Null Controllability of Some Impulsive Evolution Equation in a Hilbert Space

R. BOUKHAMLA ${ }^{(1)}$ \& S. MAZOUZI ${ }^{(2)}$
(1) Centre Universitaire de Souk-Ahras, Souk-Ahras 41000, Algeria.
(2) Département de Mathématiques, Université d'Annaba, BP 12, ANNABA 23000, Algeria.

Abstract

We shall establish a necessary and sufficient condition under which we have the null controllability of some first order impulsive evolution equation in a Hilbert space.

MSC(2000) : 34A37, 93B05, 93C15.
Keywords: Null-controllability, impulsive conditions, mild solutions, evolution equation.

1 Introduction

The problem of exact controllability of linear systems represented by infinite conservative systems has been extensively studied by several authors A. Haraux [8], R.Triggiani [16], Z.H. Guan, T.H. Qian, and X.Yu [7], see also the references $[1,2,6,10,15]$. In the sequel, we shall be concerned with the problem of null controllability of some first order evolution equation subject to impulsive conditions and so we shall derive a necessary and sufficient condition under which null controllability occurs. Actually, we shall establish an equivalence between the null-controllability and some "observability" inequality in somehow more general framework than that proposed by A Haraux [8]. Regarding the literature on the impulsive differential equations we refer the reader to the works of D.D. Bainov and P.S. Simeonov [3, 4] and
the references [5, 9,11, 12, 13]. We are going to study the following problem

$$
\begin{align*}
y^{\prime}(t)+A y(t) & =B u(t), \quad t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} \tag{1}\\
y(0) & =y^{0} \\
\Delta y\left(t_{k}\right) & =I_{k} y\left(t_{k}\right)+D_{k} v_{k}, \quad k \in \sigma_{1}^{m} \tag{k}
\end{align*}
$$

where the final time T is a positive number, y^{0} is an initial condition in a Hilbert space H endowed with an inner product $\langle., .\rangle_{H}, y(t):[0, T] \rightarrow H$ is a vector function, σ_{1}^{m} is a subset of \mathbb{N} given by $\sigma_{1}^{m}=\{1,2, \ldots, m\}$, and finally, $\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}}$ is an increasing sequence of numbers in the open interval $(0, T)$, and $\Delta y\left(t_{k}\right)$ denotes the jump of $y(t)$ at $t=t_{k}$, i.e.,

$$
\Delta y\left(t_{k}\right)=y\left(t_{k}^{+}\right)-y\left(t_{k}^{-}\right)
$$

where $y\left(t_{k}^{+}\right)$and $y\left(t_{k}^{-}\right)$represent the right and left limits of $y(t)$ at $t=t_{k}$ respectively. On the other hand, the operators $A, B, I_{k}, D_{k}: H \rightarrow H$ are given linear bounded operators. Moreover, we set the following assumptions:
(H1) $A^{*}=-A$,
(H2) $I_{k}^{*}=-I_{k}$, for every $k \in \sigma_{1}^{m}$, and for each $k \in \sigma_{1}^{m}$, the operator $\mathcal{I}_{k}=I_{k}+I$ is invertible,
(H3) $B^{*}=B \geq 0$ and there is $d_{0}>0$ such that

$$
(B u, u)_{H} \leq d_{0}\|u\|_{H}^{2}, \text { for all } u \in H
$$

(H4) $D_{k}^{*}=D_{k} \geq 0$, for every $k \in \sigma_{1}^{m}$, and for each $k \in \sigma_{1}^{m}$ there is $d_{k}>0$ such that

$$
\left(D_{k} u, u\right)_{H} \leq d_{k}\|u\|_{H}^{2}, \text { for all } u \in H
$$

In the sequel we shall designate by h the function

$$
h(t)=\left(u(t),\left\{v_{k}\right\}_{k \in \sigma_{1}^{m}}\right),
$$

where $u(t) \in L^{2}\left((0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} ; H\right)$ and

$$
\left\{v_{k}\right\}_{k \in \sigma_{1}^{m}} \in l^{2}\left(\sigma_{1}^{m} ; H\right) \doteqdot\left\{\left\{v_{k}\right\}_{k \in \sigma_{1}^{m}}, v_{k} \in H\right\} .
$$

EJQTDE, 2007 No. 19, p. 2

We point out that the space $\mathcal{K}_{m}=L^{2}\left((0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} ; H\right) \times l^{2}\left(\sigma_{1}^{m} ; H\right)$ is a Hilbert space with respect to the inner product

$$
(h, \widetilde{h})_{\mathcal{K}_{m}}=\int_{0}^{T}(u(t), \widetilde{u}(t))_{H} d t+\sum_{k=1}^{m}\left(v_{k}, \widetilde{v}_{k}\right)_{H}
$$

defined for all $h=\left(u(t),\left\{v_{k}\right\}_{k=1}^{m}\right)$ and $\widetilde{h}=\left(\widetilde{u}(t),\left\{\widetilde{v}_{k}\right\}_{k=1}^{m}\right) \in \mathcal{K}_{m}$.
We shall denote by \mathcal{B} the control operator given by

$$
\mathcal{B}=\left(B,\left\{D_{k}\right\}_{k \in \sigma_{1}^{m}}\right) \in \mathcal{L}\left(L^{2}\left((0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} ; H\right) \times l^{2}\left(\sigma_{1}^{m} ; H\right)\right),
$$

so that

$$
\mathcal{B} h(t)=\left(B u(t),\left\{D_{k} v_{k}\right\}_{k \in \sigma_{1}^{m}}\right) .
$$

We have for every $h=\left(u(t),\left\{v_{k}\right\}_{k=1}^{m}\right) \in \mathcal{K}_{m}$

$$
\begin{aligned}
(\mathcal{B} h, h)_{\mathcal{K}_{m}} & =\int_{0}^{T}(B u(t), u(t))_{H} d t+\sum_{k=1}^{m}\left(D_{k} v_{k}, v_{k}\right)_{H} \\
& =\int_{0}^{T}(u(t), B u(t))_{H} d t+\sum_{k=1}^{m}\left(v_{k}, D_{k} v_{k}\right)_{H} \\
& =(h, \mathcal{B} h)_{\mathcal{K}_{m}}
\end{aligned}
$$

which shows that $\mathcal{B}^{*}=\mathcal{B}$, that is, \mathcal{B} is self-adjoint. On the other hand, we have

$$
\begin{aligned}
(\mathcal{B} h, h)_{\mathcal{K}_{m}} & =\int_{0}^{T}(B u(t), u(t))_{H} d t+\sum_{k=1}^{m}\left(D_{k} v_{k}, v_{k}\right)_{H} \\
& \leq d_{0} \int_{0}^{T}\|u(t)\|_{H}^{2} d t+\sum_{k=1}^{m} d_{k}\left\|v_{k}\right\|_{H}^{2} \\
& \leq \delta\|h\|_{\mathcal{K}_{m}}^{2}
\end{aligned}
$$

where $\delta=\max \left\{d_{0}, d_{1}, \ldots, d_{m}\right\}$. Thus, the operator is \mathcal{B} bounded in \mathcal{K}_{m}.
Next, we consider the homogeneous system associated with (1):

$$
\begin{align*}
\varphi^{\prime}(t)+A \varphi(t) & =0, \quad t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}}, \tag{2}\\
\varphi(0) & =\varphi^{0}, \\
\Delta \varphi\left(t_{k}\right) & =I_{k} \varphi\left(t_{k}\right), k \in \sigma_{1}^{m} . \tag{k}
\end{align*}
$$

