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Abstract. We develop two maximum principles for a nonlinear equation of fourth order
that arises in thin plate theory. As a consequence, we obtain uniqueness results for the
corresponding fourth order boundary value problem under the boundary conditions
w = ∆w = 0, as well as some bounds of interest.
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1 Introduction

In the pioneering work [9], Payne introduced a technique, which utilizes a maximum princi-
ple for a function defined on solutions to an elliptic differential equation, in order to obtain
bounds for the gradient of the solution of the relevant differential equation. Several authors
have contributed to the growing literature developing this technique (see the references cited
here, especially [23], and the references therein).

This paper employs Payne’s technique to treat the following equation that arises in the
thin plate theory

∆(D(x)∆w)− (1− ν)[D, w] + c(x) f (w) = 0 in Ω ⊂ IR2, (1.1)

where Ω is a bounded domain, D(x) > 0 is the flexural rigidity of the plate, [u, v] = uxxvyy −
2uxyvxy + vxxuyy, and 0 < ν < 1

2 is the elastic constant (Poisson ratio) and is defined by
ν = λ/2(λ + µ) with material depending constants λ and µ, the so-called Lamé constants.
Usually λ and µ > 0 and hence 0 < ν < 1

2 . For metals the value ν is about 0.3. Some exotic
materials have a negative Poisson ratio. We have denoted partial derivatives by a subscript
and will use the summation convention on repeated indices.

In Section 2, we establish two maximum principles for an auxiliary P function containing
the terms w, |∇w|2, (∆w)2. We note that Mareno [5, 8] was the first to prove a maximum
principle for the equation (1.1).
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Finally, in Section 3 we use these results to prove uniqueness results for classical solutions
C4(Ω) ∩ C2(Ω) and some bounds.

2 Maximum principles

The following maximum principle for second order operators will be useful ([2]).

Theorem 2.1. Let u ∈ C2(Ω) ∩ C0(Ω) satisfy the inequality Lu ≡ ∆u + γ(x)u ≥ 0 in Ω, where
γ ≥ 0 in Ω.

Suppose that Ω lies in the strip of width d, 0 < xi < d, for some i ∈ {1, . . . , n} and that

sup
Ω

γ <
π2

d2 . (2.1)

Then the function u/ϕ satisfies a generalized maximum principle in Ω, i.e., there exists a constant
k ∈ IR such that u/ϕ ≡ k in Ω or u/ϕ does not attain a nonnegative maximum in Ω.
Here

ϕ(x) = cos
π(2xi − d)

2(d + ε)

n

∏
j=1

cosh(εxj) ∈ C∞(Ω),

where ε > 0 is small.
Similarly, if we replace (2.1) by

sup
Ω

γ <
4

d2e2 , (2.2)

then u/ψ satisfies a generalized maximum principle in Ω.
Here

ψ(x) = 1− γd2

4
e

2xi
d .

We define the function

P =
1
2

D(x)(∆w)2 + C|∇w2|+ c(x)F(w),

where F(s) =
∫ s

0 f (t) dt, C > 0 is a constant and prove the following maximum principle.

Theorem 2.2. Let w ∈ C4(Ω) be solution of (1.1) and let c, D ∈ C2(Ω), f ∈ C1(IR). Suppose that
the following requirements are satisfied

(a1) c > 0, F ≥ 0,

(a2) D/α(1− 2ν) + ∆D ≥ (1− ν)2/(1− 2ν), where α ≥ 1 is a constant,

(a3) D2
ij ≤ C/2, ∀ i, j = 1, 2,

(a4) c f ′ + C/α− C2/D > 0,
(
(∆c + c/α)/|∇c|2

)
F
(
c f ′ + C/α− C2/D

)
− f 2 ≥ 0 in Ω× IR,

(a5) Ω lies in the strip of width
√

απ, 0 < xi <
√

απ, for some i = 1, 2.

Then the function P/ϕ satisfies a generalized maximum principle in Ω.
Here ϕ(x) = cos π(2xi−d)

2(d+ε) ∏n
j=1 cosh(εxj).

Similarly, if (a1)–(a4) hold with α > d2e2/4 and if (a5) is replaced by
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(a6) Ω lies in the strip of width d, 0 < xi < d, for some i = 1, 2,

then the function P/ψ satisfies a generalized maximum principle in Ω. Here ψ(x) = 1− d2

4α e
2xi
d .

