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Abstract

In this paper, we investigate the existence of solutions for a class of second

order functional differential inclusions with integral boundary conditions. By

using suitable fixed point theorems, we study the case when the right hand side

has convex as well as nonconvex values.
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1 Introduction

This paper is concerned with the existence of solutions of second order functional
differential inclusions with integral boundary conditions. More precisely, in Section 3,
we consider the second order functional differential inclusion,

x′′(t) + λx′(t) ∈ F (t, xt), a.e. t ∈ [0, 1], (1)

with initial function values,

x(t) = φ(t), t ∈ [−r, 0], (2)

and integral boundary condtions,

x(1) =
∫ 1

0
g(x(s))ds, (3)

where F : [0, 1]×C([−r, 0], IR) → P(IR) is a compact valued multivalued map, P(IR) is
the family of all subsets of IR, λ < 0, φ ∈ C([−r, 0], IR) and g : IR → IR is continuous.
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For any continuous function y defined on [−r, 1], and any t ∈ [0, 1], we denote by yt

the element of C([−r, 0], IR) defined by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

Here yt(·) represents the history of the state from t− r, up to the present time t.
Boundary value problems with integral boundary conditions constitute a very in-

teresting and important class of problems. They include two, three, multipoint and
nonlocal boundary value problems as special cases. For boundary value problems with
integral boundary conditions and comments on their importance, we refer the reader to
the papers by Gallardo [13], Karakostas and Tsamatos [16], Lomtatidze and Malaguti
[21] and the references therein. Moreover, boundary value problems with integral
boundary conditions have been studied by a number of authors, for instance, Brykalov
[6], Denche and Marhoune [10], Jankowskii [15] and Krall [19]. Recently Ahmad, Khan
and Sivasundaram [1, 17] have applied the generalized method of quasilinearization
to a class of second order boundary value problem with integral boundary conditions.
Some results on the existence of solutions for a class of boundary value problems for
second order differential inclusions with integral conditions have been obtained by Be-
larbi and Benchohra [4]. In this paper we shall present three existence results for the
problem (1)-(3), when the right hand side is convex as well as nonconvex valued. The
first result relies on the nonlinear alternative of Leray-Schauder type. In the second
result, we shall use the fixed point theorem for contraction multivalued maps due to
Covitz and Nadler, while in the third result, we shall combine the nonlinear alternative
of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan
and Colombo for lower semicontinuous multivalued maps with nonempty closed and
decomposables values. These results extend to the multivalued case some previous
results in the literature.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis which are used throughout this paper.
C([−r, 1], IR) is the Banach space of all continuous functions from [−r, 1] into IR with
the norm

‖x‖∞ = sup{|x(t)| : −r ≤ t ≤ 1}.

L1([0, 1], IR) denotes the Banach space of measurable functions x : [0, 1] −→ IR which
are Lebesgue integrable and normed by

‖x‖L1 =
∫ 1

0
|x(t)|dt for all x ∈ L1([0, 1], IR).

AC1((0, 1), IR) is the space of differentiable functions x : (0, 1) → IR, whose first
derivative, x′, is absolutely continuous.
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For a normed space (X, | · |), let Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) =
{Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact} and Pcp,c(X) =
{Y ∈ P(X) : Y compact and convex}. A multivalued map G : X → P (X) is convex
(closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e. sup

x∈B

{sup{|y| : y ∈

G(x)}} <∞). G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the
set G(x0) is a nonempty closed subset of X, and if for each open set N of X containing
G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N . G is said
to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X). If the
multivalued map G is completely continuous with nonempty compact values, then G

is u.s.c. if and only if G has a closed graph (i.e. xn −→ x∗, yn −→ y∗, yn ∈ G(xn)
imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed
point set of the multivalued operator G will be denoted by FixG. A multivalued map
G : [0, 1] → Pcl(IR) is said to be measurable if for every y ∈ IR, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable. For more details on multivalued maps see the books of Aubin and
Cellina [2], Aubin and Frankowska [3], Deimling [9] and Hu and Papageorgiou [14].

Definition 2.1 A multivalued map F : [0, 1] × C([−r, 0], IR) → P(IR) is said to be
L1-Carathéodory if

(i) t 7−→ F (t, u) is measurable for each u ∈ C([−r, 0], IR);

(ii) u 7−→ F (t, u) is upper semicontinuous for almost all t ∈ [0, 1];

(iii) for each q > 0, there exists ϕq ∈ L1([0, 1], IR+) such that

‖F (t, u)‖ = sup{|v| : v ∈ F (t, u)} ≤ ϕq(t) for all ‖u‖ ≤ q and for a.e. t ∈ [0, 1].