EJQTDE, 2007 No. 19, p. 3

We point out that on each interval $\left[t_{k}, t_{k+1}\right)$, for $k=0, \ldots, m$, the solution φ is left continuous at each time t_{k}.
Consider the corresponding homogeneous backward problem :

$$
\begin{align*}
-\tilde{\varphi}^{\prime}(t)+\mathbf{A} \tilde{\varphi}(t) & =0, \quad t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} \tag{3}\\
\tilde{\varphi}(T) & =\varphi^{0}, \\
\Delta \tilde{\varphi}\left(t_{m-(k-1)}\right) & =-\tilde{I}_{m-(k-1)} \tilde{\varphi}\left(t_{m-(k-1)}^{+}\right), k \in \sigma_{1}^{m}, \tag{k}
\end{align*}
$$

where

$$
\mathbf{A}=A^{*}=-A, \quad \tilde{I}_{m-(k-1)}=I_{m-(k-1)}^{*}=-I_{m-(k-1)}, k \in \sigma_{1}^{m}
$$

We observe that the problem (3) on the interval $\left[t_{m}, T\right]$ is equivalent to the classical backward problem

$$
\begin{aligned}
& -\tilde{\varphi}^{\prime}(t)+\mathbf{A} \tilde{\varphi}(t)=0, t \in\left[t_{m}, T\right] \\
& \tilde{\varphi}(T)=\varphi^{0}
\end{aligned}
$$

We introduce the following space : $\mathcal{P C}([0, T] ; H)=\{y, y:[0, T] \rightarrow H$ such that $y(t)$ is continuous at $t \neq t_{k}$, and has discontinuities of first kind at $t=t_{k}$, for every $\left.k \in \sigma_{1}^{m}\right\}$.
Evidently, $\mathcal{P C}([0, T] ; H)$ is a Banach space with respect to the norm

$$
\|y\|_{\mathcal{P C}}=\sup _{t \in(0, T)}\|y(t)\| .
$$

On the other hand, we define the subspaces $\mathcal{P L C}$, (respectively, $\mathcal{P R C})=$ $\left\{y, y \in \mathcal{P C}\right.$ such that $y(t)$ is left (respectively, right) continuous at $t=t_{k}$, for every $\left.k \in \sigma_{1}^{m}\right\}$.

Remark 1 1) The space $\mathcal{P L C}$, (respectively, $\mathcal{P R C}$) can be identified to a subspace of \mathcal{K}_{m}. That is, to each $y \in \mathcal{P L C}$, (respectively, $\tilde{y} \in \mathcal{P R C}$) is assigned the function h (respectively, $\widetilde{\mathrm{h}}$) defined by

$$
\mathrm{h}(t)=\left(y(t),\left\{y\left(t_{k}\right)\right\}_{k \in \sigma_{1}^{m}}\right),
$$

and

$$
\widetilde{\mathrm{h}}(t)=\left(\tilde{y}(t),\left\{\tilde{y}\left(t_{k}\right)\right\}_{k \in \sigma_{1}^{m}}\right) .
$$

The mapping $y \mapsto \mathrm{~h}(t)$ (respectively, $\tilde{y} \mapsto \widetilde{\mathrm{~h}}$) is a linear injection.
2) Let $\widetilde{y} \in \mathcal{P} \mathcal{R C}$, the function y can be written as :

$$
\widetilde{y}(t)=\left\{\begin{array}{lll}
\widetilde{y}_{[0]}(t) & \text { if } \quad t \in\left[t_{0}, t_{1}\right) \\
\widetilde{y}_{[k}(t) & \text { if } t \in\left[t_{k}, t_{k+1}\right) \\
\widetilde{y}_{[m]}(t) & \text { if } t \in\left[t_{m}, T\right] .
\end{array}\right.
$$

Next, let $\tau_{k}=t_{k}-t_{k-1}$, we define the operator $\mathcal{T}: D(\mathcal{T})=\mathcal{P R C} \subset \mathcal{K}_{m} \rightarrow$ \mathcal{K}_{m} by

$$
(\mathcal{T} \widetilde{y})(t)=\left\{\begin{array}{clc}
\widetilde{y}_{[0]}\left((T-t) \frac{\tau_{1}}{\tau_{m+1}}+t_{0}\right) & \text { if } \quad t \in\left[t_{m}, T\right], \tag{4}\\
\widetilde{y}_{[k]}\left(\left(t_{m-(k-1)}-t\right) \frac{\tau_{k+1}}{\tau_{m-(}(k-1)}+t_{k}\right) & \text { if } & t \in\left[t_{m-k}, t_{m-(k-1)}\right), \quad k \in \sigma_{1}^{m-1} \\
\widetilde{y}_{[m]}\left(\left(t_{1}-t\right) \frac{\tau_{m+1}}{\tau_{1}}+t_{m}\right) & \text { if } & t \in\left(0, t_{1}\right]
\end{array}\right.
$$

We note that the range of \mathcal{T} is exactly $\mathcal{P} \mathcal{L C}$. The function $(\mathcal{T} \widetilde{y})(t)$ can be written as follows:

$$
(\mathcal{T} \widetilde{y})(t)= \begin{cases}y_{[0]}(t) & \text { if } \quad t \in\left[t_{0}, t_{1}\right], \\ y_{[k]}(t) & \text { if } \quad t \in\left(t_{k}, t_{k+1}\right], \quad k \in \sigma_{1}^{m-1}, \\ y_{[m]}(t) & \text { if } \quad t \in\left(t_{m}, T\right]\end{cases}
$$

Let $X(t)$ be the resolvent solution of the operator system

$$
\begin{aligned}
& X^{\prime}(t)+A X(t)=0,0=t_{0}<t<t_{m+1}=T, t \neq t_{k}, k=1,2, \ldots, m \\
& X(0)=I \\
& X\left(t_{k}+0\right)-X\left(t_{k}-0\right)=I_{k} X\left(t_{k}\right), k=1,2, \ldots, m
\end{aligned}
$$

where $I: H \rightarrow H$ is the identity operator. We shall suppose that the operator $\mathcal{I}_{k}=I_{k}+I$ has a bounded inverse.

Definition 1 A function $y \in \mathcal{P C}([0, T] ; H)$ is a mild solution to the impulsive problem (1) if the impulsive conditions are satisfied and

$$
y(t)=\begin{gathered}
G\left(t, 0^{+}\right) y^{0}+\int_{0}^{t} G(t, s) B u(s) d s \\
+\sum_{0<t_{k} \leq t} G\left(t, t_{k}\right)\left(D_{k} v_{k}\right), \text { for every } t \in(0, T),
\end{gathered}
$$

where the evolution operator $G(t, s)$ is given by

$$
G(t, s)=X(t) X^{-1}(s)
$$

EJQTDE, 2007 No. 19, p. 5

It is not hard to check that the operator $G\left(t, t_{k}\right)$ satisfies the operator system

$$
\begin{aligned}
& G^{\prime}\left(t, t_{k}\right)+A G\left(t, t_{k}\right)=0, \quad t \in\left[t_{k}, t_{k+1}\right), \quad k \in \sigma_{0}^{m}, \\
& G\left(t_{k}, t_{k}\right)=I \\
& G\left(t_{k+1}^{+}, t_{k}\right)-G\left(t_{k+1}^{-}, t_{k}\right)=I_{k+1} G\left(t_{k+1}^{-}, t_{k}\right) .
\end{aligned}
$$

It is well known that (1) has a unique solution y such that

$$
y \in \mathcal{P} \mathcal{L C}([0, T] ; H) \cap C^{1}\left([0, T] \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} ; H\right)
$$

Now, we define the concept of mild solution for the backward impulsive system (3) associated with system (2).

Definition 2 We say that $\tilde{\varphi} \in \mathcal{P R C}([0, T] ; H)$ is a mild solution for the backward impulsive system (3) if $\mathcal{T} \tilde{\varphi}$ is a mild solution for the homogeneous impulsive system (2).

