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Abstract

We present new oscillation criteria for the second order nonlinear dif-
ferential equation with damping term of the form

(r(t)ψ(x)f(ẋ))· + p(t)ϕ (g(x), r(t)ψ(x)f(ẋ)) + q(t)g(x) = 0,

where p, q, r : [to,∞) → R and ψ, g, f : R → R are continuous,
r(t) > 0, p(t) ≥ 0 and ψ(x) > 0, xg(x) > 0 for x 6= 0, uf(u) > 0 for
u 6= 0. Our results generalize and extend some known oscillation criteria
in the literature. The relevance of our results is illustrated with a number
of examples.

1 Introduction

We are concerned with the oscillation of solutions of second order differential
equations with damping terms of the following form

(r(t)ψ(x)f(ẋ))· + p(t)ϕ (g(x), r(t)ψ(x)f(ẋ)) + q(t)g(x) = 0

(

· =
d

dt

)

(E)

where r ∈ C[[to,∞),R+], p ∈ C[[to,∞), [0,∞)], q ∈ C[[to,∞),R], ψ ∈ C[R,R+]
and g ∈ C1[R,R] such that xg(x) > 0 for x 6= 0 and g

′

(x) > 0 for x 6= 0. ϕ
is defined and continuous on R × R − {0} with uϕ(u, v) > 0 for uv 6= 0 and
ϕ(λu, λv) = λϕ(u, v) for 0 < λ <∞ and (u, v) ∈ R × R − {0}.

We recall that a function x : [to, t1) → R is called a solution of equation (E)
if x(t) satisfies equation (E) for all t ∈ [to, t1). In the sequel it will be always
assumed that solutions of equation (E) exist for any to ≥ 0. Such a solution
x(t) is said to be oscillatory if it has arbitrarily large zeros, and otherwise it
said to be nonoscillatory. Equation (E) is called oscillatory if all its solutions
are oscillatory.
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Oscillatory and nonoscillatory behavior of solutions for various classes of
second-order differential equations have been widely discussed in the literature
(see, for example, [1 − 37] and the references quoted therein). There is a great
number of papers dealing with particular cases of equation (E) such as the linear
equations

ẍ(t) + q(t)x(t) = 0, (E1)

(r(t)ẋ(t))
·
+ q(t)x(t) = 0, (E2)

the nonlinear equations
ẍ(t) + q(t)g (x) = 0, (E3)

(r(t)ψ(x)ẋ(t))
·
+ q(t)g (x) = 0, (E4)

and the nonlinear equations with damping term

(r(t)ẋ(t))
·
+ p(t)ẋ(t) + q(t)g (x) = 0, (E5)

(r(t)ψ(x)ẋ(t))
·
+ p(t)ẋ(t) + q(t)g (x) = 0, (E6)

(r(t)f(ẋ))· + p(t)ϕ (g(x), r(t)f(ẋ)) + q(t)g(x) = 0. (E7)

An important tool in the study of oscillatory behaviour of solutions for equa-
tions (E1)−(E7) is the averaging technique. This goes back as far as the classical
results of Wintner [32] which proved that (E1) is oscillatory if

lim
t→∞

1

t

∫ t

to

∫ s

to

q(u)du ds = ∞,

and Hartman [10] who showed the above limit cannot be replaced by the limit
superior and proved the condition

lim inf
t→∞

1

t

∫ t

to

∫ s

to

q(u)du ds < lim sup
t→∞

1

t

∫ t

to

∫ s

to

q(u)du ds ≤ ∞,

implies that equation (E1) is oscillatory.
The result of Wintner was improved by Kamenev [11] who proved that the

condition

lim sup
t→∞

1

tn−1

∫ t

to

(t− s)n−1q(s)ds = ∞ for some n > 2,

is sufficient for the oscillation of equation (E1).
Some other results can be found in [21], [27], [34] and the references therein.

Kong [12] and Li [15] employed the technique of Philos [27] and obtained several
oscillation results for (E2).