For each x ∈ C([−r, 1], IR), define the set of selections of F by

SF,x = {v ∈ L1([0, 1], IR) : v(t) ∈ F (t, xt) a.e. t ∈ [0, 1]}.

Let E be a Banach space, X a nonempty closed subset of E and G : X → P(E) a
multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.)
if the set {x ∈ X : G(x) ∩ B 6= ∅} is open for any open set B in E. Let A be a
subset of [0, 1] × IR. A is L ⊗ B measurable if A belongs to the σ-algebra generated
by all sets of the form J × D, where J is Lebesgue measurable in [0, 1] and D is
Borel measurable in C([−r, 0], IR). A subset A of L1([0, 1], IR) is decomposable if for
all u, v ∈ A and J ⊂ [0, 1] measurable, the function uχJ + vχJ−J ∈ A, where χJ

stands for the characteristic function of J .
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Definition 2.2 Let Y be a separable metric space and let N : Y → P(L1([0, 1], IR))
be a multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F : [0, 1] × C([−r, 0], IR) → P(IR) be a multivalued map with nonempty
compact values. Assign to F the multivalued operator

F : C([−r, 1], IR) → P(L1([0, 1], IR))

by letting

F(x) = {w ∈ L1([0, 1], IR) : w(t) ∈ F (t, xt) for a.e. t ∈ [0, 1]}.

The operator F is called the Nymetzki operator associated with F.

Definition 2.3 Let F : [0, 1] × IR → P(IR) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its asso-
ciated Nymetzki operator F is lower semi-continuous and has nonempty closed and
decomposable values.

Let (X, d) be a metric space induced from the normed space (X, | · |). Consider
Hd : P(X) × P(X) −→ IR+ ∪ {∞} given by

Hd(A,B) = max

{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}

,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a metric space

and (Pcl(X), Hd) is a generalized metric space (see [18]).

Definition 2.4 A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

The following lemmas will be used in the sequel.

Lemma 2.1 [20]. Let X be a Banach space. Let F : [0, 1]×C([−r, 0], X) −→ Pcp,c(X)
be an L1-Carathéodory multivalued map and let Γ be a linear continuous mapping from
L1([0, 1], X) to C([0, 1], X), then the operator

Γ ◦ SF : C([0, 1], X) −→ Pcp,c(C([0, 1], X)),
x 7−→ (Γ ◦ SF )(x) := Γ(SF,x)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).
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Lemma 2.2 [5]. Let Y be a separable metric space and let N : Y → P(L1([0, 1], IR))
be a multivalued operator which has property (BC). Then N has a continuous selection;
i.e., there exists a continuous function (single-valued) g : Y → L1([0, 1], IR) such that
g(x) ∈ N(x) for every x ∈ Y.

Lemma 2.3 [8] Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

3 Main Results

In this section, we are concerned with the existence of solutions for the problem (1)-(3)
when the right hand side has convex as well as nonconvex values. Initially, we assume
that F is a compact and convex valued multivalued map.

Definition 3.1 A function x ∈ C([−r, 1], IR)∩AC1((0, 1), IR) is said to be a solution
of (1)–(3), if there exists a function v ∈ L1([0, 1], IR) with v(t) ∈ F (t, xt), for a.e.
t ∈ [0, 1], such that x′′(t) + λx′(t) = v(t) a.e. on [0, 1], and the function x satisfies the
conditions (2) and (3).

We need the following auxiliary result. Its proof uses a standard argument.

Lemma 3.1 For any σ(t), ρ(t) ∈ C([0, 1], IR), the nonhomogeneous linear problem

x′′(t) + λx′(t) = σ(t), a.e. t ∈ [0, 1],

x(0) = a,

x(1) =
∫ 1

0
ρ(s)ds,

has a unique solution x ∈ AC1((0, 1), IR) given by

x(t) = P (t) +
∫ 1

0
G(t, s)σ(s)ds,

where

P (t) =
1

e−λ − 1

[

a(e−λ − e−λt) + (e−λt − 1)
∫ 1

0
ρ(s)ds

]

is the unique solution of the problem

x′′(t) + λx′(t) = 0, a.e. t ∈ [0, 1],

x(0) = a, x(1) =
∫ 1

0
ρ(s)ds

and
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G(t, s) =
1

(1 − e−λ)















(e−λt − 1)(e−λs − e−λ)

e−λs
, 0 ≤ t ≤ s ≤ 1

(e−λs − 1)(e−λt − e−λ)

e−λs
, 0 ≤ s ≤ t ≤ 1

is the Green’s function associated to the corresponding homogeneous problem

x′′(t) + λx′(t) = 0, a.e. t ∈ [0, 1],

x(0) = 0, x(1) = 0.

