
Electronic Journal of Qualitative Theory of Differential Equations

2007, No. 27, 1-22; http://www.math.u-szeged.hu/ejqtde/

Nonlinear Parabolic Problems with

Neumann-type Boundary Conditions and L
1-data

Abderrahmane El Hachimi(1) and Ahmed Jamea(2)
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Abstract

In this paper, we study existence, uniqueness and stability questions
for the nonlinear parabolic equation:

∂u

∂t
−4pu + α(u) = f in ]0, T [×Ω,

with Neumann-type boundary conditions and initial data in L1. Our
approach is based essentially on the time discretization technique by Euler
forward scheme.
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1 Introduction

In this work, we treat the nonlinear parabolic problem

∂u

∂t
−4pu + α(u) = f in QT :=]0, T [×Ω,

|Du|p−2 ∂u

∂η
+ γ(u) = g on ΣT :=]0, T [×∂Ω,

u(0, .) = u0 in Ω,

(1)

where ∆pu = div
(

|Du|p−2Du
)

, 1 < p < ∞, Ω is a connected open bounded set
in R

d, d ≥ 3, with a connected Lipschitz boundary ∂Ω, T is a fixed positive real
number and α, γ are taken as continuous non decreasing real functions every-
where defined on R with α(0) = γ(0) = 0. We will have in mind especially the
case when initial data in L1.
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The usual weak formulations of parabolic problems with initial data in L1 do
not ensure existence and uniqueness of solutions. There then arose formulations
which were more suitable than that of weak solutions. Through that work it is
hoped that we can arrive at a definition of solution so that we can prove exis-
tence and uniqueness. For that, three notions of solutions have been adopted:
Solutions named SOLA ( Solution Obtained as the Limit of Approximations)
defined by A. Dallaglio [6]. Renormalized solutions defined by R. Diperna and
P. L. Lions [7]. Entropy solutions defined by Ph. Bénilan, L. Boccardo, T. Gal-
louet, R. Gariepy, M. Pierre, J.L. Vazquez in [4]. We will have interested here at
entropy formulation. Many authors are interested has this type of formulations,
see for example [1, 2, 3, 4, 19, 20, 25, 26].

The problem (1) is treated by F. Andereu, J. M. Mazón, S. Segura De león,
J. Teledo [1] in the homogeneous case, i.e. f = 0, g = 0 and α = 0, with γ

is a maximal monotone graph in R × R and 0 ∈ γ(0). Hulshof [12] considers
the case where α is a uniformly Lipschitz continuous function, α(r) = 1 for
r ∈ R

+, α ∈ C1(R−), α′ > 0 on R
− and limr→−∞ α(r) = 0 and some particular

functions g. In [13], N. Igbida studies the case where α is the Heaviside maximal
monotone graph. For p = 2, we obtain the heat equation, this equation is stud-
ied by many authors, see for example [14, 23] and the references therein. The
elliptic case of problem (1) has been treated by many authors, see for example
[3, 25, 26, 17], and the references therein.

We apply here a time discretization of given continuous problem by Euler
forward scheme and we study existence, uniqueness and stability questions. We
recall that the Euler forward scheme has been used by several authors while
studying time discretization of nonlinear parabolic problems and we refer to
the works [8, 9, 10, 15] for some details. This scheme is usually used to prove
existence of solutions as well as to compute the numerical approximations.

The problem (1), or some special cases of it, arises in many different physical
contexts, for example: Heat equation, non Newtonian fluids, diffusion phenom-
ena, etc.

This paper is organized as follows: after some preliminary results in section
2, we discretize the problem (1) in section 3 by the Euler forward scheme and
replace it by

Un − τ4pU
n + τα(Un) = τfn + Un−1 in Ω,

|DUn|p−2 ∂Un

∂η
+ γ(Un) = gn on ∂Ω,

U0 = u0 in Ω,

and show the existence and uniqueness of entropy solutions to the discretized
problems. Section 4 is devoted to the analysis of stability of the discretized
problem and in section 5 we study the asymptotic behavior of the solutions of the
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discrete dynamical system associated with the discretized problems. We shall
finish this paper by showing the existence and uniqueness of entropy solution
to the parabolic problem (1).

2 Preliminaries and Notations

In this section we give some notations, definitions and useful results we shall
need in this work.
For a measurable set Ω of R

d, |Ω| denotes its measure, the norm in Lp(Ω) is
denoted by ‖.‖p and ‖.‖1,p denotes the norm in the Sobolev space W 1,p(Ω), Ci

and C will denote various positive constants. For a Banach space X and a < b,

Lp(a, b; X) denotes the space of the measurable functions u : [a, b] → X such
that

(

∫ b

a

‖u(t)‖p
X

)
1
p

:= ‖u‖Lp(a,b;X) < ∞.

For a given constant k > 0 we define the cut function Tk : R → R as

Tk(s) :=

{

s if |s| ≤ k,

k sign (s) if |s| > k,

where

sign (s) :=











1 if s > 0,

0 if s = 0,

−1 if s < 0.