Butler [2], Philos [22], [23], [24], [25], [26], Philos and Purnaras [28], Wong
and Yeh [33] and Yeh [37] obtained some sufficient conditions for the oscillation
of equation (E3) and Grace [7], Elabbasy [3], Manojlovic [18] and Tiryaki and
Cakmak [31] for the oscillation of equation (E4).
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In the presence of damping, a number of oscillation criteria have been ob-
tained by Li and Agarwal [16], Grace and Lalli [9], Rogovchenko [29], Kirane and
Rogovchenko [14], Li et al. [17], Yang [36] Nagabuchi and Minora Yamamoto
[20], Yan [35], Elabbasy, Hassan and Saker [5] for equation (E5), Ayanlar and
Tiryaki [1], Tiryaki and Zafer [30], Kirane and Rogovchenko [13], Grace [6], [7],
[8] and Manojlovic [19] for equation (E6) and Elabbasy and Elsharabasy [4] for
equation (E7).

In this paper we extend the results of Wintner [32], Yan [35], Elabbasy [3],
Elabbasy and Elsharabasy [4], and Nagabuchi and Yamamoto [20] for a broad
class of second order nonlinear equation of the type (E).

2 Main Results

Theorem 1. Suppose, in addition to condition

ϕ(1, z) ≥ z for all z 6= 0, (1)

g
′

(x)

ψ(x)
≥ K > 0 for all x 6= 0, (2)

∫ ±∞

±ε

ψ(y)

g(y)
dy <∞ for all ε > 0, (3)

and

0 < L1 ≤ f(y)

y
≤ L2 for all y 6= 0 and lim

y→∞

f(y)

y
exist, (4)

that there exist a positive function ρ ∈ C1[to,∞) such that (ρ(t)r(t))· ≤ 0 for
all t ≥ to. Then equation (E) is oscillatory if

lim
t→∞

sup
1

t

∫ t

to

∫ s

to

[

ρ(u)q(u) − r(u)ρ(u)

4M

(

ρ̇(u)

ρ(u)
− p(u)

)2
]

duds = ∞, (5)

where M = K
L2

.

Proof. On the contrary we assume that (E) has a nonoscillatory solution x(t).
We suppose without loss of generality that x(t) > 0 for all t ∈ [to,∞). We
define the function ω(t) as

ω(t) = ρ(t)
r(t)ψ(x)f(ẋ)

g(x(t))
for all t ≥ to.

This and equation (E) imply

ω̇(t) =
ρ̇(t)

ρ(t)
ω(t) − ρ(t)[q(t) + p(t)ϕ(1,

ω(t)

ρ(t)
)] − ρ(t)

r(t)ψ(x)f(ẋ)g
′

(x)ẋ

g2(x(t))
.

From (1), (2) and (4) we obtain

ω̇(t) ≤ −ρ(t)q(t) −
(

ρ̇(t)

ρ(t)
− p(t)

)

ω(t) − M

ρ(t)r(t)
ω2(t).
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Integrating from to to t we obtain

∫ t

to

ρ(s)q(s)ds ≤ ω(to) − ω(t) −
∫ t

to

[

Mω2(s)

ρ(s)r(s)
−
(

ρ̇(s)

ρ(s)
− p(s)

)

ω(s)

]

ds,

Thus, for every t ≥ to we have

∫ t

to

[

ρ(s)q(s) − r(s)ρ(s)

4M

(

ρ̇(s)

ρ(s)
− p(s)

)2
]

ds ≤ ω(to) − ω(t)

−
∫ t

to

[
√

M

ρ(s)r(s)
ω(s) −

√

r(s)ρ(s)

2
√
M

(

ρ̇(s)

ρ(s)
− p(s)

)

]2

ds.

Hence, for all t ≥ to we have

∫ t

to

[

ρ(s)q(s) − r(s)ρ(s)

4M

(

ρ̇(s)

ρ(s)
− p(s)

)2
]

ds ≤ ω(to) − ω(t),

or

∫ t

to

[

ρ(s)q(s) − r(s)ρ(s)

4M

(

ρ̇(s)

ρ(s)
− p(s)

)2
]

ds ≤ ω(to) − ρ(t)
r(t)ψ(x)f(ẋ)

g(x(t))
.

From (4) we obtain

∫ t

to

[

ρ(s)q(s) − r(s)ρ(s)

4M

(

ρ̇(s)

ρ(s)
− p(s)

)2
]

ds ≤ ω(to) − L1ρ(t)
r(t)ψ(x)ẋ

g(x(t))
.