Let us introduce the notion of the null controllability of the initial state as follows:

Definition 3 We say that the initial state $y^{0} \in H$ is null controllable at time T, if there is a control function $\mathrm{h} \in \mathcal{K}_{m}$ for which the solution y of system (1) satisfies $y(T)=0$.

2 Main Results

First we begin by the following lemma.
Lemma 1 Assume that $\xi(t), \zeta(t) \in L^{1}([0, T] ; H)$ and $\left\{\xi_{k}\right\}_{k=1}^{m},\left\{\zeta_{k}\right\}_{k=1}^{m} \in$ $l^{1}\left(\sigma_{1}^{m}, H\right)$. Then, for every vector functions

$$
\gamma(t) \in \mathcal{P} \mathcal{L C}([0, T] ; H) \cap C^{1}\left([0, T] \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} ; H\right)
$$

and

$$
\eta(t) \in \mathcal{P R} \mathcal{R}([0, T] ; H) \cap C^{1}\left([0, T] \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} ; H\right)
$$

satisfying the problem

$$
\begin{aligned}
\frac{d}{d t}\langle\gamma(t), \eta(t)\rangle & =\langle\xi(t), \zeta(t)\rangle, \quad t \neq t_{k}, \text { for } k \in \sigma_{1}^{m} \\
\Delta\left\langle\gamma\left(t_{k}\right), \eta\left(t_{k}\right)\right\rangle & =\left\langle\Delta \gamma\left(t_{k}\right), \eta\left(t_{k}\right)\right\rangle+\left\langle\gamma\left(t_{k}\right), \Delta \eta\left(t_{k}\right)\right\rangle=\left\langle\xi_{k}, \zeta_{k}\right\rangle, k \in \sigma_{1}^{m}
\end{aligned}
$$

we have the following identity

$$
\begin{align*}
\left.\langle\gamma(t), \eta(t)\rangle\right|_{0} ^{T} & =\langle\gamma(T), \eta(T)\rangle-\langle\gamma(0), \eta(0)\rangle \tag{5}\\
& =\int_{0}^{T}\langle\xi(t), \zeta(t)\rangle d t+\sum_{k=1}^{m}\left\langle\xi_{k}, \zeta_{k}\right\rangle .
\end{align*}
$$

Proof. It is straightforward.
We also need the following Lemmas.
Lemma 2 [14] If $\mathcal{B} \in \mathcal{L}\left(\mathcal{K}_{m}\right)$ is self-adjoint and nonnegative, then

$$
\|\mathcal{B} \mathrm{h}\| \leq\|\mathcal{B}\|^{1 / 2}(\mathcal{B} \mathrm{~h}, \mathrm{~h})_{\mathcal{K}_{m}}^{1 / 2}, \quad \mathrm{~h} \in \mathcal{K}_{m} .
$$

Lemma 3 If $\tau_{k+1}=\tau_{m-(k-1)}, k \in \sigma_{0}^{m-1}$, then for the mild solution $\widetilde{\varphi}$ of (3), the identity holds :

$$
\begin{equation*}
\int_{0}^{T}|B \widetilde{\varphi}|_{H}^{2} d t+\sum_{k=1}^{m}\left|D_{k} \widetilde{\varphi}\left(t_{k}^{+}\right)\right|_{H}^{2}=\int_{0}^{T}|B \varphi|_{H}^{2} d t+\sum_{k=1}^{m}\left|D_{k} \varphi\left(t_{m-(k-1)}\right)\right|_{H}^{2} . \tag{6}
\end{equation*}
$$

Proof. For each $k \in \sigma_{0}^{m}$, using the change of variable $t \rightarrow\left(t_{m-(k-1)}-\right.$ t) $\frac{\tau_{k+1}}{\tau_{m-(k-1)}}+t_{k}$ we have

$$
\begin{aligned}
& \int_{t_{m-k}}^{t_{m-(k-1)}}\left(B \varphi_{[m-k]}(t), B \varphi_{[m-k]}(t)\right) d t \\
= & \int_{t_{m-k}}^{t_{m-(k-1)}}\left(B \widetilde{\varphi}_{[k]}\left(\left(t_{m-(k-1)}-t\right) \frac{\tau_{k+1}}{\tau_{m-(k-1)}}+t_{k}\right), B \widetilde{\varphi}_{[k]}\left(\left(t_{m-(k-1)}-t\right) \frac{\tau_{k+1}}{\tau_{m-(k-1)}}+t_{k}\right)\right) d t \\
= & \frac{-\tau_{m-(k-1)}}{\tau_{k+1}} \int_{t_{k+1}}^{t_{k}}\left(B \widetilde{\varphi}_{[k]}(s), B \widetilde{\varphi}_{[k]}(s)\right) d s \\
= & \int_{t_{k}}^{t_{k+1}}\left(B \widetilde{\varphi}_{[k]}(s), B \widetilde{\varphi}_{[k]}(s)\right) d s .
\end{aligned}
$$

Summing up with respect to k, we get

$$
\sum_{k=0}^{m} \int_{t_{m-k}}^{t_{m-(k-1)}}\left(B \varphi_{[m-k]}((t)), B \varphi_{[m-k]}(t)\right) d t=\sum_{k=0}^{m} \int_{t_{k}}^{t_{k+1}}\left(B \widetilde{\varphi}_{[k]}(t), B \widetilde{\varphi}_{[k]}(t)\right) d t
$$

Thus, we obtain

$$
\int_{0}^{T}|B \widetilde{\varphi}|_{H}^{2} d t=\int_{0}^{T}|B \varphi|_{H}^{2} d t
$$

On the other hand, by virtue of the definition of the function $\widetilde{\varphi}$ we get

$$
\varphi\left(t_{m-k}\right)=\widetilde{\varphi}\left(t_{k+1}\right), \quad k \in \sigma_{0}^{m-1}
$$

Also, we have

$$
\varphi\left(t_{m-(k-1)}\right)=\widetilde{\varphi}\left(t_{k}\right), \quad k \in \sigma_{1}^{m}
$$

and

$$
\widetilde{\varphi}\left(t_{m-k}\right)=\varphi\left(t_{k+1}\right), \quad k \in \sigma_{0}^{m-1}
$$

This implies that

$$
\begin{aligned}
\sum_{k=1}^{m}\left|D_{k} \widetilde{\varphi}\left(t_{k}\right)\right|_{H}^{2} & =\sum_{k=0}^{m-1}\left\langle D_{m-k} \widetilde{\varphi}\left(t_{m-k}\right), D_{m-k} \widetilde{\varphi}\left(t_{m-k}\right)\right\rangle_{H} \\
& =\sum_{k=0}^{m-1}\left\langle D_{m-k} \varphi\left(t_{k+1}\right), D_{m-k} \varphi\left(t_{k+1}\right)\right\rangle_{H} \\
& =\sum_{l=1}^{m}\left\langle D_{l} \varphi\left(t_{m-(l-1)}\right), D_{l} \varphi\left(t_{m-(l-1)}\right)\right\rangle_{H} \\
& =\sum_{k=1}^{m}\left\langle D_{k} \varphi\left(t_{m-(k-1)}\right), D_{k} \varphi\left(t_{m-(k-1)}\right)\right\rangle_{H} \\
& =\sum_{k=1}^{m}\left|D_{k} \varphi\left(t_{m-(k-1)}\right)\right|_{H}^{2}
\end{aligned}
$$

which gives (6).
Corollary 1 If $\tau_{k+1}=\tau_{m-(k-1)}$, for $k \in \sigma_{0}^{m-1}$, and B, D_{k} are nonnegative in H, then the following holds:

$$
\begin{aligned}
& \int_{0}^{T}\langle B \widetilde{\varphi}(t), \widetilde{\varphi}(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle D_{k} \widetilde{\varphi}\left(t_{k}\right), \widetilde{\varphi}\left(t_{k}\right)\right\rangle \\
= & \int_{0}^{T}\langle B \varphi(t), \varphi(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle D_{k} \varphi\left(t_{m-(k-1)}\right), \varphi\left(t_{m-(k-1)}\right)\right\rangle .
\end{aligned}
$$

Proof. This follows immediately from Lemma 3 if we substitute B by $B^{\frac{1}{2}}$, and D_{k} by $D_{k}^{\frac{1}{2}}$.