For a function u = u(x), x ∈ Ω, we define the truncated function Tku pointwise,
i.e., for every x ∈ Ω the value of (Tku) at x is just Tk(u(x)).
Let the function Jk : R → R

+ such that

Jk(x) =

∫ x

0

Tk(s)ds

(Jk it is the primitive function of Tk). We have

<
∂v

∂t
, Tk(v) >=

d

dt

∫

Ω

Jk(v) in L1(]0, T [), (2)

what implies that

∫ t

0

<
∂v

∂s
, Tk(v) >=

∫

Ω

Jk(v(t)) −

∫

Ω

Jk(v(0)). (3)

For u ∈ W 1,p(Ω), we denote by τu or u the trace of u on ∂Ω in the usual sense.
In ([4]) the authors introduce the following spaces

• T 1,1
loc (Ω) =

{

u : Ω → R measurable : Tk(u) ∈ W
1,1
loc (Ω), for all k > 0

}

,
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• T 1,p
loc (Ω) =

{

u ∈ T 1,1
loc (Ω) : DTk(u) ∈ L

p
loc(Ω), for all k > 0

}

,

• T 1,p(Ω) =
{

u ∈ T 1,p
loc (Ω) : DTk(u) ∈ Lp(Ω), for all k > 0

}

.

For bounded Ω′s, we have

T 1,p(Ω) =
{

u : Ω → R measurable Tk(u) ∈ W 1,p(Ω), for all k > 0
}

.

Following [4], It is possible to give a sense to the derivative Du of a function
u ∈ T 1,p

loc (Ω), generalizing the usual concept of weak derivative in W
1,1
loc (Ω),

thanks to the following result

Lemma 1 ([4]) For every u ∈ T 1,p
loc (Ω) there exist a unique measurable function

v : Ω → R
d such that

DTk(u) = v1{|v|<k} a.e,

where 1B is the characteristic function of the measurable set B ⊂ R
d.

Furthermore, u ∈ W
1,1
loc (Ω) if and only if v ∈ L1

loc(Ω), and then v ≡ Du in the
usual weak sense.

We apply also the sets T 1,p
tr (Ω) introduced in [2] as being the subset of functions

in T 1,p(Ω) for which a generalized notion of trace may be defined. More precisely
u ∈ T 1,p

tr (Ω) if u ∈ T 1,p(Ω) and there exist a sequence (un)n∈N in W 1,p(Ω) and
a measurable function v on ∂Ω such that

a) un → u a.e. in Ω,

b) DTk(un) → DTk(u) in L1(Ω) for every k > 0,

c) un → v a.e. on ∂Ω.

The function v is the trace of u in the generalized sense introduced in [2]. For
u ∈ T 1,p

tr (Ω), the trace of u on ∂Ω is denoted by tr(u) or u, the operator tr(.)
satisfied the following properties

i) if u ∈ T 1,p
tr (Ω), then τTk(u) = Tk(tr(u)), ∀k > 0,

ii) if ϕ ∈ W 1,p(Ω) ∩ L∞(Ω), then ∀u ∈ T 1,p
tr (Ω), we have u − ϕ ∈ T 1,p

tr (Ω)
and tr(u − ϕ) = tr(u) − τϕ.

In the case where u ∈ W 1,p(Ω), tr(u) coincides with τu.
Obviously, we have

W 1,p(Ω) ⊂ T 1,p
tr (Ω) ⊂ T 1,p(Ω).

In [25], with Nonlinear Semigroup Theory, A. Siai demonstrated the following
theorem
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Theorem 2.1 ([25]) If β, γ are non decreasing continuous functions on R such
that β(0) = γ(0) = 0 and f ∈ L1(Ω), g ∈ L1(∂Ω), then there exists an entropy
solution u ∈ T

1,p
tr (Ω) to the problem

− div[a(., Du)] + β(u) = f in Ω

∂u

∂νa
+ γ(τu) = g on ∂Ω

(4)

i.e. ∀ϕ ∈ C∞
0 (RN )

∫

Ω

a(., Du)DTk(u−ϕ)+

∫

Ω

α(u)Tk(u−ϕ)+

∫

∂Ω

γ(u)Tk(u−ϕ) ≤

∫

Ω

fTk(u−ϕ)

+

∫

∂Ω

gTk(u − ϕ),

with (β(u), γ(τu)) ∈ L1(Ω) × L1(∂Ω) and ‖(β(u), γ(τu))‖1 ≤ ‖(f, g)‖1 and u

is unique, up to an additive constant. Furthermore, if β or γ is one-to-one,
then the entropy solution is unique. Where a is an operator of Leray-Lions type
defined as follows

1) a : Ω × R
d → R

d, (x, ξ) 7→ a(x, ξ) is a Carathéodory function in the sense
that a is continuous in ξ for almost every x ∈ Ω, and measurable in x for
every ξ ∈ R

d.

2) There exists p, 1 < p < d, and a constant A1 > 0, so that,

〈a(x, ξ), ξ〉 ≥ A1|ξ|
p, for a.e. x ∈ Ω and every ξ ∈ R

d.

3) 〈a(x, ξ1) − a(x, ξ2), ξ1 − ξ2〉 > 0, if ξ1 6= ξ2, for a.e. x ∈ Ω.

4) There exist some h0 ∈ Lp′

(Ω), p′ = p
p−1 and a constant A2 > 0, such that

|a(x, ξ)| ≤ A2

(

h0(x) + |ξ|p−1
)

for a.e. x ∈ Ω and every ξ ∈ R
d.

3 The semi-discrete problem

By the Euler forward scheme, we consider the following system

(Pn)



















Un − τ4pU
n + τα(Un) = τfn + Un−1 in Ω,

|DUn|p−2 ∂Un

∂η
+ γ(Un) = gn on ∂Ω,

U0 = u0 in Ω,

where Nτ = T, 1 ≤ n ≤ N and fn(.) = 1
τ

∫ nτ

(n−1)τ
f(s, .)ds, in Ω, gn(.) =

1
τ

∫ nτ

(n−1)τ
g(s, .)ds on ∂Ω.