Integrate again from t0 to t we obtain

∫ t

to

∫ s

to

[

ρ(u)q(u) − r(u)ρ(u)

4M

(

ρ̇(u)

ρ(u)
− p(u)

)2
]

duds

≤ ω(to)(t− to) − L1

∫ t

to

ρ(s)r(s)
ψ(x)ẋ

g(x)
ds. (6)

Since r(s)ρ(s) is nonincreasing, then by the Bonnet’s theorem there exists a
η ∈ [to, t] such that

−L1

∫ t

to

r(s)ρ(s)
ψ(x)ẋ

g(x(s))
ds = −L1r(to)ρ(to)

∫ η

to

ψ(x)ẋ

g(x(s))
ds

= L1r(to)ρ(to)

∫ x(to)

x(η)

ψ(y)

g(y)
dy

<

{

0 if x(to) < x(η),

L1r(to)ρ(to)
∫∞

ε

ψ(y)
g(y) dy if x(to) > x(η),
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hence

−∞ < −L1

∫ t

to

r(s)ρ(s)
ψ(x)ẋ

g(x(s))
ds < k1,

where

k1 = L1r(to)ρ(to)

∫ ∞

ε

ψ(y)

g(y)
dy.

Hence (6) becomes

∫ t

to

∫ s

to

[

ρ(u)q(u) − r(u)ρ(u)

4M

(

ρ̇(u)

ρ(u)
− p(u)

)2
]

duds ≤ ω(to)(t− to) + k1. (7)

Divide (7) by t and take the upper limit as t → ∞ which contradicts the
assumption (5). This completes the proof.
Corollary 1. If the condition (5) in the above theorem is replaced by

lim
t→∞

sup
1

t

∫ t

to

∫ s

to

r(u)ρ(u)

(

ρ̇(u)

ρ(u)
− p(u)

)2

duds <∞,

lim
t→∞

sup
1

t

∫ t

to

∫ s

to

ρ(u)q(u)duds = ∞,

then the conclusion of theorem 1 still true.
Remark 1. If p(t) ≡ 0, r(t) ≡ 1 and ρ(t) ≡ 1, then Theorem 1 reduce to
Wintner theorem in [32].
Theorem 2. Suppose, in addition to conditions (1) , (2), (3) and (4), that there
exist a positive function ρ ∈ C1[to,∞) such that

(r(t)ρ(t))· ≥ 0, ((r(t)ρ(t))
·· ≤ 0,

γ(t) = (r(t)p(t)ρ(t) − ρ̇(t)r(t)) ≥ 0 and γ̇(t) ≤ 0 for all t ≥ to, (8)

and

lim
t→∞

inf

∫ t

to

ρ(s)q(s)ds > −∞ (9)

hold. Then equation (E) is oscillatory if

lim
t→∞

sup
1

t

∫ t

to

[
∫ s

to

ρ(u)q(u)du

]2

ds = ∞. (10)

Proof. On the contrary we assume that (E) has a nonoscillatory solution x(t).
We suppose without loss of generality that x(t) > 0 for all t ∈ [to,∞). We
define the function ω(t) as

ω(t) = ρ(t)
r(t)ψ(x(t))f(ẋ(t))

g(x(t))
for all t ≥ to.
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This and equation (E) imply

ω̇(t) ≤ ρ̇(t)

ρ(t)
ω(t) − ρ(t)[q(t) + p(t)ϕ(1,

ω(t)

ρ(t)
)] − ρ(t)

r(t)ψ(x(t))f(ẋ)g
′

(x(t))ẋ(t)

g2(x(t))
.

From (1), (2) and (4) we obtain

ρ(t)q(t) ≤ −ω̇(t) +
ρ̇(t)

ρ(t)
ω(t) − p(t)ω(t) −M

1

ρ(t)r(t)
ω2(t), (11)

or

ρ(t)q(t) ≤ −ω̇(t) − γ(t)
ψ(x)f(ẋ)

g(x(t))
−M

1

ρ(t)r(t)
ω2(t).

From (4) we have

ρ(t)q(t) ≤ −ω̇(t) − L1γ(t)
ψ(x)ẋ

g(x(t))
−M

1

ρ(t)r(t)
ω2(t). (12)

Integrating from T to t we obtain

∫ t

T

ρ(s)q(s)ds ≤ ω(T )− ω(t) − L1

∫ t

T

γ(s)
ψ(x)ẋ

g(x(s))
ds−M

∫ t

T

1

ρ(s)r(s)
ω2(s)ds.

