Positive Solutions for Systems of nth Order Three-point Nonlocal Boundary Value Problems

J. Henderson ${ }^{1}$ and S. K. Ntouyas ${ }^{2}$
${ }^{1}$ Department of Mathematics, Baylor University
Waco, Texas 76798-7328 USA
e-mail: Johnny_Henderson@baylor.edu
${ }^{2}$ Department of Mathematics, University of Ioannina 45110 Ioannina, Greece
email: sntouyas@uoi.gr

Abstract

Intervals of the parameter λ are determined for which there exist positive solutions for the system of nonlinear differential equations, $u^{(n)}+\lambda a(t) f(v)=$ $0, v^{(n)}+\lambda b(t) g(u)=0$, for $0<t<1$, and satisfying three-point nonlocal boundary conditions, $u(0)=0, u^{\prime}(0)=0, \ldots, u^{(n-2)}(0)=0, u(1)=\alpha u(\eta), v(0)=$ $0, v^{\prime}(0)=0, \ldots, v^{(n-2)}(0)=0, v(1)=\alpha v(\eta)$. A Guo-Krasnosel'skii fixed point theorem is applied.

Key words and phrases: Three-point nonlocal boundary value problem, system of differential equations, eigenvalue problem.
AMS (MOS) Subject Classifications: 34B18, 34A34

1 Introduction

We are concerned with determining intervals of the parameter λ (eigenvalues) for which there exist positive solutions for the system of differential equations,

$$
\begin{gather*}
u^{(n)}+\lambda a(t) f(v)=0, \quad 0<t<1, \\
v^{(n)}+\lambda b(t) g(u)=0, \quad 0<t<1, \tag{1}
\end{gather*}
$$

satisfying the three-point nonlocal boundary conditions,

$$
\begin{align*}
u(0) & =0, u^{\prime}(0)=0, \ldots, u^{(n-2)}(0)=0, & u(1)=\alpha u(\eta), \\
v(0) & =0, v^{\prime}(0)=0, \ldots, v^{(n-2)}(0)=0, & v(1)=\alpha v(\eta), \tag{2}
\end{align*}
$$

where $0<\eta<1,0<\alpha \eta^{n-1}<1$ and
(A) $f, g \in C([0, \infty),[0, \infty))$,
(B) $a, b \in C([0,1],[0, \infty))$, and each does not vanish identically on any subinterval,
(C) All of $f_{0}:=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}, g_{0}:=\lim _{x \rightarrow 0^{+}} \frac{g(x)}{x}, f_{\infty}:=\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ and $g_{\infty}:=$ $\lim _{x \rightarrow \infty} \frac{g(x)}{x}$ exist as real numbers.

There is currently a great deal of interest in positive solutions for several types of boundary value problems. While some of the interest has focused on theoretical questions [5, 9, 13, 26], an equal amount of interest has been devoted to applications for which only positive solutions have meaning $[1,8,17,18]$. While most of the above studies have dealt with scalar problems, some recent work has addressed questions of positive solutions for systems of boundary value problems $[3,12,14,15,16,19,22$, $25,27,30]$. In addition, some studies have been directed toward positive solutions for nonlocal boundary value problems; see, for example, [4, 6, 10, 17, 18, 19, 21, 22, 20, $24,26,28,29,30]$.

Additional attention has been directed toward extensions to higher order problems, such as in $[2,4,7,8,11,23,29]$. Recently Benchohra et al. [3] and Henderson and Ntouyas [12] studied the existence of positive solutions of systems of nonlinear eigenvalue problems. Here we extend these results to eigenvalue problems for systems of higher order three-point nonlocal boundary value problems.

The main tool in this paper is an application of the Guo-Krasnosel'skii fixed point theorem for operators leaving a Banach space cone invariant [9]. A Green's function plays a fundamental role in defining an appropriate operator on a suitable cone.

2 Some preliminaries

In this section, we state some preliminary lemmas and the well-known Guo-Krasnosel'skii fixed point theorem.