Now, we state and establish the following Theorem.
Theorem 1 Let $y^{0} \in H$ be a given initial state for the system (1), then y^{0} is null controllable at time T if and only if there is a positive constant C such that

$$
\begin{equation*}
\left|\left\langle y^{0}, \tilde{\varphi}^{0}\right\rangle_{H}\right| \leq C\left\{\int_{0}^{T}|B \varphi|_{H}^{2} d t+\sum_{k=1}^{m}\left|D_{k} \varphi\left(t_{m-(k-1)}\right)\right|_{H}^{2}\right\}^{1 / 2}, \forall \tilde{\varphi}^{0} \in H \tag{7}
\end{equation*}
$$

where $\varphi \in \mathcal{P L C}([0, T] ; H)$ is the unique mild solution to (2) with $\varphi(T)=\tilde{\varphi}^{0}$.
Proof. It suffices to prove this Theorem for the special case $\tau_{k+1}=\tau_{m-(k-1)}$, for $k \in \sigma_{0}^{m-1}$, because the norm $\||\cdot|\| \doteqdot\left\{\sum_{k=0}^{m} \frac{\tau_{m-(k-1)}}{\tau_{k+1}} \int_{t_{k}}^{t_{k+1}}|\cdot|_{H}^{2} d t\right\}^{1 / 2}$ is equivalent to the usual norm of $L^{2}([0, T] ; H)$.

We shall proceed in several steps.
Step 1: Let y and $\widetilde{\varphi}$ be strong solutions to (1) and (3), respectively. Then, for $t \neq t_{k}, k \in \sigma_{1}^{m}$, we have

$$
\begin{align*}
\frac{d}{d t}\langle y(t), \widetilde{\varphi}(t)\rangle & =\left\langle y(t), \widetilde{\varphi}^{\prime}(t)\right\rangle+\left\langle y^{\prime}(t), \widetilde{\varphi}(t)\right\rangle \tag{8}\\
& =\langle y(t),-A \widetilde{\varphi}(t)\rangle+\langle-A y(t)+B u(t), \widetilde{\varphi}(t)\rangle \\
& =\langle y(t),-A \widetilde{\varphi}(t)\rangle+\langle-A y(t), \widetilde{\varphi}(t)\rangle+\langle B u(t), \widetilde{\varphi}(t)\rangle \\
& =\langle B u(t), \widetilde{\varphi}(t)\rangle
\end{align*}
$$

Multiplying equation $\left(3_{k}\right)$ in (3) from the left by $y\left(t_{m-(k-1)}\right)$ the solution of (1), and multiplying equation (1_{k}) in (1) from the right by $\widetilde{\varphi}\left(t_{k}\right)$ the solution of (3), and finally adding memberwise we get

$$
\begin{aligned}
\Delta\langle y(t), \widetilde{\varphi}(t)\rangle_{\mid t=t_{k}} & =\left\langle y\left(t_{k}\right), \Delta \widetilde{\varphi}\left(t_{k}\right)\right\rangle+\left\langle\Delta y\left(t_{k}\right), \widetilde{\varphi}\left(t_{k}\right)\right\rangle \\
& =\left\langle y\left(t_{k}\right), I_{k} \widetilde{\varphi}\left(t_{k}\right)\right\rangle+\left\langle I_{k} y\left(t_{k}\right)+D_{k} v_{k}, \widetilde{\varphi}\left(t_{k}\right)\right\rangle \\
& =\left\langle y\left(t_{k}\right), I_{k} \widetilde{\varphi}\left(t_{k}\right)\right\rangle+\left\langle I_{k} y\left(t_{k}\right), \widetilde{\varphi}\left(t_{k}\right)\right\rangle+\left\langle D_{k} v_{k}, \widetilde{\varphi}\left(t_{k}\right)\right\rangle \\
& =\left\langle D_{k} v_{k}, \widetilde{\varphi}\left(t_{k}\right)\right\rangle .
\end{aligned}
$$

Setting $\gamma(t)=y(t), \eta(t)=\widetilde{\varphi}(t), \xi(t)=B u(t), \zeta(t)=\widetilde{\varphi}(t), \xi_{k}=D_{k} v_{k}$, $\zeta_{k}=\widetilde{\varphi}\left(t_{k}\right)$, then equations (5), (8) and (9) give

$$
\begin{equation*}
\langle y(T), \widetilde{\varphi}(T)\rangle-\langle y(0), \widetilde{\varphi}(0)\rangle=\int_{0}^{T}\langle B u(t), \widetilde{\varphi}(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle D_{k} v_{k}, \widetilde{\varphi}\left(t_{k}\right)\right\rangle . \tag{10}
\end{equation*}
$$

Since \mathcal{B} is bounded, self-adjoint and $\mathcal{B} \geq 0$, then by density the latter identity is still valid for mild solutions y of (1). Identity (10) can be written as follows

$$
\begin{equation*}
\langle y(T), \widetilde{\varphi}(T)\rangle-\langle y(0), \widetilde{\varphi}(0)\rangle=\int_{0}^{T}\langle u(t), B \widetilde{\varphi}(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle v_{k}, D_{k} \widetilde{\varphi}\left(t_{k}\right)\right\rangle . \tag{11}
\end{equation*}
$$

Next, if there is a certain $h(t) \in \mathcal{K}_{m}$ such that the mild solution of (1) with $y(0)=y^{0}$ satisfies $y(T)=0$, then

$$
-\langle y(0), \widetilde{\varphi}(0)\rangle=\int_{0}^{T}\langle u(t), B \widetilde{\varphi}(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle v_{k}, D_{k} \widetilde{\varphi}\left(t_{k}\right)\right\rangle,
$$

and so by Cauchy-Schwarz Inequality we obtain

$$
\begin{align*}
\left|\langle y(0), \widetilde{\varphi}(0)\rangle_{H}\right| \leq & \left\{\int_{0}^{T}\|u(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|v_{k}\right\|_{H}^{2}\right\}^{1 / 2} \tag{12}\\
& \times\left\{\int_{0}^{T}\|B \widetilde{\varphi}(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m} \| D_{k} \widetilde{\varphi}\left(\left(t_{k}\right) \|_{H}^{2}\right\}^{1 / 2}\right.
\end{align*}
$$

Using Lemma 3, and equation (12) we have

$$
\begin{aligned}
\left|\langle y(0), \widetilde{\varphi}(0)\rangle_{H}\right| \leq & \left\{\int_{0}^{T}\|u(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|v_{k}\right\|_{H}^{2}\right\}^{1 / 2} \\
& \times\left\{\int_{0}^{T}\|B \varphi(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|D_{k} \varphi\left(t_{m-(k-1)}\right)\right\|_{H}^{2}\right\}^{1 / 2}
\end{aligned}
$$

Setting

$$
C=\|h(t)\|_{\mathcal{K}_{m}}=\left\{\int_{0}^{T}\|u(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|v_{k}\right\|_{H}^{2}\right\}^{1 / 2}
$$

we find that

$$
\mid\left(\langle y(0), \widetilde{\varphi}(0)\rangle_{H} \mid \leq C\left\{\int_{0}^{T}\|B \varphi(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|D_{k} \varphi\left(t_{m-(k-1)}\right)\right\|_{H}^{2}\right\}^{1 / 2}\right.
$$

This shows the necessary condition of the Theorem.
Step 2: To prove the sufficiency we need the following result when $\mathcal{B} \geq$ $\alpha>0$.