We assume the following hypotheses:
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(H1) α and γ are non decreasing continuous functions on R such that α(0) =
γ(0) = 0,

(H2) u0 ∈ L1(Ω), f ∈ L1(QT ) and g ∈ L1(ΣT ).

Recently, in [4], a new concept of solution has been introduced for the
elliptic equation

− div[a(x, Du)] = f(x) in Ω,

u = 0 on ∂Ω,
(5)

namely entropy solution. Following this idea we define the concept of
entropy solution for the problems (Pn).

Definition 2 An entropy solution to the discretized problems (Pn), is a se-
quence (Un)0≤n≤N such that U0 = u0 and Un is defined by induction as an
entropy solution of the problem

u − τ4pu + τα(u) = τfn + Un−1 in Ω,

|Du|p−2 ∂u

∂η
+ γ(u) = gn on ∂Ω,

i.e. Un ∈ T 1,p
tr (Ω) and ∀ϕ ∈ W 1,p(Ω) ∩ L∞(Ω), ∀k > 0, we have

∫

Ω

UnTk(Un − ϕ)

∫

Ω

|DUn|p−2DUnDTk(Un − ϕ) +

∫

Ω

τα(Un)Tk(Un − ϕ)+

τ

∫

∂Ω

γ(Un)Tk(Un − ϕ) ≤

∫

Ω

(τfn + Un−1)Tk(Un − ϕ) + τ

∫

∂Ω

gnTk(Un − ϕ). (6)

Lemma 3 Let hypotheses (H1)− (H2) be satisfied, if (Un)0≤n≤N , N ∈ N is an
entropy solution of problems (Pn), then ∀n = 1, ..., N, we have Un ∈ L1(Ω).

Proof. In inequality (6) we take ϕ = 0 as test function, we obtain

τ

∫

Ω

|DU1|p−2DU1DTk(U1) +

∫

Ω

(τα(U1) + U1)Tk(U1) + τ

∫

∂Ω

γ(U1)Tk(U1)

≤

∫

Ω

(τf1 + u0)Tk(U1) + τ

∫

∂Ω

g1Tk(U1). (7)

By assumption (H1) and the properties of Tk, we get
∫

Ω

τα(U1)Tk(U1) + τ

∫

∂Ω

γ(U1)Tk(U1) ≥ 0. (8)

Now, since

n=N
∑

n=1

τ
(

‖fn‖1 + ‖gn‖L1(∂Ω)

)

≤ ‖f‖L1(QT ) + ‖g‖L1(ΣT ), (9)
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and

τ

∫

Ω

|DU1|p−2DU1DTk(U1) = τ

∫

Ω

|DTk(U1)|p ≥ 0.

Thus, from inequality (7) we obtain,

0 ≤

∫

Ω

U1 Tk(U1)

k
≤
(

‖f‖L1(QT ) + ‖g‖L1(ΣT ) + ‖u0‖1

)

. (10)

On the other hand, we have for each x ∈ Ω

lim
k→0

U1(x)
Tk(U1(x))

k
= |U1(x)|.

Then by Fatou’s lemma, we deduce that U1 ∈ L1(Ω) and

‖U1‖1 ≤ ‖f‖L1(QT ) + ‖g‖L1(ΣT ) + ‖u0‖1.

By induction, we deduce in the same manner that Un ∈ L1(Ω), ∀n = 1, ..., N .

Theorem 3.1 Let hypotheses (H1) − (H2) be satisfied and 1 < p < d, then for
all N ∈ N the problems (Pn) has a unique entropy solution (Un)0≤n≤N , such

that for all n = 1, ..., N, Un ∈ T 1,p
tr (Ω) ∩ L1(Ω).

Proof. Existence. Let the problem

−τ4pu + α(u) = F in Ω,

|Du|p−2 ∂u

∂η
+ γ(u) = G on ∂Ω,

(11)

where u = U1, F = τf1 + u0 and G = τg1. According to inequality (9) and
hypothesis (H2), we have F ∈ L1(Ω), G ∈ L1(∂Ω) and, by hypothesis (H1), the
function defined by α(s) = τα(s) + s is non decreasing, continuous and satisfies
α(0) = 0. Therefore, according to theorem 2.1, the problem (11) has an entropy
solution U1 in T 1,p

tr (Ω).
By induction, using Lemma 3, we deduct in the same manner that for n =
1, ..., N, the problem

u − τ4pu + τα(u) = τfn + Un−1 in Ω,

|Du|p−2 ∂u

∂η
+ γ(u) = gn on ∂Ω,

has an entropy solution Un in T 1,p
tr (Ω) ∩ L1(Ω).

Uniqueness. We firstly need the following lemma.

Lemma 4 If (Un)0≤n≤N , N ∈ N is an entropy solution of (Pn), then for all
k > 0, for all n = 1, ..., N and for all h > 0, we have

τ

∫

{h<|Un|<k+h}

|DUn|p ≤ k

(

∫

{|Un|>h}

τ |fn| +

∫

{|Un|>h}

|Un−1| +

∫

∂Ω∩{|Un|>h}

τ |gn|

)

.
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Proof. Taking ϕ = Th(Un) as test function in inequality (6), we have

∫

Ω

UnTk(Un − Th(Un)) + τ

∫

Ω

|DUn|p−2DUnDTk(Un − Th(Un))

+τ

∫

Ω

α(Un)Tk(Un − Th(Un)) + τ

∫

∂Ω

γ(Un)Tk(Un − Th(Un))

≤

∫

Ω

(τfn + Un−1)Tk(Un − Th(Un)) + τ

∫

∂Ω

gnTk(Un − Th(Un)). (12)

By using the definition of Tk, we have

∫

Ω

UnTk(Un − Th(Un)) =

∫

Ωh

UnTk(Un − hsign(Un))

=

∫

Ωh∩Ω(h,k)

Un(Un − hsign(Un)) +

∫

Ωh∩Ω(h,k)

Unsign(Un − hsign(Un)),

where
Ωh = {|Un| > h} , Ω(h,k) = {|Un − hsign(Un)| ≤ k} ,

and
Ω(h,k) = {|Un − hsign(Un)| > k} .