Lemma 2.1 [4] Let $0<\eta<1,0<\alpha \eta^{n-1}<1$; then for any $u \in C[0,1]$ the following boundary value problem

$$
\begin{gather*}
u^{(n)}(t)=0, \quad 0<t<1 \tag{3}\\
u(0)=0, u^{\prime}(0)=0, \ldots, u^{(n-2)}(0)=0, \quad u(1)=\alpha u(\eta), \tag{4}
\end{gather*}
$$

has a unique solution

$$
u(t)=\int_{0}^{1} k(t, s) u^{(n)}(s) d s
$$

where $k(t, s):[0,1] \times[0,1] \rightarrow \mathbb{R}^{+}$is defined by

$$
k(t, s)= \begin{cases}\frac{a(\eta, s))^{n-1}}{(n-1)!}, & 0 \leq t \leq s \leq 1, \tag{5}\\ \frac{a(\eta, s))^{n-1}+(t-s)^{n-1}}{(n-1)!}, & 0 \leq s \leq t \leq 1,\end{cases}
$$

and

$$
a(\eta, s)= \begin{cases}-\frac{(1-s)^{n-1}}{1-\alpha \eta^{n-1}}, & \eta \leq s \\ -\frac{(1-s)^{n-1}-(\eta-s)^{n-1}}{1-\alpha \eta^{n-1}}, & s \leq \eta\end{cases}
$$

Lemma 2.2[4] Let $0<\alpha^{n-1}<1$. Let u satisfy $u^{(n)}(t) \leq 0,0<t<1$, with the nonlocal conditions (2). Then

$$
\inf _{t \in[\eta, 1]} u(t) \geq \gamma\|u\|,
$$

where $\gamma=\min \left\{\alpha \eta^{n-1}, \frac{\alpha(1-\eta)}{1-\alpha \eta}, \eta^{n-1}\right\}$.
Define $\theta(s)=\max _{t \in[0,1]}|k(t, s)|$. From Lemma 1.2 in [4], we know that

$$
\begin{equation*}
|k(t, s)| \geq \gamma \theta(s), \quad t \in[\eta, 1], s \in[0,1] . \tag{6}
\end{equation*}
$$

By simple calculation we have (see [11])

$$
\begin{equation*}
\theta(s)=\max _{t \in[0,1]}|k(t, s)| \leq \frac{(1-s)^{n-1}}{\left(1-\alpha \eta^{n-1}\right)(n-1)!}, \quad s \in(0,1) . \tag{7}
\end{equation*}
$$

We note that a pair $(u(t), v(t))$ is a solution of eigenvalue problem (1), (2) if, and only if,

$$
\begin{equation*}
u(t)=-\lambda \int_{0}^{1} k(t, s) a(s) f\left(-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r\right) d s, \quad 0 \leq t \leq 1, \tag{8}
\end{equation*}
$$

where

$$
v(t)=-\lambda \int_{0}^{1} k(t, s) b(s) g(u(s)) d s, \quad 0 \leq t \leq 1 .
$$

Values of λ for which there are positive solutions (positive with respect to a cone) of (1), (2) will be determined via applications of the following fixed point theorem.

Theorem 2.1 Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume Ω_{1} and Ω_{2} are open subsets of \mathcal{B} with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{P}
$$

be a completely continuous operator such that, either
(i) $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$.

Then T has a fixed point in $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3 Positive solutions in a cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (that is, positive solutions) of (1), (2). For our construction, let $\mathcal{B}=C[0,1]$ with supremum norm, $\|\cdot\|$, and define a cone $\mathcal{P} \subset \mathcal{B}$ by

$$
\mathcal{P}=\left\{x \in \mathcal{B} \mid x(t) \geq 0 \text { on }[0,1], \text { and } \min _{t \in[\eta, 1]} x(t) \geq \gamma\|x\|\right\} .
$$

For our first result, define positive numbers L_{1} and L_{2} by

$$
L_{1}:=\max \left\{\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r) f_{\infty} d r\right]^{-1},\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r) g_{\infty} d r\right]^{-1}\right\}
$$

and

$$
L_{2}:=\min \left\{\left[\int_{0}^{1} \theta(r) a(r) f_{0} d r\right]^{-1},\left[\int_{0}^{1} \theta(r) b(r) g_{0} d r\right]^{-1}\right\} .
$$