(13)
Now evaluate the integral

−
∫ t

T

γ(s)
ψ(x(s))ẋ(s)

g(x(s))
ds.

Since γ(t) is nonincreasing, then by the Bonnet’s theorem there exists a η ∈ [T, t]
such that

−
∫ t

T

γ(s)
ψ(x(s))ẋ(s)

g(x(s))
ds = −γ(T )

∫ η

T

ψ(x(s))ẋ(s)

g(x(s))
ds

= −γ(T )

∫ x(η)

x(T )

ψ(y)

g(y)
dy

= γ(T )

∫ x(T )

x(η)

ψ(y)

g(y)
dy

<

{

0 if x(η) > x(T ),

γ(T )
∫∞

ε

ψ(y)
g(y) dy if x(η) < x(T ),

hence

−∞ < −
∫ t

T

γ(s)
ψ(x)ẋ

g(x(s))
ds ≤ k2, (14)

where

k2 = γ(T )

∫ ∞

ε

ψ(y)

g(y)
dy.
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From (14) in (13), we have

∫ t

T

ρ(s)q(s)ds ≤ ω(T ) − ω(t) + L1k2 −M

∫ t

T

1

ρ(s)r(s)
ω2(s)ds. (15)

Thus, we obtain for t ≥ T ≥ to

∫ t

to

ρ(s)q(s)ds =

∫ T

to

ρ(s)q(s)ds +

∫ t

T

ρ(s)q(s)ds

≤ C1 − ω(t) −M

∫ t

T

ω2(s)

ρ(s)r(s)
ds, (16)

where

C1 = ω(T ) + L1k2 +

∫ T

to

ρ(s)q(s)ds.

We consider the following two cases:
Case 1. The integral

∫ ∞

T

ω2(s)

ρ(s)r(s)
ds is finite.

Thus, there exists a positive constant N such that

∫ t

T

ω2(s)

ρ(s)r(s)
ds ≤ N for all t ≥ T. (17)

Thus, we obtain for t ≥ T

[
∫ t

to

ρ(s)q(s)ds

]2

≤
{

C1 − ω(t) −M

∫ t

T

ω2(s)

ρ(s)r(s)
ds

}2

≤ 4C2
1 + 4ω2(t) + 4M2

[
∫ t

T

ω2(s)

ρ(s)r(s)
ds

]2

.

Therefore, by taking into account (17), we conclude that

[
∫ t

to

ρ(s)q(s)ds

]2

≤ C2 + 4ω2(t),

where

C2 = 4C2
1 + 4M2

[
∫ t

T

ω2(s)

ρ(s)r(s)
ds

]2

.
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Thus, we obtain for every t ≥ T

∫ t

to

[
∫ s

to

ρ(u)q(u)du

]2

ds =

∫ T

to

[
∫ s

to

ρ(u)q(u)du

]2

ds

+

∫ t

T

[
∫ s

to

ρ(u)q(u)du

]2

ds

= C3 +

∫ t

T

[
∫ s

to

ρ(u)q(u)du

]2

ds

≤ C3 + C2(t− T ) + 4

∫ t

T

ω2(s)ds

= C3 + C2(t− T ) + 4

∫ t

T

ρ(s)r(s)
ω2(s)

ρ(s)r(s)
ds.

Since ρ(t)r(t) is positive and nondecreasing for t ∈ [to,∞), the Bonnet’s theorem
would ensures the existence of T1 ∈ [T, t] such that

∫ t

T

ρ(s)r(s)
ω2(s)

ρ(s)r(s)
ds = ρ(t)r(t)

∫ t

T1

ω2(s)

ρ(s)r(s)
ds.

Also, since ρ(t)r(t) is positive on [to,∞) and (ρ(t)r(t))· is nonnegative and
bounded above, it follow that ρ(t)r(t) ≤ βt for all large t where β > 0 is a
constant. Which ensures

∫ ∞

to

ds

ρ(s)r(s)
= ∞.

Thus, we conclude that

∫ t

to

[
∫ s

to

ρ(u)q(u)du

]2

ds ≤ C3 + C2(t− T ) + 4βt

∫ t

T

ω2(s)

ρ(s)r(s)
ds.

So, we have

∫ t

to

[
∫ s

to

ρ(u)q(u)du

]2

ds ≤ C3 + C2(t− T ) + 4Nβt.