Let us introduce the following hypotheses which are assumed hereafter:

(H1) The function F : [0, 1] × C([−r, 0], IR) → Pcp,c(IR) is L1-Carathéodory;

(H2) There exists a constant 0 < c < 1 such that

|g(x)| ≤ c|x|, for all x ∈ IR;

(H3) There exist a continuous non-decreasing function ψ : [0,∞) −→ (0,∞) and a
function p ∈ L1([0, 1], IR+) such that

‖F (t, u)‖P := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖)

for each (t, u) ∈ [0, 1] × C([−r, 0], IR);

(H4) There exists a number M > 0 such that

(1 − c)M

|φ(0)| +G0ψ(M)
∫ 1

0
p(s)ds

> 1,

where
G0 = sup

(t,s)∈[0,1]×[0,1]
|G(t, s)|.

Theorem 3.1 Suppose that hypotheses (H1)–(H4) are satisfied. Then the BVP (1)–
(3) has at least one solution.

Proof. Transform the BVP (1)–(3) into a fixed point problem. Consider the operator

N(x) :















h ∈ C([−r, 1], IR) : h(t) =















φ(t), if t ∈ [−r, 0],

P (t) +
∫ 1

0
G(t, s)v(s)ds, if t ∈ J,















where

P (t) =
1

e−λ − 1

[

φ(0)(e−λ − e−λt) + (e−λt − 1)
∫ 1

0
g(x(s))ds

]

and v ∈ SF,x.
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Remark 3.1 Clearly, from Lemma 3.1, the fixed points of N are solutions to (1)–(3).

We shall show that N satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof will be given in several steps.

Step 1: N(x) is convex for each x ∈ C([−r, 1], IR).

Indeed, if h1, h2 belong to N(x), then there exist v1, v2 ∈ SF,x such that for each
t ∈ [0, 1] we have

hi(t) = P (t) +
∫ 1

0
G(t, s)vi(s)ds, (i = 1, 2).

Let 0 ≤ d ≤ 1. Then, for each t ∈ [0, 1], we have

(dh1 + (1 − d)h2)(t) = P (t) +
∫ 1

0
G(t, s)[dv1(s) + (1 − d)v2(s)]ds.

Since SF,x is convex (because F has convex values), then

dh1 + (1 − d)h2 ∈ N(x).

Step 2: N maps bounded sets into bounded sets in C([−r, 1], IR).

Let Bq = {x ∈ C([−r, 1], IR) : ‖x‖∞ ≤ q} be a bounded set in C([−r, 1], IR) and
x ∈ Bq. Then for each h ∈ N(x), there exists v ∈ SF,x such that

h(t) = P (t) +
∫ 1

0
G(t, s)v(s)ds.

From (H2) and (H3) we have

|h(t)| ≤ |P (t)| +
∫ 1

0
|G(t, s)||v(s)|ds

≤ |P (t)| +G0

∫ 1

0
|v(s)|ds

≤ |φ(0)|+ cq +G0ψ(q)
∫ 1

0
p(s)ds

= |φ(0)|+ cq +G0ψ(q)‖p‖L1.

Step 3: N maps bounded sets into equicontinuous sets of C([−r, 1], IR).

Let r1, r2 ∈ [0, 1], r1 < r2 and Bq be a bounded set of C([−r, 1], IR) as in Step 2
and x ∈ Bq. For each h ∈ N(x)

|h(r2) − h(r1)| ≤ |P (r2) − P (r1)| +
∫ 1

0
|G(r2, s) −G(r1, s)||v(s)|ds

≤ |P (r2) − P (r1)| + ψ(q)
∫ 1

0
|G(r2, s) −G(r1, s)|p(s)ds.
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The right hand side tends to zero as r2 − r1 → 0. The equicontinuity for the cases
r1, r2 ∈ [−r, 0] is obvious. As a consequence of Steps 1 to 3 together with the Arzelá-
Ascoli Theorem, we can conclude that N : C([−r, 1], IR) −→ P(C([−r, 1], IR)) is
completely continuous.

Step 4: N has a closed graph.