Theorem 3.1 Assume conditions (A), (B) and (C) are satisfied. Then, for each λ satisfying

$$
\begin{equation*}
L_{1}<\lambda<L_{2}, \tag{9}
\end{equation*}
$$

there exists a pair (u, v) satisfying (1), (2) such that $u(x)>0$ and $v(x)>0$ on $(0,1)$.
Proof. Let λ be as in (9). And let $\epsilon>0$ be chosen such that

$$
\max \left\{\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r)\left(f_{\infty}-\epsilon\right) d r\right]^{-1},\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r)\left(g_{\infty}-\epsilon\right) d r\right]^{-1}\right\} \leq \lambda
$$

and

$$
\lambda \leq \min \left\{\left[\int_{0}^{1} \theta(r) a(r)\left(f_{0}+\epsilon\right) d r\right]^{-1},\left[\int_{0}^{1} \theta(r) b(r)\left(g_{0}+\epsilon\right) d r\right]^{-1}\right\} .
$$

Define an integral operator $T: \mathcal{P} \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
T u(t):=-\lambda \int_{0}^{1} k(t, s) a(s) f\left(-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r\right) d s, \quad u \in \mathcal{P} \tag{10}
\end{equation*}
$$

We seek suitable fixed points of T in the cone \mathcal{P}.
By Lemma 2.2, $T \mathcal{P} \subset \mathcal{P}$. In addition, standard arguments show that T is completely continuous.

Now, from the definitions of f_{0} and g_{0}, there exists an $H_{1}>0$ such that

$$
f(x) \leq\left(f_{0}+\epsilon\right) x \text { and } g(x) \leq\left(g_{0}+\epsilon\right) x, \quad 0<x \leq H_{1} .
$$

Let $u \in \mathcal{P}$ with $\|u\|=H_{1}$. We first have from (7) and choice of ϵ,

$$
\begin{aligned}
-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r & \leq \lambda \int_{0}^{1} \theta(r) b(r) g(u(r)) d r \\
& \leq \lambda \int_{0}^{1} \theta(r) b(r)\left(g_{0}+\epsilon\right) u(r) d r \\
& \leq \lambda \int_{0}^{1} \theta(r) b(r) d r\left(g_{0}+\epsilon\right)\|u\| \\
& \leq\|u\| \\
& =H_{1} .
\end{aligned}
$$

As a consequence, we next have from (7), and choice of ϵ,

$$
\begin{aligned}
T u(t) & =-\lambda \int_{0}^{1} k(t, s) a(s) f\left(-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r\right) d s \\
& \leq \lambda \int_{0}^{1} \theta(s) a(s) f\left(-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r\right) d s \\
& \leq \lambda \int_{0}^{1} \theta(s) a(s)\left(f_{0}+\epsilon\right)\left[-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r\right] d s \\
& \leq \lambda \int_{0}^{1} \theta(s) a(s)\left(f_{0}+\epsilon\right) H_{1} d s \\
& \leq H_{1} \\
& =\|u\| .
\end{aligned}
$$

So, $\|T u\| \leq\|u\|$. If we set

$$
\Omega_{1}=\left\{x \in \mathcal{B} \mid\|x\|<H_{1}\right\},
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} . \tag{11}
\end{equation*}
$$

Next, from the definitions of f_{∞} and g_{∞}, there exists $\bar{H}_{2}>0$ such that

$$
f(x) \geq\left(f_{\infty}-\epsilon\right) x \text { and } g(x) \geq\left(g_{\infty}-\epsilon\right) x, \quad x \geq \bar{H}_{2} .
$$

Let

$$
H_{2}=\max \left\{2 H_{1}, \frac{\bar{H}_{2}}{\gamma}\right\} .
$$

Let $u \in \mathcal{P}$ and $\|u\|=H_{2}$. Then,

$$
\min _{t \in[\eta, 1]} u(t) \geq \gamma\|u\| \geq \bar{H}_{2} .
$$

Consequently, from (8) and choice of ϵ,

$$
\begin{aligned}
-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r & \geq \lambda \gamma \int_{\eta}^{1} \theta(r) b(r) g(u(r)) d r \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(r) b(r) g(u(r)) d r \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(r) b(r)\left(g_{\infty}-\epsilon\right) u(r) d r \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(r) b(r)\left(g_{\infty}-\epsilon\right) d r \gamma\|u\| \\
& \geq\|u\| \\
& =H_{2} .
\end{aligned}
$$