Proof. From equation (1.1) we get

∆2w = −D−1[∆D∆w + 2Di∆wi − (1− ν)[D, w] + c(x) f (w)
]

and hence

∆
(

1
2

D(x)(∆w)2
)
= −1

2
∆D(∆w)2 + (1− ν)[D, w]∆w + D|∇(∆w)|2 − c(x) f (w)∆w.

Since
[D, w] = ∆D∆w− Dijwij,

we obtain that

∆
(

1
2

D(x)(∆w)2
)
=

1− 2ν

2
∆D(∆w)2 − (1− ν)Dijwij∆w + D|∇(∆w)|2 − c(x) f (w)∆w.

A computation shows that

∆C|∇w2| ≥ Cwijwij + 2Cwi(∆w)i,

∆
(

c(x)
∫ w

0
f (t) dt

)
= ∆cF(w) + c(x) f ′(w)|∇w|2 + 2 f (w)ciwi + c(x) f (w)∆w.

Adding and using (a2) we get

∆P +
P
α
≥ (1− ν)2

2
(∆w)2 − (1− ν)Dijwij∆w + D|∇(∆w)|2 + Cwijwij

+ 2Cwi(∆w)i + ∆cF(w) + c f ′(w)|∇w|2 + 2 f (w)ciwi +
C
α
|∇w|2 + c

α
F(w).

We observe that
(1− ν)2

2
(∆w)2 − (1− ν)Dijwij∆w + 2D2

ijw
2
ij ≥ 0.

Consequently adding and subtracting 2D2
ijw

2
ij in order to complete the square of the first two

terms and using the fact that
−2D2

ijw
2
ij ≥ −Cwijwij,

we get

∆P +
P
α
≥ D|∇(∆w)|2 + 2Cwi(∆w)i + ∆cF(w) + c f ′(w)|∇w|2 + 2 f (w)ciwi

+
C
α
|∇w|2 + c

α
F(w).

Completing the square of the first two terms see that

∆P +
P
α
≥ ∆cF(w) +

(
c f ′(w) +

C
α
− C2

D

)
|∇w|2 + 2 f (w)ciwi +

c
α

F(w). (2.3)
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Using the first inequality in (a4), adding and subtracting ( f 2cici)/(c f ′ + C/α− C2/D) to the
previous inequality we are left with

∆P +
P
α
≥ cici

c f ′ + C
α −

C2

D

(
∆c + c/α

cici
F(w)

(
c f ′(w) +

C
α
− C2

D

)
− f 2

)
≥ 0 in Ω,

by the second inequality in (a4).
The desired proof follows from the generalized maximum principle (Theorem 2.1).

Now we assume that C ≤ D/α and state a similar result.

Theorem 2.3. Let w ∈ C4(Ω) be solution of (1.1) and let c, D ∈ C2(Ω), f ∈ C1(IR). Suppose that
the following requirements are satisfied

(b1) c > 0, ∆(1/c) ≤ 0,

(b2) D/α(1− 2ν) + ∆D ≥ (1− ν)2/(1− 2ν), where α ≥ 1 is a constant,

(b3) D2
ij ≤ C/2, C ≤ D/α, ∀ i, j = 1, 2,

(b4) f ′ > 0, F ≥ 0, 2FF
′′ − (F′)2 ≥ 0,

(b5) Ω lies in the strip of width
√

απ, 0 < xi <
√

απ, for some i = 1, 2.

Then the function P/ϕ satisfies a generalized maximum principle in Ω, where

ϕ(x) = cos
π(2xi − d)

2(d + ε)

n

∏
j=1

cosh(εxj).

Similarly, if (b1)–(b4) hold with α > d2e2/4 and if (b5) is replaced by

(b6) Ω lies in the strip of width d, 0 < xi < d, for some i = 1, 2,

then the function P/ψ satisfies a generalized maximum principle in Ω. Here ψ(x) = 1− d2

4α e
2xi
d .

Proof. Since C ≤ D/α inequality (2.3) reduces to

∆P +
P
α
≥ ∆cF(w) + c f ′|∇w|2 + 2 f (w)ciwi +

c
α

F(w).