This implies

lim
t→∞

sup
1

t

∫ t

to

[
∫ s

to

ρ(u)q(u)du

]2

≤ C2 + 4Nβ <∞,

which contradicts (10).
Case 2. The integral

∫ ∞

T

Kω2(s)

ρ(s)r(s)
ds is infinite. (18)
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By condition (2) , we see that

∫ ∞

T

g
′

(x)

ρ(s)r(s)ψ(x)
ω2(s)ds = ∞.

By virtue of condition (9), it follow from (16) for constant B

−ω(t) ≥ B +
1

L2

∫ t

T

g
′

(x(s))

ρ(s)r(s)ψ(x(s))
ω2(s)ds for every t ≥ T. (19)

We can consider a T2 ≥ T such that

C = B +
1

L2

∫ T2

T

g
′

(x(s))

ρ(s)r(s)ψ(x(s))
ω2(s)ds > 0.

Then (19)ensures that w(t) is negative on [T2,∞). Now, (19) gives

1

L2

g
′

(x)ω2(t)

ρ(t)r(t)ψ(x)

{

B +
1

L2

∫ t

T

g
′

(x(s))

ρ(s)r(s)ψ(x)
ω2(s)ds

}−1

≥ −g′

(x(t))f(ẋ(t))

L2g(x(t))

≥ −g′

(x(t))ẋ(t)

g(x(t))
,

and consequently for all t ≥ T2

log

B + 1
L2

∫ t

T

g
′

(x)

ρ(s)r(s)ψ(x)
ω2(s)ds

C
≥ log

g(x(T2))

g(x(t))
for t ≥ T2.

Hence

B +
1

L2

∫ t

T

g
′

(x)

ρ(s)r(s)ψ(x)
ω2(s)ds ≥ C

g(x(T ))

g(x(t))
.

So, (19) yields

−ω(t) ≥ C
′

g(x(t))
,

where C
′

= Cg(x(T )). Thus, we have

ψ(x)f(ẋ) ≤ −C
′ 1

ρ(t)r(t)
.

From (4) we have

ψ(x)ẋ ≤ −C ′

L1

1

ρ(t)r(t)
.

Integrate from T2 to t, we have

∫ x(t)

x(T )

ψ(y)dy ≤ −C ′

L1

∫ t

T

1

ρ(s)r(s)
ds→ −∞ as t→ ∞,

EJQTDE, 2007 No. 25, p. 9



a contradiction to the fact x(t) > 0 for t ≥ to, and hence (18) fails. This
completes the proof.
Remark 2. If p(t) ≡ 0 and f(ẋ) = ẋ then Theorem 2 reduce to Theorem 1 of
Elabbasy [3].
Theorem 3. Suppose, in addition to (1) , (2) and

f2(y) ≤ Lyf(y), (20)

that there exist a positive function ρ ∈ C1[to,∞). Moreover, assume that there
exist continuous functions H, h : D ≡ {(t, s), t ≥ s ≥ to} → R and H has a
continuous and nonpositive partial derivative on D with respect to the second
variable such that

H(t, t) = 0 for all t ≥ to, H(t, s) > 0 for all t > s ≥ to,

−∂H(t, s)

∂s
= h(t, s)

√

H(t, s) for all (t, s) ∈ D.

Then equation (E) is oscillatory if

lim
t→∞

sup
1

H(t, to)

∫ t

to

{

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

}

ds = ∞. (21)

Where

Q(t, s) =

[

h(t, s) −
(

ρ̇(s)

ρ(s)
− p(s)

)

√

H(t, s)

]

and M =
K

L
.

Proof. On the contrary we assume that (E) has a nonoscillatory solution x(t).
We suppose without loss of generality that x(t) > 0 for all t ∈ [to,∞). We
define the function ω(t) as

ω(t) = ρ(t)
r(t)ψ(x(t))f(ẋ(t))

g(x(t))
for all t ≥ to.

This and equation (E) imply

ω̇(t) ≤ ρ̇(t)

ρ(t)
ω(t)−ρ(t)[q(t)+p(t)ϕ(1,

ω(t)

ρ(t)
)]−ρ(t)r(t)ψ(x(t))f(ẋ(t))g

′

(x(t))ẋ(t)

g2(x(t))
.