And so, we have from (8) and choice of ϵ,

$$
\begin{aligned}
T u(\eta) & \geq \lambda \gamma \int_{\eta}^{1} \theta(s) a(s) f\left(-\lambda \int_{\eta}^{1} k(s, r) b(r) g(u(r)) d r\right) d s \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(s) a(s)\left(f_{\infty}-\epsilon\right)\left[-\lambda \int_{\eta}^{1} k(s, r) b(r) g(u(r)) d r\right] d s \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(s) a(s)\left(f_{\infty}-\epsilon\right) H_{2} d s
\end{aligned}
$$

$$
\begin{aligned}
& \geq \lambda \gamma^{2} \int_{\eta}^{1} \theta(s) a(s)\left(f_{\infty}-\epsilon\right) H_{2} d s \\
& \geq H_{2} \\
& =\|u\| .
\end{aligned}
$$

Hence, $\|T u\| \geq\|u\|$. So, if we set

$$
\Omega_{2}=\left\{x \in \mathcal{B} \mid\|x\|<H_{2}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} . \tag{12}
\end{equation*}
$$

Applying Theorem 2.1 to (11) and (12), we obtain that T has a fixed point $u \in$ $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. As such, and with v defined by

$$
v(t)=-\lambda \int_{0}^{1} k(t, s) b(s) g(u(s)) d s
$$

the pair (u, v) is a desired solution of (1), (2) for the given λ. The proof is complete.
Prior to our next result, we introduce another hypothesis.
(D) $g(0)=0$ and f is an increasing function.

We now define positive numbers L_{3} and L_{4} by

$$
L_{3}:=\max \left\{\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r) f_{0} d r\right]^{-1},\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r) g_{0} d r\right]^{-1}\right\}
$$

and

$$
L_{4}:=\min \left\{\left[\int_{0}^{1} \theta(r) a(r) f_{\infty} d r\right]^{-1},\left[\int_{0}^{1} \theta(r) b(r) g_{\infty} d r\right]^{-1}\right\} .
$$

Theorem 3.2 Assume conditions (A)-(D) are satisfied. Then, for each λ satisfying

$$
\begin{equation*}
L_{3}<\lambda<L_{4}, \tag{13}
\end{equation*}
$$

there exists a pair (u, v) satisfying (1), (2) such that $u(x)>0$ and $v(x)>0$ on $(0,1)$.
Proof. Let λ be as in (13). And let $\epsilon>0$ be chosen such that

$$
\max \left\{\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r)\left(f_{0}-\epsilon\right) d r\right]^{-1},\left[\gamma^{2} \int_{\eta}^{1} \theta(r) a(r)\left(g_{0}-\epsilon\right) d r\right]^{-1}\right\} \leq \lambda
$$

and

$$
\lambda \leq \min \left\{\left[\int_{0}^{1} \theta(r) a(r)\left(f_{\infty}+\epsilon\right) d r\right]^{-1},\left[\int_{0}^{1} \theta(r) b(r)\left(g_{\infty}+\epsilon\right) d r\right]^{-1}\right\}
$$

Let T be the cone preserving, completely continuous operator that was defined by (10).

From the definitions of f_{0} and g_{0}, there exists $H_{1}>0$ such that

$$
f(x) \geq\left(f_{0}-\epsilon\right) x \text { and } g(x) \geq\left(g_{0}-\epsilon\right) x, \quad 0<x \leq H_{1} .
$$

Now $g(0)=0$ and so there exists $0<H_{2}<H_{1}$ such that

$$
\lambda g(x) \leq \frac{H_{1}}{\int_{0}^{1} \theta(r) b(r) d r}, \quad 0 \leq x \leq H_{2} .
$$

Choose $u \in \mathcal{P}$ with $\|u\|=H_{2}$. Then

$$
\begin{aligned}
-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r & \leq \lambda \int_{0}^{1} \theta(r) b(r) g(u(r)) d r \\
& \leq \lambda \int_{0}^{1} \theta(r) b(r) g(u(r)) d r \\
& \leq \frac{\int_{0}^{1} \theta(r) b(r) H_{1} d r}{\int_{0}^{1} \theta(r) b(s) d s} \\
& \leq H_{1}
\end{aligned}
$$