However
sign(Un − hsign(Un))1Ωh

= sign(Un)1Ωh
;

Thus, we get
∫

Ω

UnTk(Un − Th(Un)) ≥ 0.

In the same manner, using the hypothesis (H1) we obtain

τ

∫

Ω

α(Un)Tk(Un − Th(Un)) + τ

∫

∂Ω

γ(Un)Tk(Un − Th(Un)) ≥ 0.

Now, we have

Tk (s − Th(s)) =











s − hsign(s) if h ≤ |s| < k + h,

k if |s| ≥ k + h,

0 if |s| ≤ h,

then, it follows that

τ

∫

{h<|Un|<k+h}

|DUn|p ≤ k

(

∫

{|Un|>h}

τ |fn| +

∫

{|Un|>h}

|Un−1| +

∫

∂Ω∩{|Un|>h}

τ |gn|

)

.
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Now, let (Un)0≤n≤N and (V n)0≤n≤N , N ∈ N be two entropy solutions of
problems (Pn) and let ϕ ∈ W 1,p(Ω) ∩ L∞(Ω) (for simplicity, we write u =
U1, v = V 1), then we have

∫

Ω

uTk(u − ϕ) + τ

∫

Ω

|Du|p−2DuDTk(u − ϕ) + τ

∫

Ω

α(u)Tk(u − ϕ)

+τ

∫

∂Ω

γ(u)Tk(u − ϕ) ≤

∫

Ω

(τfn + Un−1)Tk(u − ϕ) + τ

∫

∂Ω

gnTk(u − ϕ), (13)

and
∫

Ω

vTk(v − ϕ) + τ

∫

Ω

|Dv|p−2DvDTk(v − ϕ) + τ

∫

Ω

α(v)Tk(v − ϕ)

+τ

∫

∂Ω

γ(v)Tk(v − ϕ) ≤

∫

Ω

(τfn + Un−1)Tk(v − ϕ) + τ

∫

∂Ω

gnTk(v − ϕ). (14)

For the solution u, we take ϕ = Th(v) and for the solution v, we take ϕ = Th(u)
as test functions and taking the limit as h → ∞, we get by applying Dominated
Convergence Theorem that

∫

Ω

(u − v)Tk(u − v) + τ lim
h→∞

Ik,h + τ lim
h→∞

Jk,h ≤ 0, (15)

where

Ik,h :=

∫

Ω

|Du|p−2DuDTk(u − Th(v)) +

∫

Ω

|Dv|p−2DvDTk(v − Th(u)),

and

Jk,h :=

∫

Ω

α(u)Tk(u − Th(v)) +

∫

Ω

α(v)Tk(v − Th(u)) +

∫

∂Ω

γ(u)Tk(u − Th(v))

+

∫

∂Ω

γ(v)Tk(v − Th(u)),

by applying hypothesis (H1), we get

lim
h→∞

Jk,h =

∫

Ω

(α(u) − α(v))Tk(u − v) +

∫

∂Ω

(γ(u) − γ(v))Tk(u − v) ≥ 0. (16)

Now, we show that lim
h→∞

Ik,h ≥ 0 .

To prove this, we pose

Ω1(h) = {|u| < h, |v| < h}, Ω2(h) = {|u| < h, |v| ≥ h},

Ω3(h) = {|u| ≥ h, |v| < h} and Ω4(h) = {|u| ≥ h, |v| ≥ h},
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and we spilt
Ik,h = I1

k,h + I2
k,h + I3

k,h + I4
k,h,

where

I1
k,h =

∫

Ω1(h)

(

|Du|p−2DuDTk(u − v) + |Dv|p−2DvDTk(v − u)
)

=

∫

Ω1(h)

(

|Du|p−2Du − |Dv|p−2Dv
)

DTk(u − v)

=

∫

Ω1(h)∩{|u−v|<k}

(

|Du|p−2Du − |Dv|p−2Dv
)

(Du − Dv) ≥ 0,

and

I2
k,h =

∫

Ω2(h)

|Du|p−2DuDTk(u − hsign(v)) +

∫

Ω2(h)

|Dv|p−2DvDTk(v − u).

We have
∫

Ω2(h)

|Du|p−2DuDTk(u − hsign(v)) =

∫

Ω2(h)∩{|u−hsign(v)|<k}

|Du|p ≥ 0,

and on the other hand, from the Hölder’s inequality, we have

∣

∣

∣

∣

∣

∫

Ω2(h)

|Dv|p−2DvDTk(v − u)

∣

∣

∣

∣

∣

≤

(

∫

Ω(k,h)

|Dv|p

)
1
p′





(

∫

Ω(k,h)

|Dv|p

)
1
p

+

(

∫

Ω(k,h)

|Du|p

)
1
p





≤

(

∫

Ω1(k,h)

|Dv|p

)
1
p′





(

∫

Ω1(k,h)

|Dv|p

)
1
p

+

(

∫

Ω2(k,h)

|Du|p

)
1
p



 ,

where Ω(k, h) = Ω2(h)∩{|u− v| < k}, Ω1(k, h) = {h ≤ |v| ≤ h + k}, Ω2(k, h) =
{h − k ≤ |u| ≤ h} and 1

p
+ 1

p′
= 1.