Claim 1 Assume that there is $\alpha>0$ such that

$$
\left\{\int_{0}^{T}\|B u(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|D_{k} v_{k}\right\|_{H}^{2}\right\} \geq \alpha\left\{\int_{0}^{T}\|u(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|v_{k}\right\|_{H}^{2}\right\}
$$

then, for every $y^{0} \in H$ there is $\varphi^{0} \in H$ such that the mild solution of (1) with

$$
\mathrm{h}(t)=\left(\widetilde{\varphi}(t), \widetilde{\varphi}\left(t_{1}\right), . ., \widetilde{\varphi}\left(t_{k}\right) . ., \widetilde{\varphi}\left(t_{m}\right)\right) \in \mathcal{K}_{m} \text { and } y(0)=y^{0}
$$

satisfies $y(T)=0$.
To prove this Claim, we consider for every $z \in H$ the solution φ of (2) satisfying $\varphi(T)=z$ and the unique mild solution y to the problem

$$
\begin{aligned}
y^{\prime}(t)+A y(t) & =B \widetilde{\varphi}(t), t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}}, \\
\Delta y\left(t_{k}\right) & =I_{k} y\left(t_{k}\right)+D_{k} \widetilde{\varphi}\left(t_{k}\right), \\
y(T) & =0 .
\end{aligned}
$$

Next, we introduce a bounded linear operator $\Lambda: H \rightarrow H$ defined by

$$
\Lambda z=-y(0)
$$

According to formula (11) and the Corollary 1 we have

$$
\begin{aligned}
|\langle\Lambda z, z\rangle| & =|-\langle y(0), \widetilde{\varphi}(0)\rangle|=\left|\int_{0}^{T}\langle B \widetilde{\varphi}(t), \widetilde{\varphi}(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle D_{k} \widetilde{\varphi}\left(t_{k}\right), \widetilde{\varphi}\left(t_{k}\right)\right\rangle\right| \\
& =\left|\int_{0}^{T}\langle B \varphi(t), \varphi(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle D_{k} \varphi\left(t_{m-(k-1)}\right), \varphi\left(t_{m-(k-1)}\right)\right\rangle\right| \\
& \leq \varsigma\left\{\int_{0}^{T}\|\varphi(t)\|^{2} d t+\sum_{k=1}^{k=m}\left\|\varphi\left(t_{k}\right)\right\|^{2}\right\}
\end{aligned}
$$

where

$$
\varsigma=\sup _{k \in \sigma_{0}^{m}}\left\{d_{k}\right\}<\infty .
$$

We have

$$
\int_{0}^{T}\|\varphi(t)\|^{2} d t=\int_{0}^{t_{1}}\|\varphi(t)\|^{2} d t+\int_{t_{1}}^{t_{2}}\|\varphi(t)\|^{2} d t+\ldots+\int_{t_{m}}^{T}\|\varphi(t)\|^{2} d t
$$

Since there is no impulse in the interval $\left[t_{k}, t_{k+1}\right)$ we have

$$
\begin{gather*}
\|\varphi(t)\|=\left\|\varphi\left(t_{k}^{+}\right)\right\|, \text {for every } t \in\left[t_{k}, t_{k+1}\right), k \in \sigma_{0}^{m}, \\
\left\|\varphi\left(t_{k+1}^{-}\right)\right\|=\left\|\varphi\left(t_{k-1}^{+}\right)\right\|, \quad k \in \sigma_{0}^{m} . \tag{13}
\end{gather*}
$$

Therefore, there are $\tau_{k+1}=t_{k+1}-t_{k}>0, k \in \sigma_{0}^{m}$ such that

$$
\begin{equation*}
\int_{t_{k}}^{t_{k+1}}\|\varphi(t)\|^{2} d t \leq \rho_{k}\left\|\varphi\left(t_{k}^{+}\right)\right\|^{2}=\tau_{k+1}\left\|I_{k} \varphi\left(t_{k}^{-}\right)+\varphi\left(t_{k}^{-}\right)\right\|^{2}, \quad k \in \sigma_{1}^{m} . \tag{14}
\end{equation*}
$$

On the other hand, the continuity of I_{k} implies that

$$
\begin{equation*}
\left\|\varphi\left(t_{k}^{+}\right)\right\|^{2}=\left\|\left(I_{k}+I\right) \varphi\left(t_{k}^{-}\right)\right\|^{2} \leq\left(1+L\left(I_{k}\right)\right)^{2}\left\|\varphi\left(t_{k}^{-}\right)\right\|^{2}, \quad k \in \sigma_{1}^{m} . \tag{15}
\end{equation*}
$$

It follows from (14) and (15) that

$$
\begin{equation*}
\int_{t_{k}}^{t_{k+1}}\|\varphi(t)\|^{2} d t \leq \tau_{k+1}\left(1+L\left(I_{k}\right)\right)^{2}\left\|\varphi\left(t_{k}^{-}\right)\right\|^{2}, \quad k \in \sigma_{1}^{m} . \tag{16}
\end{equation*}
$$

Since m is finite, and due to (13),(16), then there is a constant $0<\mu<\infty$ such that $\langle\Lambda z, z\rangle \leq \mu\|z\|^{2}$, and thus, Λ is bounded.

Now, as \mathcal{B} is nonnegative in \mathcal{K}_{m}, we have

$$
\|\mathcal{B} \xi(t)\| \geq \alpha\left\{(\xi(t), \xi(t))_{\mathcal{K}_{m}}\right\}^{1 / 2}
$$

for all $\xi \in \mathcal{K}_{m}$; thus, by virtue of Lemma 2 , we have

$$
\begin{align*}
& \left\{\int_{0}^{T}(B u(t), u(t))_{H} d t+\sum_{k=1}^{k=m}\left(D_{k} v_{k}, v_{k}\right)_{H}\right\} \tag{17}\\
\geq & \alpha\|\mathcal{B}\|\left\{\int_{0}^{T}\|u(t)\|_{H}^{2} d t+\sum_{k=1}^{k=m}\left\|v_{k}\right\|_{H}^{2}\right\} .
\end{align*}
$$

EJQTDE, 2007 No. 19, p. 12

It follows from (11), (17) and Corollary 1 that

$$
\begin{aligned}
\langle\Lambda z, z\rangle & =-\langle y(0), \widetilde{\varphi}(0)\rangle \\
& =\int_{0}^{T}\langle B \varphi(t), \varphi(t)\rangle d t+\sum_{k=1}^{k=m}\left\langle D_{k} \varphi\left(t_{m-(k-1)}\right), \varphi\left(t_{m-(k-1)}\right)\right\rangle \\
& \geq \alpha\|\mathcal{B}\|\left\{\int_{0}^{T}\|\varphi(t)\|^{2} d t+\sum_{k=1}^{k=m}\left\|\varphi\left(t_{k}\right)\right\|^{2}\right\} \\
& \geq \alpha\|\mathcal{B}\| \int_{0}^{t_{1}}\|\varphi(t)\|^{2} d t=\|\mathcal{B}\| \alpha t_{1}\|z\|^{2}=\theta\|z\|^{2},
\end{aligned}
$$

because there is no impulse before time t_{1}. Therefore, Λ is coercive on H. To show that there is a bijection from H onto H, it suffices to prove that $\Lambda+I$ is a bijection from H onto H. Clearly, $\Lambda+I$ is injective since

$$
\langle\Lambda z+z, z\rangle=\langle\Lambda z, z\rangle+\langle z, z\rangle \geq(\theta+1)\|z\|^{2} .
$$

On the other hand, let $y^{0} \in H$, as the form $a(f, g)+\langle f, g\rangle=\langle\Lambda f, g\rangle+\langle f, g\rangle$ is symmetric and coercive, then, by virtue of Lax-Milgram Theorem, there is an element $f \in H$ such that

$$
a(f, g)+\langle f, g\rangle=\left\langle y^{0}, g\right\rangle, \text { for all } g \in H
$$

This implies that $\Lambda(H)=H$. Thus, for every $y^{0} \in H$, there is a unique $z \in H$ such that $\Lambda(z)=-y^{0}$, which completes the proof of Claim 1.