Then, by (8) and (D)

$$
\begin{aligned}
T u(\eta) & \geq \lambda \gamma \int_{\eta}^{1} \theta(s) a(s) f\left(\lambda \gamma \int_{\eta}^{1} \theta(r) b(r) g(u(r)) d r\right) d s \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(s) a(s)\left(f_{0}-\epsilon\right) \lambda \gamma \int_{\eta}^{1} \theta(r) b(r) g(u(r)) d r d s \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(s) a(s)\left(f_{0}-\epsilon\right) \lambda \gamma^{2} \int_{\eta}^{1} \theta(r) b(r)\left(g_{0}-\epsilon\right)\|u\| d r d s \\
& \geq \lambda \gamma \int_{\eta}^{1} \theta(s) a(s)\left(f_{0}-\epsilon\right)\|u\| d s \\
& \geq \lambda \gamma^{2} \int_{\eta}^{1} \theta(s) a(s)\left(f_{0}-\epsilon\right)\|u\| d s \\
& \geq\|u\| .
\end{aligned}
$$

So, $\|T u\| \geq\|u\|$. If we put

$$
\Omega_{1}=\left\{x \in \mathcal{B} \mid\|x\|<H_{2}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} . \tag{14}
\end{equation*}
$$

Next, by definitions of f_{∞} and g_{∞}, there exists \bar{H}_{1} such that

$$
f(x) \leq\left(f_{\infty}+\epsilon\right) x \text { and } g(x) \leq\left(g_{\infty}+\epsilon\right) x, \quad x \geq \bar{H}_{1} .
$$

There are two cases, (a) g is bounded, and (b) g is unbounded.
For case (a), suppose $N>0$ is such that $g(x) \leq N$ for all $0<x<\infty$. Then, for $u \in \mathcal{P}$

$$
-\lambda \int_{0}^{1} k(s, r) b(r) g(u(r)) d r \leq N \lambda \int_{0}^{1} \theta(r) b(r) d r
$$

Let

$$
M=\max \left\{f(x) \mid 0 \leq x \leq N \lambda \int_{0}^{1} \theta(r) b(r) d r\right\}
$$

and let

$$
H_{3}>\max \left\{2 H_{2}, M \lambda \int_{0}^{1} \theta(s) a(s) d s\right\} .
$$

Then, for $u \in \mathcal{P}$ with $\|u\|=H_{3}$,

$$
\begin{aligned}
T u(t) & \leq \lambda \int_{0}^{1} \theta(s) a(s) M d s \\
& \leq H_{3} \\
& =\|u\|
\end{aligned}
$$

so that $\|T u\| \leq\|u\|$. If

$$
\Omega_{2}=\left\{x \in \mathcal{B} \mid\|x\|<H_{3}\right\},
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} . \tag{15}
\end{equation*}
$$

For case (b), there exists $H_{3}>\max \left\{2 H_{2}, \bar{H}_{1}\right\}$ such that $g(x) \leq g\left(H_{3}\right)$, for $0<x \leq$ H_{3}. Similarly, there exists $\left.H_{4}>\max \left\{H_{3}, \lambda \int_{0}^{1} \theta(r) b(r) g\left(H_{3}\right) d r\right)\right\}$ such that $f(x) \leq$ $f\left(H_{4}\right)$, for $0<x \leq H_{4}$. Choosing $u \in \mathcal{P}$ with $\|u\|=H_{4}$, we have by (D) that

$$
T u(t) \leq \lambda \int_{0}^{1} \theta(s) a(s) f\left(\lambda \int_{0}^{1} \theta(r) b(r) g\left(H_{3}\right) d r\right) d s
$$

$$
\begin{aligned}
& \leq \lambda \int_{0}^{1} \theta(s) a(s) f\left(H_{4}\right) d s \\
& \leq \lambda \int_{0}^{1} \theta(s) a(s) d s\left(f_{\infty}+\epsilon\right) H_{4} \\
& \leq H_{4} \\
& =\|u\|,
\end{aligned}
$$

and so $\|T u\| \leq\|u\|$. For this case, if we let

$$
\Omega_{2}=\left\{x \in \mathcal{B} \mid\|x\|<H_{4}\right\},
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} . \tag{16}
\end{equation*}
$$

In either of the cases, application of part (ii) of Theorem 2.1 yields a fixed point u of T belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, which in turn yields a pair (u, v) satisfying (1), (2) for the chosen value of λ. The proof is complete.