By lemma 4, we have

τ

∫

{h−k<|u|<h}

|Du|p ≤ k

(

∫

{|u|>h−k}

τ |fn| +

∫

{|u|>h−k}

|Un−1| +

∫

∂Ω∩{|u|>h−k}

τ |gn|

)

.

Now, τfn ∈ L1(Ω), τgn ∈ L1(∂Ω), Un−1 ∈ L1(Ω) and lim
h→∞

|{|u| ≥ h − k}| = 0,

then

lim
h→∞

∫

{h−k<|u|<h}

|Du|p = 0.
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In the same manner, we show that:

lim
h→∞

∫

{h<|v|<h+k}

|Dv|p = 0.

Hence
lim

h→∞
I2
k,h ≥ 0.

Similarly, we have

lim
h→∞

I3
k,h = lim

h→∞

∫

Ω3(h)

|Du|p−2DuDTk(u−v)+

∫

Ω3(h)

|Du|p−2DuDTk(v−hsign(u)) ≥ 0.

Finally

I4
k,h =

∫

Ω4(h)

|Du|p−2DuDTk(u − hsign(v)) +

∫

Ω4(h)

|Du|p−2DuDTk(v − hsign(u))

=

∫

Ω4(h)∩{|u−hsign(v)|<k}

|Du|p +

∫

Ω4(h)∩{|v−hsign(u)|<k}

|Dv|p ≥ 0.

It thus follows that

lim
h→∞

Ik,h ≥ 0. (17)

Therefore, by inequalities (15), (16) and (17), we get

∫

Ω

(u − v)Tk(u − v) ≤ 0,

i.e.
∫

Ω

(u − v)
1

k
Tk(u − v) ≤ 0.

Taking the limit as k → 0, by Dominated Convergence Theorem, we get

‖u − v‖1 ≤ 0.

By induction, we prove that

∀n = 1, ..., N, ‖Un − V n‖1 = 0.

4 Stability

Now we give some a priori estimates for the discrete entropy solution (Un)1≤n≤N

which we use later to derive convergence results for the Euler forward scheme.
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Theorem 4.1 Let hypotheses (H1) − (H2) be satisfied and 1 < p < d. Then,
there exists a positive constant C(u0, f, g) depending on the data but not on N

such that for all n = 1, ..., N , we have

1) ‖Un‖1 ≤ C(u0, f, g),

2) τ

n
∑

i=1

‖α(U i)‖1 + τ

n
∑

i=1

‖γ(U i)‖L1(∂Ω) ≤ C(u0, f, g),

3)

n
∑

i=1

‖U i − U i−1‖1 ≤ C(u0, f, g),

4)

n
∑

i=1

τ‖Tk(U i)‖p
1,p ≤ k.C(u0, f, g).

Proof. 1) and 2): Let ϕ = 0 as test function in inequality (6) and dividing
by k, we obtain

τ
1

k
‖DTk(U i)‖p

p +

∫

Ω

U i 1

k
Tk(U i) + τ

∫

Ω

α(U i)
1

k
Tk(U i) + τ

∫

∂Ω

γ(U i)
1

k
Tk(U i)

≤ τ
(

‖fi‖1 + ‖gi‖L1(∂Ω)

)

+ ‖U i−1‖1, (18)

i.e.
∫

Ω

(

U i + τα(U i)
) Tk(U i)

k
+τ

∫

∂Ω

γ(U i)
Tk(U i)

k
≤ τ

(

‖fi‖1 + ‖gi‖L1(∂Ω)

)

+‖U i−1‖1,

(19)
Let k → 0, by the properties of Tk and the Dominated Convergence Theorem
we get,

τ‖α(U i)‖1 + ‖U i‖1 + τ‖γ(U i)‖L1(∂Ω) ≤ τ
(

‖fi‖1 + ‖gi‖L1(∂Ω)

)

+ ‖U i−1‖1.

(20)

Summing (20) from i = 1 to n we obtain

‖Un‖1 + τ

n
∑

i=1

(

‖α(U i)‖1 + ‖γ(U i)‖L1(∂Ω)

)

≤

n
∑

i=1

τ
(

‖fi‖1 + ‖gi‖L1(∂Ω)

)

+ ‖u0‖1

≤ ‖f‖L1(QT ) + ‖g‖L1(ΣT ) + ‖u0‖1.

Then inequalities 1) and 2) are satisfied.
3) Taking ϕ = Th

(

U i − sign(U i − U i−1)
)

as test function in inequality (6) and
using the fact that:
∫

Ω

|DU i|p−2DU iDTk

(

U i − Th

(

U i − sign(U i − U i−1)
))

=

∫

Ωk∩Ωh

|DU i|p ≥ 0,

where
Ω3(k, h) =

{

|U i − Th(U i − sign(U i − U i−1)| ≤ k
}
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and
Ωh =

{

|U i − sign(U i − U i−1)| > h
}

,

we obtain
∫

Ω

(

U i − U i−1
)

Tk

(

U i − Th

(

U i − sign(U i − U i−1)
))

≤ k
(

τ‖fi‖1 + τ‖gi‖L1(∂Ω) + τ‖α(U i)‖1 + τ‖γ(U i)‖L1(∂Ω)

)

.