Let xn → x∗, hn ∈ N(xn) and hn → h∗. We need to show that h∗ ∈ N(x∗).
hn ∈ N(xn) means that there exists vn ∈ SF,xn

such that, for each t ∈ [0, 1],

hn(t) = Pn(t) +
∫ 1

0
G(t, s)vn(s)ds,

where

Pn(t) =
1

e−λ − 1

[

φ(0)(e−λ − e−λt) + (e−λt − 1)
∫ 1

0
g(xn(s))ds

]

.

We must show that there exists h∗ ∈ SF,x∗ such that, for each t ∈ [0, 1],

h∗(t) = P∗(t) +
∫ 1

0
G(t, s)v∗(s)ds,

where

P∗(t) =
1

e−λ − 1

[

φ(0)(e−λ − e−λt) + (e−λt − 1)
∫ 1

0
g(x∗(s))ds

]

.

Clearly we have

‖(hn − Pn) − (h∗ − P∗)‖∞ −→ 0 as n→ ∞.

Consider the continuous linear operator

Γ : L1([0, 1], IR) → C([0, 1], IR)

defined by

v 7−→ (Γv)(t) =
∫ 1

0
G(t, s)v(s)ds.

From Lemma 2.1, it follows that Γ ◦ SF is a closed graph operator. Moreover, we have
(

hn(t) − Pn(t)
)

∈ Γ(SF,xn
).

Since xn → x∗, it follows from Lemma 2.1 that

h∗(t) = P∗(t) +
∫ 1

0
G(t, s)v∗(s)ds

for some v∗ ∈ SF,x∗.

Step 5: A priori bounds on solutions.
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Let x be a possible solution of the problem (1)–(3). Then, there exists v ∈
L1([0, 1], IR) with v ∈ SF,x such that, for each t ∈ [0, 1],

x(t) = P (t) +
∫ 1

0
G(t, s)v(s)ds.

This implies by (H2) and (H3) that, for each t ∈ [0, 1], we have

|x(t)| ≤ |φ(0)| + c

∫ t

0
|x(s)|ds+G0

∫ 1

0
p(s)ψ(‖xs‖)ds

≤ |a| + c‖x‖∞ +G0ψ(‖x‖∞)
∫ 1

0
p(s)ds.

Consequently

(1 − c)‖x‖∞ ≤
(

|φ(0)| +G0ψ(‖x‖∞)
∫ 1

0
p(s)ds

)

.

Then by (H4), there exists M such that ‖x‖∞ 6= M.

Let
U = {x ∈ C([−r, 1], IR) : ‖x‖∞ < M}.

The operator N : U → P(C([0, 1], IR)) is upper semicontinuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λN(x) for some
λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder type [11],
we deduce that N has a fixed point x in U which is a solution of the problem (1)–(3).
This completes the proof.

We present now a result for the problem (1)-(3) with a nonconvex valued right
hand side. Our considerations are based on the fixed point theorem for multivalued
map given by Covitz and Nadler [8]. We need the following hypotheses:

(H5) F : [0, 1] × C([−r, 0], IR) −→ Pcp(IR) has the property that F (·, u) : [0, 1] →
Pcp(IR) is measurable for each u ∈ C([−r, 0], IR);

(H6) Hd(F (t, u), F (t, u)) ≤ l(t)‖u−u‖ for almost all t ∈ [0, 1] and u, u ∈ C([−r, 0], IR)
where l ∈ L1([0, 1], IR) and d(0, F (t, 0)) ≤ l(t) for almost all t ∈ [0, 1],

(H7) There exists a nonnegative constant d such that

|g(x) − g(x)| ≤ d|x− x|, for all x, x ∈ IR.

Theorem 3.2 Assume that (H5)-(H7) are satisfied. If

c +G0‖l‖L1 < 1,

then the BVP (1)-(3) has at least one solution.
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Remark 3.2 For each x ∈ C([−r, 1], IR), the set SF,x is nonempty since by (H5), F
has a measurable selection (see [7], Theorem III.6).

Proof. We shall show that N satisfies the assumptions of Lemma 2.3. The proof will
be given in two steps.

Step 1: N(x) ∈ Pcl(C([−r, 1], IR)) for each x ∈ C([−r, 1], IR).

Indeed, let (xn)n≥0 ∈ N(x) such that xn −→ x̃ in C([−r, 1], IR). Then, x̃ ∈
C([−r, 1], IR) and there exists vn ∈ SF,x such that, for each t ∈ [0, 1],

xn(t) = P (t) +
∫ 1

0
G(t, s)vn(s)ds.

Using the fact that F has compact values and from (H6), we may pass to a subsequence
if necessary to get that vn converges to v in L1([0, 1], IR) and hence v ∈ SF,x. Then,
for each t ∈ [0, 1],

xn(t) −→ x̃(t) = P (t) +
∫ 1

0
G(t, s)v(s)ds.

So, x̃ ∈ N(x).