Adding and subtracting ( f 2cici)/(c f ′) to the previous inequality we get

∆P +
P
α
≥ cici

c f ′

(
c∆c
cici

F(w) f ′(w)− f 2
)
≥ 0.

By (b1) we get c∆c/cici ≥ 2 and hence

∆P +
P
α
≥ cici

c f ′
(

2FF′′ − (F′)2
)
≥ 0 in Ω,

and the proof follows.
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Remarks.

1. The function D = D0(1 + 1/(x2 + 1))3 constructed in [5] fulfills the requirements of
Theorem 2.3 if α = 1. Moreover the requirement (b4) is satisfied by F(s) = s4/4 + s2/2.

2. Mareno [5, Theorem 2.2] proved that under the hypotheses:

(c1) c > 0, ∆(1/c) ≤ 0,

(c2) ∆D ≥ (1− ν)2/2(1− 2ν), ∆D− 4D−1|∇D|2 ≥ 0,

(c3) f ′ > 0, F > 0, FF
′′ − (F′)2 ≥ 0,

(c4) f ′c > β (β > 0), β ≥ D ≥ DijDij,

the function
R =

1
2

D(x)(∆w)2 + D(x)|∇w2|+ c(x)
∫ w

0
f (t)dt

takes its maximum value on the boundary of Ω.

Here (Theorem 2.3, case α = 1) we imposed a geometric restriction on Ω that allowed
us to drop the restriction (c4) imposed by Mareno [5]. Moreover, Theorem 2.2 works
without any sign restriction for f ′ and ∆c.

3 Uniqueness results and bounds

With the aid of the above theorem we can establish the uniqueness results.

Theorem 3.1. Suppose that we are under the above mentioned hypotheses (c1)–(c4) [5, Theorem 2.2].
We also assume that ∂Ω ∈ C2+ε, D ∈ C2(Ω) and

∂D
∂n
− 2kD < 0 on ∂Ω, (3.1)

where k is the curvature of ∂Ω.
Then w ≡ 0 is the only solution of the boundary value problem{

∆(D(x)∆w)− (1− ν)[D, w] + c(x) f (w) = 0 in Ω,

w = ∆w = 0 on ∂Ω.
(3.2)

Proof. According to Theorem 2.2, [5] the function R attains its maximum value on ∂Ω, at a
point x0. From Hopf’s lemma it follows that ∂R

∂n > 0 at x0.
A computation shows that

∂R
∂n

=
1
2

∂D
∂n

(∆w)2 + D∆w
∂∆w
∂n

+
∂D
∂n
|∇w|2 + 2D

∂w
∂n

∂2w
∂n2 + c f (w)

∂w
∂n

+
∂c
∂n

∫ w

0
f (t) dt. (3.3)

By introducing normal coordinates in the neighborhood of the boundary, we can write
(see [23, p. 46, relation 4.3])

∆w =
∂2w
∂n2 +

∂2w
∂s2 + k

∂w
∂n

on ∂Ω, (3.4)

where ∂w
∂s denotes the tangential derivative of w.
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Since w = ∆w = 0 on ∂Ω, relation (3.4) becomes

∂2w
∂n2 = −k

∂w
∂n

. (3.5)

We note that from
∫ x

0 f (t)dt ≥ 0 and f ′ > 0 it follows that f (0) = 0.
Hence, using the boundary conditions, relation (3.5) and the fact that f (0) = 0, it follows

that
∂R
∂n

=

(
∂w
∂n

)2(
∂D
∂n
− 2kD

)
≤ 0 on ∂Ω.

This contradicts Hopf’s lemma at the point x0 ∈ ∂Ω, where R (R 6≡ constant) assumes its
maximum value. Hence R is constant in Ω. Thus ∂R

∂n = 0 on ∂Ω and consequently ∂w
∂n = 0 on

∂Ω. By the boundary conditions it follows that R ≡ 0 in Ω. Hence w ≡ 0 in Ω.

Theorem 3.2. Suppose that we are under the hypotheses of Theorem 2.3. We also assume that ∂Ω ∈
C2+ε, D ∈ C2(Ω), k ≥ 0 and

2kϕ +
∂ϕ

∂n
> 0 on ∂Ω, (3.6)

∂ϕ

∂n
> 0 for some x∗0 on ∂Ω. (3.7)

Then w ≡ 0 is the only solution of the boundary value problem (3.2).
A similar uniqueness result holds if we replace ϕ by ψ in (3.6) and (3.7).