Taking the limit as h → ∞ and using the Dominated Convergence Theorem, we
get for k = 1

‖U i − U i−1‖1 ≤ τ‖fi‖1 + τ‖gi‖L1(∂Ω) + τ‖α(U i)‖1 + τ‖γ(U i)‖L1(∂Ω). (21)

Summing (21) from i = 1 to n and applying the stability result 2) and inequality
(9), we obtain

n
∑

i=1

‖U i − U i−1‖1 ≤ 2‖f‖L1(QT ) + 2‖g‖L1(ΣT ) + ‖u0‖1.

4) Taking ϕ = 0 as test function in inequality (6), we deduce by (8) that

τ‖DTk(U i)‖p
p ≤ k

(

τ‖fi‖1 + τ‖gi‖L1(∂Ω) + ‖U i − U i−1‖1

)

. (22)

Summing (22) from i = 1 to n and applying the stability result 3), we therefore
get

n
∑

i=1

τ‖DTk(U i)‖p
p ≤ k.C(u0, f, g), .

Hence, by using Sobolev’s inequality we deduct the stability result 4).

5 The semi-discrete dynamical system

This section aims to study the discrete dynamical system. We show existence
of absorbing sets in L1(Ω) and of the global attractor. (We refer to [27] for the
definition of absorbing sets and global attractor).
By the results of theorem (3.1), problems (Pn) generates a continuous semigroup
Sτ defined by

SτUn−1 = Un.

Proposition 5 Let hypotheses (H1) − (H2) be satisfied and 1 < p < d. Then
for τ small enough, there exists absorbing sets in L1(Ω). More precisely, there
exists a positive integer nτ such that

‖Un‖1 ≤ C, ∀n ≥ nτ . (23)

where C does not depend on τ.
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Proof. By inequality (20), we have

yn ≤ yn−1 + τhn,

where yn = ‖Un‖1 and hn = ‖fn‖1 + ‖gn‖L1(∂Ω).

On the other hand, according to the stability results of theorem 4.1, there exists
nτ > 0 such that

τ

n=n0+N
∑

n=n0

yn ≤ C6 ∀n0 ≥ nτ , (24)

where C6 does not depend on n0.

By inequality (9), we have

τ

n=n0+N
∑

n=n0

‖hn‖1 ≤ C7 ∀n0 ≥ nτ .

Now, applying the discrete Gronwall’s lemma [8, lemma 7.5], we therefore get

‖Un‖1 ≤ C8 ∀n ≥ nτ ,

where C8 is a constant not depending on τ.

Which implies the existence of absorbing sets in L1(Ω).
Applying [27, theorem 1.1], we get the following result.

Corollary 6 Let hypotheses (H1)− (H2) be satisfied and 1 < p < d. Then for τ

small enough, the semigroup associated with problems (Pn) possesses a compact
attractor Aτ which is bounded in L1(Ω).

6 Convergence and existence result

Definition 7 A function measurable u : QT → R is an entropy solution of
parabolic problem (1) in QT if u ∈ C(0, T ; L1(Ω)), Tk(u) ∈ Lp(0, T ; W 1,p(Ω))
for all k > 0, and

∫ t

0

∫

Ω

|Du|p−2DuDTk(u − ϕ) +

∫ t

0

∫

Ω

α(u)Tk(u − ϕ) +

∫ t

0

∫

∂Ω

γ(u)Tk(u − ϕ)

≤ −

∫ t

0

〈

∂ϕ

∂s
, Tk(u − ϕ)

〉

+

∫

Ω

Jk(u(0) − ϕ(0)) −

∫

Ω

Jk(u(t) − ϕ(t))

+

∫ t

0

∫

Ω

fTk(u − ϕ) +

∫ t

0

∫

∂Ω

gTk(u − ϕ), (25)

for all ϕ ∈ L∞(QT ) ∩ Lp(0, T ; W 1,p(Ω)) ∩ W 1,1(0, T ; L1(Ω)) and t ∈ [0, T ].

Now, we state our main result of this work.
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Theorem 6.1 Let hypotheses (H1)− (H2) be satisfied and 1 < p < d. Then the
nonlinear parabolic problem (1) admits a unique entropy solution.

Proof. Existence. Let us introduce a piecewise linear extension, called Rothe
function, by

{

uN (0) := u0,

uN (t) := Un−1 + (Un − Un−1) (t−tn−1)
τ

, ∀ t ∈ ]tn−1, tn], n = 1, ..., N in Ω,

(26)
and a piecewise constant function

{

uN (0) := u0,

uN (t) := Un ∀ t ∈ ]tn−1, tn], n = 1, ..., N in Ω,
(27)

where tn := nτ.

As already shown, for any N ∈ N, the solution (Un)1≤n≤N of problems (Pn) is
unique. Thus, uN and uN are uniquely defined and by construction, we have
for any t ∈]tn−1, tn] and n = 1, ..., N, that

1)
∂uN (t)

∂t
=

(Un − Un−1)

τ
,

2) uN (t) − uN(t) = (Un − Un−1)
tn − t

τ
.

By using the stability results of theorem 4.1, we deduce the following a priori
estimates concerning the Rothe function uN and the function uN .

Lemma 8 Let hypotheses (H1) − (H2) be satisfied and 1 < p < d. Then there
exists a constant C(T, u0, f, g) not depending on N such that for all N ∈ N, we
have

‖uN − uN‖L1(QT ) ≤
1

N
C(T, u0, f, g), (28)

‖uN‖L1(QT ) ≤ C(T, u0, f, g), (29)

‖uN‖L1(QT ) ≤ C(T, u0, f, g), (30)

‖
∂uN

∂t
‖L1(QT ) ≤ C(T, u0, f, g), (31)

∥

∥Tk(uN )
∥

∥

Lp(0,T,W 1,p(Ω))
≤ k.C(T, u0, f, g). (32)

Proof. We have

‖uN − uN‖L1(QT ) =

N
∑

n=1

∫ tn

tn−1

‖Un − Un−1‖1
(tn − t)

τ
dt

=
τ

2

N
∑

n=1

‖Un − Un−1‖1.
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Using inequality 4) of theorem 4.1, we deduce that

‖uN − uN‖L1(QT ) ≤
1

2N
TC(u0, f, g).