Step 3: Assume that $B, D_{k} \geq 0$, then $\mathcal{B} \geq 0$,

$$
\widetilde{B}^{2}=B, \widetilde{D}_{k}^{2}=D_{k}
$$

We define for $\varepsilon>0$,

$$
\begin{aligned}
& \beta^{\varepsilon} \doteqdot \widetilde{B}^{2}+\varepsilon I, \\
& \delta_{k}^{\varepsilon} \doteqdot \widetilde{D}_{k}^{2}+\varepsilon I,
\end{aligned}
$$

and

$$
\mathcal{B}^{\varepsilon} \doteqdot\left(\beta^{\varepsilon} ; \delta_{1}^{\varepsilon}, . ., \delta_{m}^{\varepsilon}\right)=\left(\widetilde{B}^{2}+\varepsilon I ; \widetilde{D}_{1}^{2}+\varepsilon I, . ., \widetilde{D}_{m}^{2}+\varepsilon I\right)
$$

According to Claim 1, there is $\tilde{\varphi}^{0, \varepsilon} \in H$ such that the mild solution y_{ε} of (1) with $y_{\varepsilon}(0)=y^{0}$ satisfies $y_{\varepsilon}(T)=0$; where $\mathcal{B}(h)$ has been replaced by

$$
\mathcal{B}^{\varepsilon}\left(\widetilde{\varphi}(t), \widetilde{\varphi}\left(t_{1}\right), . ., \widetilde{\varphi}\left(t_{k}\right) . ., \widetilde{\varphi}\left(t_{m}\right)\right) \in \mathcal{K}_{m}
$$

We obtain from (11) and Corollary 1

$$
\begin{equation*}
-\left\langle y(0), \widetilde{\varphi}_{\varepsilon}(0)\right\rangle=\int_{0}^{T}\left\langle\beta_{\varepsilon}^{\varepsilon} \widetilde{\varphi}(t), \widetilde{\varphi}_{\varepsilon}(t)\right\rangle d t+\sum_{k=1}^{k=m}\left\langle\delta_{k}^{\varepsilon} \widetilde{\varphi}_{\varepsilon}\left(t_{k}\right), \widetilde{\varphi}_{\varepsilon}\left(t_{k}\right)\right\rangle, \tag{18}
\end{equation*}
$$

and (7) gives

$$
\begin{equation*}
-\left\langle y(0), \widetilde{\varphi}_{\varepsilon}(0)\right\rangle \leq C\left\{\int_{0}^{T}\left\langle\widetilde{B}^{2} \varphi_{\varepsilon}(t), \varphi_{\varepsilon}(t)\right\rangle d t+\sum_{k=1}^{k=m}\left\langle\widetilde{D}_{k}^{2} \varphi_{\varepsilon}\left(t_{m-(k-1)}\right), \varphi_{\varepsilon}\left(t_{m-(k-1)}\right)\right\rangle\right\}^{1 / 2} . \tag{19}
\end{equation*}
$$

Whence,

$$
\begin{equation*}
-\left\langle y(0), \widetilde{\varphi}_{\varepsilon}(0)\right\rangle \leq C\left\{\int_{0}^{T}\left\langle\beta^{\varepsilon} \varphi_{\varepsilon}(t), \varphi_{\varepsilon}(t)\right\rangle d t+\sum_{k=1}^{k=m}\left\langle\delta_{k}^{\varepsilon} \varphi_{\varepsilon}\left(t_{m-(k-1)}\right), \varphi_{\varepsilon}\left(t_{m-(k-1)}\right)\right\rangle\right\}^{1 / 2} . \tag{20}
\end{equation*}
$$

It follows at once from (18), (19) and (20) that

$$
\begin{align*}
& \varepsilon\left\{\int_{0}^{T}\left\|\varphi_{\varepsilon}(t)\right\|^{2} d t+\sum_{k=1}^{k=m}\left\|\varphi_{\varepsilon}\left(t_{k}\right)\right\|^{2}\right\} \\
& \quad+\int_{0}^{T}\left\langle\widetilde{B} \varphi_{\varepsilon}(t), \widetilde{B} \varphi_{\varepsilon}(t)\right\rangle d t+\sum_{k=1}^{k=m}\left\langle\widetilde{D}_{k} \varphi_{\varepsilon}\left(t_{m-(k-1)}\right), \widetilde{D}_{k} \varphi_{\varepsilon}\left(t_{m-(k-1)}\right)\right\rangle \\
& =\int_{0}^{T}\left(\beta^{\varepsilon} \varphi_{\varepsilon}(t), \varphi_{\varepsilon}(t)\right) d t+\sum_{k=1}^{k=m}\left\langle\delta_{k}^{\varepsilon} \varphi_{\varepsilon}\left(t_{m-(k-1)}\right), \varphi_{\varepsilon}\left(t_{m-(k-1)}\right)\right) \leq C^{2} . \tag{21}
\end{align*}
$$

Step 4: According to the estimate (20) the family

$$
\begin{aligned}
b_{\varepsilon} & =\mathcal{B}^{\varepsilon}\left(\widetilde{\varphi}_{\varepsilon}(t) ; \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right. \\
& =\left(\widetilde{B}_{\varepsilon}^{2} \widetilde{\varphi}(t) ; \widetilde{D}_{1}^{2} \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, \widetilde{D}_{m} \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right)+\varepsilon\left(\widetilde{\varphi}_{\varepsilon}(t) ; \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right)
\end{aligned}
$$

is contained in a bounded subset \mathcal{K}_{m}.
Thus, both of the families

$$
\sqrt{\varepsilon}\left(\widetilde{\varphi}_{\varepsilon}(t) ; \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right) \text { and }\left(B \widetilde{\varphi}_{\varepsilon}(t) ; D_{1} \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, D_{m} \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right)
$$

are bounded in \mathcal{K}_{m}. Therefore, we may extract a subfamily, say

$$
\left(B \widetilde{\varphi}_{\varepsilon}(t) ; D_{1} \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, D_{m} \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right) \rightharpoonup h, \text { weakly in } \mathcal{K}_{m}
$$

Then clearly
$\left(\widetilde{B}^{2} \widetilde{\varphi}_{\varepsilon}(t) ; \widetilde{D}_{1}^{2} \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, \widetilde{D}_{m}^{2} \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right)+\varepsilon\left(\widetilde{\varphi}_{\varepsilon}(t) ; \widetilde{\varphi}_{\varepsilon}\left(t_{1}\right) \ldots, \widetilde{\varphi}_{\varepsilon}\left(t_{m}\right)\right) \rightharpoonup \mathcal{B} h$, weakly in \mathcal{K}_{m}.
Step 5: Taking the limit as $\varepsilon \rightarrow 0$, we see that the solution y of (1) with initial condition $y(0)=y^{0}, h$ being as in step 4 satisfies $y(T)=0$. This completes the proof of Theorem 1.

As an immediate application of the foregoing Theorem we give the following example.