Step 2: There exists γ < 1 such that

Hd(N(x), N(x)) ≤ γ‖x− x‖∞ for each x, x ∈ C([−r, 1], IR).

Let x, x ∈ C([−r, 1], IR) and h1 ∈ N(x). Then, there exists v1(t) ∈ F (t, xt) such
that for each t ∈ [0, 1]

h1(t) = P (t) +
∫ 1

0
G(t, s)v1(s)ds.

From (H6) it follows that

Hd(F (t, xt), F (t, xt)) ≤ l(t)‖xt − xt‖.

Hence, there exists w ∈ F (t, xt) such that

|v1(t) − w| ≤ l(t)‖xt − xt‖, t ∈ [0, 1].

Consider U : [0, 1] → P(IR) given by

U(t) = {w ∈ IR : |v1(t) − w| ≤ l(t)‖xt − xt‖}.

Since the multivalued operator V (t) = U(t) ∩ F (t, xt) is measurable (see Proposition
III.4 in [7]), there exists a function v2(t) which is a measurable selection for V . So,
v2(t) ∈ F (t, xt), and for each t ∈ [0, 1],

|v1(t) − v2(t)| ≤ l(t)‖xt − xt‖.
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Let us define for each t ∈ [0, 1]

h2(t) = P̄ (t) +
∫ 1

0
G(t, s)v2(s)ds,

where

P̄ (t) =
1

e−λ − 1

[

φ(0)(e−λ − e−λt) + (e−λt − 1)
∫ 1

0
g(x̄(s))ds

]

.

We have

|h1(t) − h2(t)| ≤ |P (t) − P̄ (t)| +
∫ 1

0
|G(t, s)||v1(s) − v2(s)|ds

≤ c‖x− x̄‖∞ +
∫ 1

0
|G(t, s)|l(s)‖xs − xs‖ds.

Thus
‖h1 − h2‖∞ ≤ (c+G0‖l‖L1) ‖x− x‖∞.

By an analogous relation, obtained by interchanging the roles of x and x, it follows
that

Hd(N(x), N(x)) ≤ (c+G0‖l‖L1) ‖x− x‖∞.

So, N is a contraction and thus, by Lemma 2.3, N has a fixed point x which is solution
to (1)–(3). The proof is complete.

In this part, by using the nonlinear alternative of Leray Schauder type combined
with the selection theorem of Bresssan and Colombo for semi-continuous maps with
decomposable values, we shall establish an existence result for the problem (1)–(3).
We need the following hypothesis:

(H8) F : [0, 1] × C([−r, 0], IR) −→ P(IR) is a nonempty compact-valued multivalued
map such that:
a) (t, u) 7→ F (t, u) is L ⊗ B measurable;
b)u 7→ F (t, u) is lower semi-continuous for each t ∈ [0, 1].

The following lemma is of great importance in the proof of our next result.

Lemma 3.2 [12] Let F : [0, 1] × C([−r, 0], IR) → P(IR) be a multivalued map with
nonempty compact values. Assume (H3) and (H8) hold. Then F is of l.s.c. type.

Theorem 3.3 Assume that (H2), (H3), (H4) and (H8) hold. Then the BVP (1)–(3)
has at least one solution.

Proof. Note that (H3), (H8) and Lemma 3.2 imply that F is of l.s.c. type. Then from
Lemma 2.2, there exists a continuous function f : C([−r, 1], IR) → L1([0, 1], IR) such
that f(x) ∈ F(x) for all x ∈ C([−r, 1], IR).
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Consider the problem

x′′(t) + λx′(t) = f(xt), a.e. t ∈ [0, 1], (4)

x(t) = φ(t), t ∈ [−r, 0], (5)

x(1) =
∫ 1

0
g(x(s))ds. (6)

It is clear that if x ∈ C([−r, 1], IR) ∩ AC1((0, 1), IR) is a solution of (4)–(6), then x is
a solution to the problem (1)–(3). Transform the problem (4)–(6) into a fixed point
theorem. Consider the operator N̄ defined by

(N̄x)(t) :=















φ(t), if t ∈ [−r, 0],

P (t) +
∫ 1

0
G(t, s)f(x(s))ds, if t ∈ J.

We can easily show that N̄ is continuous and completely continuous. The remainder
of the proof is similar to that of Theorem 3.1.
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