From (1), (2) and (20) we obtain

ω̇(t) ≤
(

ρ̇(t)

ρ(t)
− p(s)

)

ω(t) − ρ(t)q(t) − M

ρ(t)r(t)
ω2(t).

Thus, for every t ≥ T , we have

∫ t

T

H(t, s)ρ(s)q(s)ds ≤
∫ t

T

(

ρ̇(t)

ρ(t)
− p(s)

)

H(t, s)ω(s)ds
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−
∫ t

T

H(t, s)ω̇(s)ds−M

∫ t

T

H(t, s)

ρ(s)r(s)
ω2(s)ds.

Since

−
∫ t

T

H(t, s)ω̇(s)ds = H(t, T )ω(T ) +

∫ t

T

∂H(t, s)

∂s
ω(s)ds

= H(t, T )ω(T )−
∫ t

T

h(t, s)
√

H(t, s)ω(s)ds.

The previous inequality becomes

∫ t

T

H(t, s)ρ(s)q(s)ds ≤ H(t, T )ω(T )−
∫ t

T

Q(t, s)
√

H(t, s)ω(s)ds

−M
∫ t

T

H(t, s)

ρ(s)r(s)
ω2(s)ds.

Hence we have

∫ t

T

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds ≤ H(t, T )ω(T )

−
∫ t

T

(√
M
√

H(t, s)
√

r(s)ρ(s)
ω(s) +

√

r(s)ρ(s)

2
√
M

Q(t, s)

)2

ds. (22)

By (22) we have for every t ≥ T ≥ to

∫ t

T

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds ≤ H(t, T )ω(T ) (23)

≤ H(t, T ) |ω(T )|
≤ H(t, to) |ω(T )| .

We use the above inequality for T = To to obtain

∫ t

To

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds ≤ H(t, to) |ω(To)| .

Therefore,

∫ t

to

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds

=

∫ To

to

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds

+

∫ t

To

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds.
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Hence for every t ≥ to we have

∫ t

to

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds

≤ H(t, to)

{

∫ To

to

ρ(s) |q(s)| ds+ |ω(To)|
}

. (24)

Dividing (24) by H(t, to) and take the upper limit as t→ ∞ we get

lim
t→∞

sup
1

H(t, to)

∫ t

to

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds <∞,

which contradicts (21). This completes the proof.
Corollary 2. If condition (21) in Theorem 3 is replaced by

lim
t→∞

sup
1

H(t, to)

∫ t

to

H(t, s)ρ(s)q(s)ds = ∞,

lim
t→∞

sup
1

H(t, to)

∫ t

to

r(s)ρ(s)Q2(t, s)ds <∞,

then the conclusion of Theorem 3 remains valid.
Corollary 3. If we take H(t, s) = (t − s)α for α ≥ 2, then the condition (21)
in the above theorem becomes

lim
t→∞

sup
1

tα

∫ t

to

(t− s)αρ(s)q(s) − r(s)ρ(s)

4M

×
[

α− (t− s)

(

ρ·(s)

ρ(s)
− p(s)

)]2

(t− s)α−2ds = ∞.

Remark 3. Theorem 3 extended and improved Theorem 2 in [4].

Remark 4. If f(
·
x) =

·
x, ψ(x) = 1 and ϕ

(

g(x), r(t)ψ(x)f(
·
x)
)

=
·
x, then

Corollary 2 extend Nagabuchi and Yamamoto theorem in [20] and Yan Theorem
with g(x) = x in [35].
Example 1. Consider the differential equation

(

t
4t2 + 2 cos2(ln t)

t2 + 2 cos2(ln t)
ẋ(t)

(

1 + 2ẋ2(t)

4 + 2ẋ2(t)

))·

+
sin2(ln t)

t2

×







(

t
4t2+2 cos2(ln t)
t2+2 cos2(ln t) ẋ(t)

(

1+2ẋ2(t)
4+2ẋ2(t)

))2

+ x2(t)

x(t)






+

1

2t
x(t) = 0, t ≥ to = 1 .