Example. One dimensional impulsive Schrödinger equation :
We consider the problem

$$
\begin{align*}
\frac{\partial y(t, x)}{\partial t}+i \frac{\partial^{2} y}{\partial x^{2}}(t, x) & =\chi_{\omega_{0}} u(t, x), \quad t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}}, x \in \Omega=(0,2 \pi), \\
y(t, 0) & =y(t, 2 \pi)=0 \tag{22}\\
y(0, x) & =y^{0}, \\
\Delta y\left(t_{k}, x\right) & =i \alpha_{k} y\left(t_{k}, x\right)+\chi_{\omega_{k}} v_{k}(x), \quad k \in \sigma_{1}^{m},
\end{align*}
$$

where

$$
t_{k+1}-t_{k}>2 \pi, \quad \omega_{k}=\left(a_{1}^{k}, a_{2}^{k}\right) \subset \Omega, k \in \sigma_{0}^{m}, \quad\left\{\alpha_{k}\right\}_{k \in \sigma_{1}^{m}} \subset \mathbb{R}^{+}
$$

Let

$$
H=L^{2}(\Omega, \mathbb{C}), A w(x)=i \frac{\partial^{2} w}{\partial x^{2}}(x), \quad D(A)=\left\{w \in H, \frac{\partial^{2} w}{\partial x^{2}} \in H, w(0)=w(\pi)=0\right\}
$$

and $I_{k} w(x)=i \alpha_{k} w(x)$ and the control operator is given by $B=\chi_{\omega_{0}}, D_{k}=$ $\chi_{\omega_{k}}$, then the system (22) becomes an abstract formulation of (1). As a consequence of Theorem 1, the initial state $y^{0} \in L^{2}(\Omega, \mathbb{C})=H$ of the solution of (22) is null-controllable at $t=T$, if and only if, there is $C>0$ such that

$$
\begin{align*}
& \left|\int_{\Omega} y^{0}(x) \widetilde{\varphi}^{0}(x) d x\right| \tag{23}\\
\leq & C\left\{\int_{0}^{T} \int_{\omega_{0}}|\varphi|^{2}(t, x) d x d t+\sum_{k=1}^{m} \int_{\omega_{k}}|\varphi|^{2}\left(t_{m-(k-1)}, x\right)\right\}^{\frac{1}{2}}, \forall \widetilde{\varphi}^{0} \in L^{2}(\Omega, \mathbb{C})
\end{align*}
$$

where $\widetilde{\varphi}^{0}(x)=\varphi(T, x)$ and φ is the mild solution of

$$
\begin{aligned}
\frac{\partial \varphi(t, x)}{\partial t}+i \frac{\partial^{2} \varphi(t, x)}{\partial x^{2}} & =0, \quad t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}}, x \in \Omega \\
\varphi(t, 0) & =\varphi(t, 2 \pi)=0 \\
\varphi(0, x) & =\varphi^{0}(x), x \in \Omega \\
\Delta \varphi\left(t_{k}, x\right) & =i \alpha_{k} \varphi\left(t_{k}, x\right), x \in \Omega, k \in \sigma_{1}^{m} .
\end{aligned}
$$

Here φ is given by

$$
\varphi(t)=\left\{\begin{array}{llc}
\varphi_{[0]}(t) & , \text { if } & t \in\left[t_{0}, t_{1}\right) \\
\varphi_{[k]}(t) & , \text { if } & t \in\left[t_{k}, t_{k+1)}\right) \\
\varphi_{[m]}(t) & , \text { if } & t \in\left[t_{m}, T\right]
\end{array}\right.
$$

where $\varphi_{[k]}(t)$ is a solution of the classical Schrödinger equation

$$
\begin{aligned}
\frac{\partial \varphi_{[k]}(t, x)}{\partial t}+i \frac{\partial^{2} \varphi_{[k]}}{\partial x^{2}}(t, x) & =\chi_{\omega_{0}} u(t, x), \quad t \in\left(t_{0}, t_{1}\right), x \in \Omega=(0,2 \pi) \\
\varphi_{[k]}(t, 0) & =\varphi_{[k]}(t, 2 \pi)=0 \\
\varphi_{[0]}\left(t_{0}, x\right) & =\varphi^{0}(x), x \in \Omega
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \varphi_{[k]}(t, x)}{\partial t}+i \frac{\partial^{2} \varphi_{[k]}}{\partial x^{2}}(t, x) & =\chi_{\omega_{0}} u(t, x), \quad t \in\left(t_{k}, t_{k+1}\right), \mathrm{x} \in \Omega=(0,2 \pi) \\
\varphi_{[k]}(t, 0) & =\varphi_{[k]}(t, 2 \pi)=0 \\
\varphi_{[k]}\left(t_{k}, x\right) & =\left(1+i \alpha_{k}\right) \varphi_{[k-1]}\left(t_{k}, x\right), x \in \Omega, k \in \sigma_{1}^{m}
\end{aligned}
$$

Then a standard application of a variant of Ingham's Inequality [8] shows that

$$
\int_{t_{k}}^{t_{k+1}} \int_{w_{0}}\left|\varphi_{[k]}\right|(t, x) d t d x \geq c\left(\tau_{k}, w_{0}\right) \int_{\Omega}\left|\varphi_{[k]}\right|\left(t_{k}^{+}, x\right) d x
$$

for some positive constants $c\left(\tau_{k}, w_{0}\right)>0$. Summing up we get

$$
\begin{aligned}
\sum_{k=0}^{m} \int_{t_{k}}^{t_{k+1}} \int_{w_{0}}\left|\varphi_{[k]}\right|(t, x) d t d x & =\int_{0}^{T} \int_{\omega_{0}}|\varphi|^{2}(t, x) d x d t \\
& \geq c_{1} \sum_{k=1}^{m} \int_{\Omega}\left|\varphi_{[k]}\right|\left(t_{k}^{+}, x\right) d x
\end{aligned}
$$

where $c_{1}=\min _{k \in \sigma_{0}^{m}} c\left(\tau_{k}, w_{0}\right)>0$.
On the other hand, there is a positive constant $c_{2}>0$ such that

$$
\sum_{k=1}^{m} \int_{\omega_{k}}|\varphi|^{2}\left(t_{m-(k-1)}, x\right) \geq c_{2} \sum_{k=1}^{m} \int_{\Omega}\left|\varphi_{[k]}\right|^{2}\left(t_{k}^{+}, x\right) d x .
$$

It follows that

$$
\begin{aligned}
\int_{0}^{T} \int_{\omega_{0}}|\varphi|^{2}(t, x) d x d t & \\
& +\sum_{k=1}^{m} \int_{\omega_{k}}|\varphi|^{2}\left(t_{m-(k-1)}, x\right) \\
& \geq\left(c_{1}+c_{2}\right) \sum_{k=1}^{m} \int_{\Omega}\left|\varphi_{[k]}\right|^{2}\left(t_{k}^{+}, x\right) d x \\
& \geq\left(c_{1}+c_{2}\right) \int_{\Omega}\left|\varphi_{[m]}\right|^{2}\left(t_{m}^{+}, x\right) d x \\
& =\left(c_{1}+c_{2}\right) \int_{\Omega}|\varphi|^{2}(T, x) d x .
\end{aligned}
$$

Now, since $\widetilde{\varphi}^{0}(x)=\widetilde{\varphi}(0, x)=\varphi(T, x)$, then,
$\int_{0}^{T} \int_{\omega_{0}}|\varphi|^{2}(t, x) d x d t+\sum_{k=1}^{m} \int_{\omega_{k}}|\varphi|^{2}\left(t_{m-(k-1)}, x\right) \geq m\left(c_{1}+c_{2}\right) \int_{\Omega}\left|\widetilde{\varphi}^{0}\right|^{2}(x) d x$,
from which we get

$$
\int_{\Omega}\left|\widetilde{\varphi}^{0}\right|^{2}(x) d x \leq \frac{1}{m\left(c_{1}+c_{2}\right)}\left(\int_{0}^{T} \int_{\omega_{0}}|\varphi|^{2}(t, x) d x d t+\sum_{k=1}^{m} \int_{\omega_{k}}|\varphi|^{2}\left(t_{m-(k-1)}, x\right)\right) .
$$