In the same manner, we prove the estimates (29), (30), (31) and (32).

Using estimates (29) and (31), we deduct that

the sequence (uN )N∈N is relatively compact in L1(QT ).

This implies the existence of a subsequence of (uN )N∈N converging to an element
u in L1(QT ).
And by estimate (28), we deduce hence that

the sequence (uN )N∈N converges to u in L1(QT ).

On the other hand, by (32) we have that

(

DTk(uN )
)

N∈N
is uniformly bounded in Lp(QT ).

Hence there exists a subsequence, still denoted by
(

DTk(uN )
)

N∈N
such that

(

DTk(uN )
)

N∈N
converges to an element V in Lp(QT ).

However
Tk(uN ) converges to Tk(u) in Lp(QT ).

Hence, it follows that

DTk(uN ) converges to DTk(u) weakly in Lp(QT ),

and by (32) we conclude that

Tk(u) ∈ Lp(0, T ; W 1,p(Ω)) for all k > 0.

We follow the same technique used in [1] to show that

uN converges to u on ΣT .

Lemma 9 The sequence (uN)N∈N converges to u in C
(

0, T ;  L1(Ω)
)

.

Proof. Let ϕ ∈ L∞(QT ) ∩ Lp(0, T ; W 1,p(Ω)) ∩ W 1,1(0, T ; L1(Ω)), we rewrite
(6) in the form

∫ t

0

〈

∂uN

∂s
, Tk(uN − ϕ)

〉

+

∫ t

0

∫

Ω

|DuN |p−2DuNDTk(uN − ϕ)

+

∫ t

0

∫

Ω

α(uN )Tk(uN − ϕ) +

∫ t

0

∫

∂Ω

γ(uN )Tk(uN − ϕ)
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≤

∫ t

0

∫

Ω

fNTk(uN − ϕ) +

∫ t

0

∫

∂Ω

gNTk(uN − ϕ), (33)

where fN(t, x) = fn(x), gN(t, x) = gn(x) ∀t ∈]tn−1, tn], n = 1, ..., N.

Let (tn = nτN )
N

n=1 and (tm = mτM )
M

m=1 be two partitions of interval [0, T ]
and let

(

uN (t), uN (t)
)

,
(

uM (t), uM (t)
)

be the semi-discrete solutions defined by
(26), (27) and corresponding to the partitions, respectively. The same method
used in the proof of the uniqueness in the theorem 3.1, enables us to obtain for
k = 1
∫ t

0

〈

∂(uN − uM )

∂s
, T1(uN − uM )

〉

≤

∫ t

0

∫

Ω

|fN − fM | +

∫ t

0

∫

∂Ω

|gN − gM | ,

that is
∫

Ω

J1

(

uN (t) − uM (t)
)

≤

∣

∣

∣

∣

∫ t

0

〈

∂(uN − uM )

∂s
, T1(uN − uM ) − T1(uN − uM )

〉∣

∣

∣

∣

+ ‖fN − fM‖L1(QT ) + ‖gN − gM‖L1(Σ) .

However,

∣

∣

∣

∣

∫ t

0

〈

∂(uN − uM )

∂s
, T1(uN − uM ) − T1(uN − uM )

〉
∣

∣

∣

∣

≤

∥

∥

∥

∥

∂(uN − uM )

∂s

∥

∥

∥

∥

L1(QT )

‖T1(uN − uM ) − T1(uN − uM )‖L∞(QT )

≤ 2C(T, f, g, u0)‖T1(uN − uM ) − T1(uN − uM )‖L∞(QT ).

Now, as
lim

N,M→∞
‖T1(uN − uM ) − T1(uN − uM )‖L∞(QT ) = 0,

we get

lim
N,M→∞

∣

∣

∣

∣

∫ t

0

〈

∂(uN − uM )

∂s
, T1(uN − uM ) − T1(uN − uM )

〉
∣

∣

∣

∣

= 0. (34)

On the other hand, we have

lim
N,M→∞

(

‖fN − fM‖L1(QT ) + ‖gN − gM‖L1(Σ)

)

= 0,

then, we obtain

lim
N,M→∞

∫

Ω

J1

(

uN(t) − uM (t)
)

= 0. (35)

Now, using the definition of Jk we have
∫

{|uN−uM |≤1}

|uN (t)−uM (t)|2+
1

2

∫

{|uN−uM |≥1}

|uN(t)−uM (t)| ≤

∫

Ω

J1

(

uN(t) − uM (t)
)

.
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Therefore, we obtain

∫

Ω

|uN (t) − uM (t)| =

∫

{|uN−uM |≤1}

|uN(t) − uM (t)| +

∫

{|uN−uM |≥1}

|uN(t) − uM (t)|

≤ C(Ω)

(

∫

{|uN−uM |≤1}

|uN (t) − uM (t)|2

)
1
2

+

∫

{|uN−uM |≥1}

|uN (t) − uM (t)|

≤ C(Ω)

(
∫

Ω

J1

(

uN (t) − uM (t)
)

)
1
2

+ 2

∫

Ω

J1

(

uN (t) − uM (t)
)

.