If we take ρ(t) = 1 and H(t, s) = (t − s)2, then we see that all hypotheses of
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Theorem 3 are satisfied where

lim
t→∞

sup
1

H(t, to)

∫ t

to

{

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

}

ds

= lim
t→∞

sup
1

(t− 1)2

∫ t

1

[

(t− s)2

2s
− s

4

4s2 + 2 cos2(ln s)

s2 + 2 cos2(ln s)

×
(

2 +
(t− s) sin2 (ln s)

2s

)2
]

ds

≥ lim
t→∞

sup
1

(t− 1)2

∫ t

1

[

(t− s)2

2s
− s

4

[

2 +
(t− s)

2s

]2
]

ds

= lim
t→∞

sup
1

(t− 1)2

(

11

8
t− 45

32
t2 +

7

16
t2 ln t+

1

32

)

= ∞

Hence, this equation is oscillatory by theorem 3. One such solution of this
equation is x(t) = sin(ln t).
Theorem 4. Suppose, in addition to condition (1), (2) and (20), that there
exist a positive function ρ ∈ C1[to,∞). Moreover, assume that the function H

and h be as in Theorem 3, and let

0 < inf
s ≥ to

[

lim
t→∞

inf
H(t, s)

H(t, to)

]

≤ ∞. (25)

Suppose that there exists a function Ω ∈ C([to,∞),R) such that

lim
t→∞

sup
1

H(t, to)

∫ t

to

ρ(s)r(s)Q2(t, s)ds <∞, (26)

lim
t→∞

sup
1

H(t, T )

∫ t

T

{H(t, s)ρ(s)q(s) − ρ(s)r(s)Q2(t, s)

4M
}ds ≥ Ω(T ), (27)

for every T ≥ to. Then equation (E) is oscillatory if

∫ ∞

to

Ω2
+(s)

ρ(s)r(s)
= ∞, (28)

where Ω+(t) =max{Ω(t), 0} for t ≥ to.
Proof. On the contrary we assume that (E) has a nonoscillatory solution x(t).
We suppose without loss of generality that x(t) > 0 for all t ∈ [to,∞). Defining
ω(t) as in the proof of Theorem 3, we obtain (22) and hence for t > T ≥ to, we
get

lim
t→∞

sup
1

H(t, T )

∫ t

T

[

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

]

ds

≤ ω(T ) − lim
t→∞

inf
1

H(t, T )

∫ t

T

[√
M
√

H(t, s)
√

r(s)ρ(s)
ω(s) +

√

r(s)ρ(s)

2
√
M

Q(t, s)

]2

ds.
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Thus, by condition (27) we have for T ≥ to

ω(T ) ≥ Ω(T )+ lim
t→∞

inf
1

H(t, T )

∫ t

T

[√
M
√

H(t, s)
√

r(s)ρ(s)
ω(s) +

√

r(s)ρ(s)

2
√
M

Q(t, s)

]2

ds.

This shows that
ω(T ) ≥ Ω(T ), (29)

and

lim
t→∞

inf
1

H(t, T )

∫ t

T

[√
M
√

H(t, s)
√

r(s)ρ(s)
ω(s) +

√

r(s)ρ(s)

2
√
M

Q(t, s)

]2

ds <∞.

Hence

∞ > lim
t→∞

inf
1

H(t, to)

∫ t

to

[√
M
√

H(t, s)
√

r(s)ρ(s)
ω(s) +

√

r(s)ρ(s)

2
√
M

Q(t, s)

]2

ds

≥ lim
t→∞

inf
1

H(t, to)

∫ t

to

[

M H(t, s)

r(s)ρ(s)
ω2(s) +Q(t, s)

√

H(t, s) ω(s)

]

ds. (30)

Define the function α(t) and β(t) as follows

α(t) =
1

H(t, to)

∫ t

to

M H(t, s)

r(s)ρ(s)
ω2(s)ds,

β(t) =
1

H(t, to)

∫ t

to

Q(t, s)
√

H(t, s) ω(s)ds.

Then (30) may be written as

lim
t→∞

inf [α(t) + β(t)] <∞. (31)

In order to show that
∫ ∞

to

ω2(s)

ρ(s)r(s)
<∞. (32)

Now, suppose that
∫ ∞

to

ω2(s)

ρ(s)r(s)
= ∞. (33)

By (25) we can easily see that

lim
t→∞

α(t) = ∞. (34)

Next, let us consider a sequence {Tn}n=1,2,3,....in (to,∞) with lim
n→∞

Tn = ∞ and

such that
lim
n→∞

[α(Tn) + β(Tn)] = lim
t→∞

inf [α(t) + β(t)] .
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Now, by (31), there exists a constant N such that