Proof. From Theorem 2.3 it follows that the nonconstant function P/ϕ attains its maximum
value at a point x0 ∈ ∂Ω.

The generalized maximum principle, [17, Theorem 10, p. 73] tells us that

∂(P/ϕ)

∂n
> 0 at x0. (3.8)

A calculation shows that
∂P
∂n

= −2kC
(

∂w
∂n

)2

≤ 0 on ∂Ω, (3.9)

since the curvature is supposed to be nonnegative.
Hence

∂(P/ϕ)

∂n
= − C

ϕ2

(
∂w
∂n

)2(
2kϕ +

∂ϕ

∂n

)
≤ 0 on ∂Ω,

which contradicts (3.8).
It follows from Theorem 2.3 that there exists a constant γ ≥ 0 such that

P = γϕ in Ω.

The case γ > 0 and (3.7) would imply

∂P
∂n

> 0 at x∗0 ,

which contradicts (3.9).
Hence γ = 0, i.e., P ≡ 0 in Ω and the proof follows.
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Applications.
(a) From Theorem 3.1 we obtain a uniqueness result for convex domains (k ≥ 0) under the

hypothesis ∂D/∂n ≤ 0 on ∂Ω.
(b) Suppose that the plate has the shape of the ellipse

∂Ω :
x2

1
σ2 +

(
x2 − d/2

)2

d2/4
= 1.

We see that relation (3.7) is fulfilled.
In order to get a uniqueness result, it remains to check the validity of (3.6), i.e.,

2kψ +
∂ψ

∂n
> 0 on ∂Ω.

It suffices to show that

2kminψ +
∂ψ

∂n
> 0 on ∂Ω, (3.10)

where k ≥ min∂Ω k = kmin = d/2σ2.
A computation shows that

2kminψ +
∂ψ

∂n
=

d
σ2 +

d2

4α

(
1− d

σ2

)
e2x2/d − dx2

2α
e2x2/d > 0

if α > σ2e2d/2, where σ2 ≥ d/2.
Hence, if the conditions (b1)–(b4) and (b6) of Theorem 2.3 hold with

α > σ2e2d/2, where σ2 ≥ d/2,

then a uniqueness result is valid.
Similarly, if ∂Ω is the circle of radius σ = d/2 then the uniqueness result holds if the

conditions (b1)–(b4) and (b6) of Theorem 2.3 are satisfied with

α > d3e2/8, where d ≥ 4.

(c) We note that a uniqueness result holds under a weaker hypothesis on α, namely if
α ≥ 1.

Suppose that ∂Ω is the ellipse

x2
1

σ2 +
(x2 −

√
απ/2)2

απ2/4
= 1.

A computation shows that kmin =
√

απ/2σ2.
Since the relation (3.7) is fulfilled, we check the validity of (3.6).
Since ε can be chosen small enough, it suffices to show that

2
√

απ

σ2 cos t− 2
π
(
√

απ + ε)t sin t > 0 on
[
−π

2
+ δ,

π

2
− δ
]

, (3.11)

where δ = δ(ε) > 0 is a small constant.
Inequality (3.11) is valid only if the ellipse is thin, i.e., if σ is small enough.
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We note that if the plate has circular shape (i.e., it is a disk of radius
√

απ/2) then relation
(3.11) does not hold if α ≥ 1, that is, the uniqueness result fails to be valid. For small values
of α the inequality is valid but this result is not of interest.

Theorem 2.3 allows to derive apriori bounds.
If w is a solution of (1.1) in Ω and ∆w = 0 on ∂Ω, then it follows that

|∇w|2 ≤ const(Ω)max
∂Ω

(
|∇w|2 + c(x)

C
F(w)

)
in Ω,

where const(Ω) is a constant depending only on Ω.
Finally, suppose that w satisfies (1.1) and w = 0 on ∂Ω.
Then

(∆w)2 ≤ const(Ω)max
∂Ω

(
(∆w)2 +

2C
D(x)

|∇w|2
)

in Ω.
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