Then by (35), we conclude that (uN )N∈N is a Cauchy sequence in C(0, T ;  L1(Ω));
Which implies that

(uN)N∈N converges to u in C(0, T ;  L1(Ω)). (36)

It remains to prove that the limit function u is an entropy solution of the
problem (1). Since uN(0) = U0 = u0 for all N ∈ N, then u(0, .) = u0.
By (33) we get

∫ t

0

〈

∂uN

∂s
, Tk(uN − ϕ) − Tk(uN − ϕ)

〉

+

∫ t

0

∫

Ω

|DuN |p−2DuNDTk(uN − ϕ)+

∫ t

0

∫

Ω

α(uN )Tk(uN − ϕ) +

∫ t

0

∫

∂Ω

γ(uN )Tk(uN − ϕ) ≤ −

∫ t

0

〈

∂ϕ

∂s
, Tk(uN − ϕ)

〉

+

∫

Ω

Jk(uN (0) − ϕ(0)) −

∫

Ω

Jk(uN (t) − ϕ(t)) +

∫ t

0

∫

Ω

fNTk(uN − ϕ)

+

∫ t

0

∫

∂Ω

gNTk(uN − ϕ). (37)

By same manner, as used for the proof of the equality (34), we deduce that

lim
N→∞

(
∫ t

0

〈

∂uN

∂s
, Tk(uN − ϕ) − Tk(uN − ϕ)

〉)

= 0. (38)

We follow the same technique used in [19], we show that

lim
N→∞

∫ t

0

∫

Ω

|DuN |p−2DuNDTk(uN − ϕ) =

∫ t

0

∫

Ω

|Du|p−2DuDTk(u − ϕ). (39)
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And by Lemma 9, we deduce that uN(t) → u(t) in L1(Ω) for all t ∈ [0, T ],
which implies that

∫

Ω

Jk(uN (t) − ϕ(t)) →

∫

Ω

Jk(u(t) − ϕ(t)) ∀t ∈ [0, T ]. (40)

Finally, taking the limits as N → ∞, and using the above results, the conti-
nuities of α, γ and the facts that fN → f in L1(QT ), gN → g in L1(ΣT ) and
Tk(uN − ϕ) → Tk(u − ϕ) in L∞(QT ), we deduce that u is an entropy solution
of the nonlinear parabolic problem (1).
Uniqueness. Let v another entropy solution of the nonlinear parabolic prob-
lem (1). Taking ϕ = Th(uN ) as test function in (25) and letting h → ∞, we
get

∫

Ω

Jk(v(t) − uN (t)) +

∫ t

0

〈

∂uN

∂s
, Tk(v − uN )

〉

+ lim
h→∞

IIN
1 (k, h)

+

∫ t

0

∫

Ω

α(v)Tk(v − uN) +

∫ t

0

∫

∂Ω

γ(v)Tk(v − uN)

≤

∫ t

0

∫

Ω

fTk(v − uN) +

∫ t

0

∫

∂Ω

gTk(v − uN ); (41)

where

IIN
1 (k, h) =

∫ t

0

∫

Ω

|Dv|p−2DvDTk(v − Th(uN)).

On the other hand, taking ϕ = Th(v) as a test function in the inequality (33)
and taking the limit as h → ∞, we get

∫ t

0

〈

∂uN

∂s
, Tk(uN − v)

〉

+ lim
h→∞

IIN
2 (k, h) +

∫ t

0

∫

Ω

α(uN )Tk(uN − v)+

∫ t

0

∫

∂Ω

γ(uN )Tk(uN − v) ≤

∫ t

0

∫

Ω

fNTk(uN − v) +

∫ t

0

∫

∂Ω

gNTk(uN − v), (42)

where

IIN
2 (k, h) =

∫ t

0

∫

Ω

|DuN |p−2DuNDTk(uN − Th(v)).

Adding (41) and (42), we get

∫

Ω

Jk(v(t) − uN (t)) +

∫ t

0

〈

∂uN

∂s
, Tk(v − uN) + Tk(uN − v)

〉

+ lim
h→∞

IIN (k, h) +

∫ t

0

∫

Ω

[

α(v)Tk(v − uN ) + α(uN )Tk(uN − v)
]

EJQTDE, 2007 No. 27, p. 19



+

∫ t

0

∫

∂Ω

[

γ(v)Tk(v − uN ) + γ(uN )Tk(uN − v)
]

≤

∫ t

0

∫

Ω

[

fTk(v − uN ) + fNTk(uN − v)
]

+

∫ t

0

∫

∂Ω

[

gTk(v − uN) + gNTk(uN − v)
]

,

where
IIN (k, h) = IIN

1 (k, h) + IIN
2 (k, h).

Taking the limit as N → ∞, using the above convergence results and the hy-
pothesis (H1), we get

∫

Ω

Jk(v(t) − u(t)) + lim
N→∞

lim
h→∞

IIN (k, h) ≤ 0. (43)

Applying the technique used in the proof of uniqueness in theorem 3.1, we
deduce that

lim
N→∞

lim
h→∞

IIN (k, h) ≥ 0. (44)

Therefore the inequality (43) becomes

∫

Ω

Jk(v(t) − u(t)) ≤ 0.

i.e.
∫

Ω

Jk(v(t) − u(t))

k
≤ 0.

However

lim
k→0

Jk(x)

k
= |x|.

Then, by Fatou’s lamma, we get

‖v(t) − u(t)‖1 ≤ 0, ∀t ∈ [0, T ].

Remark 10 The above results can be generalized, for example if the p-Laplacian
operator ∆pu is replaced by the operator a(., Du) defined in the theorem 2.1.
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