α(Tn) + β(Tn) ≤ N (n = 1, 2, ...). (35)

Furthermore (34) guarantees that

lim
n→∞

α(Tn) = ∞, (36)

and hence (35) gives
lim
n→∞

β(Tn) = −∞. (37)

By taking into account (36), from (35), we derive

1 +
β(Tn)

α(Tn)
≤ N

α(Tn)
<

1

2
,

provided that n is sufficiently large. Thus,

β(Tn)

α(Tn)
<

−1

2
for all large n,

which by (37), ensures that

lim
n→∞

β2(Tn)

α(Tn)
= ∞. (38)

On the other hand, by Schawrz inequality, we have for any positive integer n,

β2(Tn) =
1

H2(Tn, to)

[

∫ Tn

to

Q(Tn, s)
√

H(Tn, s) ω(s)ds

]2

≤
[

1

H(Tn, to)

∫ Tn

to

M H(Tn, s)

r(s)ρ(s)
ω2(s)ds

]

×
[

1

H(Tn, to)

∫ Tn

to

r(s)ρ(s)

M
Q2(Tn, s)ds

]

= α(Tn)

[

1

H(Tn, to)

∫ Tn

to

r(s)ρ(s)

M
Q2(Tn, s)ds

]

,

or
β2(Tn)

α(Tn)
≤ 1

H(Tn, to)

∫ Tn

to

r(s)ρ(s)

M
Q2(Tn, s)ds.

It follow from (38) that

lim
n→∞

1

H(Tn, to)

∫ Tn

to

r(s)ρ(s)Q2(Tn, s)ds = ∞. (39)
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Consequently,

lim
t→∞

sup
1

H(t, to)

∫ t

to

ρ(s)r(s)Q2(t, s)ds = ∞,

but the latter contradicts the assumption (26) . Hence, (33) fails to hold. Con-
sequently, we have proved that inequality (32) holds. Finally, by (29) we obtain

∫ ∞

to

Ω2
+(s)

ρ(s)r(s)
≤
∫ ∞

to

ω2(s)

ρ(s)r(s)
<∞,

which contradicts the assumption (28). Therefore, equation (E) is oscillatory.
Example 2. Consider the differential equation

(

1 + sin2 t

t2
1

1 + x2
ẋ

)·

+
2

t3
ẋ

+
1 + sin2 t

t2(3 + 2 sin2 t)
x

[

2 +
1

1 + x2

]

= 0, t ≥ to = 1. (40)

We note that
g

′

(x)

ψ(x)
= 3 +

2x4

(1 + x2)
≥ 3 = K.

If we take ρ(t) = 1 and H(t, s) = (t− s)2, then we have

lim
t→∞

sup
1

H(t, to)

∫ t

1

r(s)ρ(s)Q2(t, s)ds

= lim
t→∞

sup
1

(t− 1)2

∫ t

1

(

1 + sin2 s
)

s2

(

2 +
2t

s3
− 2

s2

)2

ds

≤ lim
t→∞

sup
1

(t− 1)
2

∫ t

1

2

s2

(

2 +
2t

s3
− 2

s2

)2

ds =
8

7
<∞,

lim
t→∞

sup
1

H(t, T )

∫ t

T

(

H(t, s)ρ(s)q(s) − r(s)ρ(s)

4M
Q2(t, s)

)

ds

= lim
t→∞

sup
1

(t− T )2

∫ t

T

(t− s)2
(

1 + sin2 s
)

s2(3 + 2 sin2 s)
−
(

1 + sin2 s
)

12s2

(

2 +
2t

s3
− 2

s2

)2

ds

≥ lim
t→∞

sup
1

(t− T )2

∫ t

T

(

(t− s)2(
1

3s2
) − 1

6s2

(

2 +
2t

s3
− 2

s2

)2
)

ds

=
1

21

7T 6 − 2

T 7

def
= Ω(T ),
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and, finally,

∫ ∞

1

Ω2
+(s)

ρ(s)r(s)
ds =

∫ ∞

1

(

1

21

7s6 − 2

s7

)2(
s2

1 + sin2 s

)

ds

≥
∫ t

1

(

1

21

7s6 − 2

s7

)2(
s2

2

)

ds = ∞.

Thus we conclude that (40) is oscillatory by Theorem 4. As a matter of fact,
x(t) = sin t is an oscillatory solution of this equation.
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