We conclude by Cauchy-Schwarz inequality that

$$
\begin{aligned}
\left|\int_{\Omega} y^{0}(x) \widetilde{\varphi}^{0}(x) d x\right| \leq & \left\{\int_{\Omega}\left|y^{0}\right|^{2}(x) d x \int_{\Omega}\left|\widetilde{\varphi}^{0}\right|^{2}(x) d x\right\}^{1 / 2} \\
\leq & \left\{\frac{\int_{\Omega}\left|y^{0}\right|^{2}(x) d x}{m\left(c_{1}+c_{2}\right)}\right\}^{1 / 2}\left(\int_{0}^{T} \int_{\omega_{0}}|\varphi|^{2}(t, x) d x d t\right. \\
& \left.+\sum_{k=1}^{m} \int_{\omega_{k}}|\varphi|^{2}\left(t_{m-(k-1)}, x\right) d x\right)^{1 / 2}
\end{aligned}
$$

which establishes the necessary and sufficient condition of null controllability stated in Theorem 1.

We conclude our paper by a special case when our initial state is an eigensolution of the following linear operator $\Gamma: H \rightarrow H$ defined by

$$
\Gamma(\psi)=\int_{0}^{T} X^{-1}(s) B^{2} X(s) \psi d s+\sum_{k=1}^{k=m} X^{-1}\left(t_{k}\right) D_{k}^{2} X\left(t_{k}\right) \psi
$$

We have the following result of null-controllability.
Proposition 1 Let $\lambda>0$ be an eigenvalue of Γ with eigenvector $\psi \in H$. Then, the solution y to the problem

$$
\begin{cases}y^{\prime}(t)+A y(t)=-\frac{1}{\lambda} B^{2}(X(t) \psi), & t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} \tag{24}\\ \Delta y\left(t_{k}\right)=I_{k} y\left(t_{k}\right)-\frac{1}{\lambda} D_{k}^{2}\left(X\left(t_{k}\right) \psi\right), & k \in \sigma_{1}^{m} \\ y(0)=\psi, & \end{cases}
$$

satisfies

$$
y(T)=0
$$

Proof.
Write system (24) into the form

$$
\begin{cases}y^{\prime}(t)+A y(t)=-\frac{1}{\lambda} B^{2}(X(t) \psi), & t \in(0, T) \backslash\left\{t_{k}\right\}_{k \in \sigma_{1}^{m}} \\ y\left(t_{k}^{+}\right)=\mathcal{I}_{k} y\left(t_{k}\right)-\frac{1}{\lambda} D_{k}^{2}\left(X\left(t_{k}\right) \psi\right), & k \in \sigma_{1}^{m} \\ y(0)=\psi\end{cases}
$$

Therefore, this impulsive problem has a solution which can be represented explicitly as follows
$y(t)=X(t) \psi+\int_{0}^{t} G(t, s)\left[-\frac{1}{\lambda} B^{2}(X(s) \psi] d s+\sum_{0<t_{k} \leq t} G\left(t, t_{k}\right)\left[-\frac{1}{\lambda} D_{k}^{2} X\left(t_{k}\right) \psi\right]\right.$,
where the evolution operator $G(t, s)$ is given by

$$
G(t, s)=X(t) X^{-1}(s)
$$

On the other hand, the system (24) yields

$$
\begin{aligned}
y(T)= & X(T) \psi+\int_{0}^{T} G(T, s)\left\{-\frac{1}{\lambda} B^{2}(X(s) \psi\} d s\right. \\
& +\sum_{0<t_{k} \leq T} G\left(T, t_{k}\right)\left\{-\frac{1}{\lambda} D_{k}^{2} X\left(t_{k}\right) \psi\right\} \\
= & X(T)\left[\psi+\int_{0}^{T} X^{-1}(T) G(T, s)\left\{-\frac{1}{\lambda} B^{2}(X(s) \psi\} d s\right.\right. \\
& \left.-\frac{1}{\lambda} \sum_{0<t_{k} \leq T} X^{-1}(T) G\left(T, t_{k}\right)\left\{D_{k}^{2} X\left(t_{k}\right) \psi\right\}\right] \\
= & X(T)\left[\psi+\int_{0}^{T} X^{-1}(s)\left\{-\frac{1}{\lambda} B^{2}(X(s) \psi\} d s\right.\right. \\
& \left.-\frac{1}{\lambda} \sum_{0<t_{k} \leq T} X^{-1}\left(t_{k}\right)\left\{D_{k}^{2} X\left(t_{k}\right) \psi\right\}\right] \\
= & X(T))\left[\psi-\frac{1}{\lambda} \Gamma(\psi)\right]=0 .
\end{aligned}
$$

This shows that the initial state ψ is null-controllable at time T with control

$$
h(t)=\left(u(t),\left\{v_{k}\right\}_{k \in \sigma_{1}^{m}}\right)=\left(-\frac{1}{\lambda} X(t) \psi,\left\{-\frac{1}{\lambda} X\left(t_{k}\right) \psi\right\}_{k \in \sigma_{1}^{m}}\right),
$$

which completes the proof of the Proposition.

References

[1] N.U. Ahmed, Optimal impulse control for impulsive systems in Banach spaces. J. Math. Anal. Appl. Vol. 1 (No.1)(2000), 37-52.
[2] M.U. Akhmetov, A. Zafer, The controllability of boundary-value problems for quasilinear impulsive systems, Nonlinear Analysis 34 (1998) 1055-1065.
[3] D.D. Bainov and P.S. Simeonov, Systems with impulse effect, theory and applications, Ellis Hardwood series in Mathematics and its Applications, Ellis Hardwood, Chichester, 1989.
[4] D.D. Bainov - P.S. Simeonov, Impulsive differential equations: Asymptotic properties of the solutions, World Scientific, Series on Advances in Math. for Applied Sciences, 28 (1995).
[5] L. Berezansky and E. Braverman, Boundedness and stability of impulsively perturbed systems in a Banach space. Preprint functan/9312001.
[6] R.K. George, A.K. Nandakumaran and A. Arapostathis, A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, 276-283, 2000.
[7] Z.H. Guan, T.H. Qian, and X. Yu, Controllability and observability of linear time-varying impulsive systems. IEEE Circuits Syst. I, vol. 49, pp. 1198-1208, 2002.
[8] A. Haraux, An alternative functional approach to exact controllability of conservative systems, Portugaliae mathematica 61, 4 (2004), 399-437.
[9] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations. World Scientific series in Modern Mathematics, Vol. 6, Singapore, 1989.
[10] S. Leela, F.A. McRae, and S. Sivasundaram, Controllability of impulsive differential equations, J. Math. Anal. Appl. 177, 1993, 24-30.
[11] X. Liu, Nonlinear boundary value problems for first order impulsive integrodifferential equations, Appl. Anal. 36(1990), 119-130.
[12] J.H. Liu, Nonlinear impulsive evolution equations, Dynamics Contin. Discr. Impulsive Syst., 6 (1999), 77-85.
[13] A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations, World Scientific, Singapore, 1995.
[14] R.E. Showalter, Hilbert space methods for partial differential equations, Electronic Journal of Differential Equations, Monograph 01, 1994.
[15] M. Slemrod, Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control, Math. Control Signals Systems, Vol. 2, 265-285, 1989.
[16] R. Triggiani, Controllability and observability in Banach space with bounded operators, SIAM J. Control Optimiz. 13(1) (1975), 462-490.
(Received October 17, 2006)

EJQTDE, 2007 No. 19, p. 21