References

[1] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer, Dordrecht, 1999.
[2] R. P. Agarwal and F. H. Wong, Existence of positive solutions for non-positive higher order BVPs, Comput. Appl. Math. 88 (1998), 3-14.
[3] M. Benchohra, S. Hamani, J. Henderson, S. K. Ntouyas and A. Ouahab, Positive solutions for systems of nonlinear eigenvalue problems, Global J. Math. Anal. 1 (2007), 19-28.
[4] P. Eloe and B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett. 18 (2005), 521-527.
[5] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748.
[6] W. Feng and J. R. L. Webb, Solvability of a three point nonlinear boundary value problem at resonance, Nonlinear Anal. 30 (1997), 3227-3238.
[7] J. R. Graef, J. Henderson and B. Yang, Positive solutions of a nonlinear higher order boundary-value problem, Electron. J. Differential Equations 2007 (2007), No. $45,10 \mathrm{pp}$.
[8] J. R. Graef and B. Yang, Boundary value problems for second order nonlinear ordinary differential equations, Comm. Appl. Anal. 6 (2002), 273-288.
[9] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, 1988.
[10] C. Gupta, A sharper condition for the solvability of a three-point second order boundary value problem, J. Math. Anal. Appl. 205 (1997), 586-597.
[11] X. Hao, L. Liu and Y. Wu, Positive solutions for nonlinear nth order singular nonlocal boundary value problem, preprint.
[12] J. Henderson and S. K. Ntouyas, Positive solutions for systems of nonlinear boundary value problems, Nonlinear Studies, in press.
[13] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997), 1051-1060.
[14] J. Henderson and H. Wang, Nonlinear eigenvalue problems for quasilinear systems, Computers Math. Appl. 49 (2005), 1941-1949.
[15] J. Henderson and H. Wang, An eigenvalue problem for quasilinear systems, Rocky Mountain. J. Math. 37 (2007), 215-228.
[16] L. Hu and L. L. Wang, Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equations, J. Math. Anal. Appl., in press.
[17] G. Infante, Eigenvalues of some nonlocal boundary value problems, Proc. Edinburgh Math. Soc. 46 (2003), 75-86.
[18] G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation, Nonlin. Differ. Equ. Appl. 13 (2006), 249-261.
[19] B. Liu, L. Liu and Y. Wu, Positive solutions for singular systems of three-point boundary value problems, Computers Math. Appl. 53 (2007), 1429-1438.
[20] D. Ma and W. Ge, Existence and iteration of positive pseudo-symmetric solutions for a three-point second-order p-Laplacian BVP, Appl. Math. Lett. (2007), in press.
[21] R. Y. Ma, Positive solutions of a nonlinear three-pointboundary value problem, Electron. J. Differential Equations 1999 (1999), No. 34, 8pp.
[22] R. Y. Ma, Multiple nonnegative solutions of second order systems of boundary value problems, Nonlinear Anal. 42 (2000), 1003-1010.
[23] R. Y. Ma and H. Y. Wong, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal. 59 (1995), 225-231.
[24] Y. Raffoul, Positive solutions of three-point nonlinear second order boundary value problems, Electron. J. Qual. Theory Differ. Equ. (2002), No. 15, 11pp.
[25] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003), 287-306.
[26] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index theory, Nonlinear Anal. 47 (2001), 4319-4332.
[27] Z. L. Yang and J. X. Sun, Positive solutions of boundary value problems for systems of nonlinear second order ordinary differential equations, Acta. Math. Sinica 47 (2004), 111-118 (in Chinese).
[28] Y. Yang, Existence of positive pseudo-symmetric solutions for one-dimensional p-Laplacian boundary-value problems, Electron. J. Differential Equations 2007 (2007), No. 70, 6pp.
[29] S. L. Yu, F H. Wong, C. C. Yeh and S W. Lin, Existence of positive solutions for $n+2$ order p-Laplacian BVP, Computers Math. Appl. 53 (2007), 1367-1379.
[30] Y. Zhou and Y. Xu, Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations, J. Math. Anal. Appl. 320 (2006), 578-590.

