788.0588

Table 3.

In the linear case the exact solution is given by 14.6842 [10]. The difference is
here 0.1 %. The numerical results for λ1 when the domain is bounded by the
quadrant of the ”circle” are given in Table 4.

p\n 19 61 217 817
0.5 13.2191 12.1671 11.9362 11.8787
0.75 19.7591 18.3118 17.9715 17.8864
1 29.3712 27.1025 26.5555 26.4198
2 144.0884 120.3870 115.2347 113.9156
3 735.6182 504.7015 462.9082 451.2033
5 18610.8737 8298.0772 6753.8355 6269.8435

Table 4.
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The known value is 26.3682 for p = 1, and the difference is 0.2 %.
The following table gives the relative frequency in certain cases for the gravest

tone of membranes under similar mechanical conditions and of equal area (Table
5.). We can conclude that for any value p from [0.5, 5] the ”circular” membrane
has the gravest mode similarly as in the linear case [10].

p ”circle” square quadrant of ”circle” ”semicircle”
0.5 4.7525 4.8368 4.8929 5.2117
0.75 4.5075 4.6429 4.7297 5.0154
1 4.2629 4.4429 4.5552 4.8039
2 3.5461 3.8389 4.0105 4.1498
3 3.1221 3.4767 3.6738 3.7477
5 2.6546 3.0741 3.2931 3.2961

Table 5.
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