Removability of singularity for nonlinear elliptic equations with $p(x)$-growth*

Yongqiang Fu, Yingying Shan ${ }^{\dagger}$
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P.R. China

Abstract

Using Moser's iteration method, we investigate the problem of removable isolated singularities for elliptic equations with $p(x)$-type nonstandard growth. We give a sufficient condition for removability of singularity for the equations in the framework of variable exponent Sobolev spaces.

Keywords: variable exponent space; isolated singularity; removable singularity. 2010 Mathematics Subject Classification: 35B60; 35J60.

1 Introduction

In recent years, the research of elliptic equations with variable exponent growth conditions has been an interesting topic. These problems possess very complicated nonlinearities, for instance, the $p(x)$-Laplacian operator $-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is inhomogeneous, and these problems have many important applications, see $[1,2,3]$. Since Kováćik and Rákosník first studied the $L^{p(x)}$ spaces and $W^{k, p(x)}$ spaces in [4], many results have been obtained concerning these kinds of variable exponent spaces, see examples in [5-12].

In this paper, we study solutions to nonlinear elliptic equations with nonstandard growth in the divergence form

$$
\begin{equation*}
-\operatorname{div} A(x, u, \nabla u)+g(x, u)=0 \tag{1.1}
\end{equation*}
$$

in a punctured domain $\Omega \backslash\{0\}$, where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary.
Throughout the paper we suppose that the functions $A(\cdot, \xi, \eta): \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, $g(\cdot, \xi): \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{N}$ are measurable for all $\xi \in \mathbb{R}, \eta \in \mathbb{R}^{N}$, and $A(x, \cdot, \cdot), g(x, \cdot)$ are continuous for almost all $x \in \Omega$. We also assume that the following structure conditions

$$
\begin{equation*}
A(x, \xi, \eta) \eta \geq \mu_{1}|\eta|^{p(x)} \tag{1.2}
\end{equation*}
$$

[^0]\[

$$
\begin{gather*}
|A(x, \xi, \eta)| \leq \mu_{2}|\eta|^{p(x)-1} \tag{1.3}\\
A(x, \xi,-\eta)=-A(x, \xi, \eta) \tag{1.4}\\
|x|^{-\alpha}|\xi|^{q(x)} \leq g(x, \xi) \operatorname{sgn} \xi \leq C|x|^{-\alpha}|\xi|^{q(x)} \tag{1.5}
\end{gather*}
$$
\]

are fulfilled for almost all $x \in \bar{\Omega}, \xi \in \mathbb{R}, \eta \in \mathbb{R}^{N}$, where $\mu_{1}, \mu_{2}>0, \alpha<N, C>1$ are constants, $p, q \in C(\bar{\Omega}), 1<p^{-} \leq p(x) \leq p^{+}<N$, and $q(x) \gg p(x)-1$.

Here we denote

$$
p^{-}=\inf _{x \in \bar{\Omega}} p(x), \quad p^{+}=\sup _{x \in \bar{\Omega}} p(x),
$$

and denote by $q(x) \gg p(x)-1$ the fact that $\inf _{x \in \bar{\Omega}}(q(x)-p(x)+1)>0$.
For the Laplace's equation, a set of capacity zero constitutes a removable singularity for a bounded harmonic function, while, a single point x_{0} is removable if the solution is $o\left(\log \left|x-x_{0}\right|\right)$ or $o\left(\left|x-x_{0}\right|^{2-N}\right)$.

Serrin [13] considered the conditions of removability of an isolated singular point for equation (1.1) in the case of $g(x, u) \equiv 0$, it is shown that at an isolated singularity a positive solution has precisely the order of growth $\left|x-x_{0}\right|^{\frac{p-N}{p-1}}$ if $1<p<N$, or $\log \frac{1}{\left|x-x_{0}\right|}$ if $p=N$.

Brezis and Veron [14] studied the equation of form (1.1) with a Laplace operator in the principal part. They proved the removability of isolated singularities for solutions under condition $g(x, \xi) \operatorname{sgn} \xi \geq|\xi|^{q}$ and $q \geq \frac{N}{N-2}, N \geq 3$.

For the equation of the form:

$$
-\operatorname{div} A(x, u, \nabla u)+a_{0}(x, u, \nabla u)=0
$$

Serrin $[13,15]$ considered the conditions of removability of an isolated singular point x_{0}, the condition has the form

$$
u(x)=o\left(\left|x-x_{0}\right|^{\frac{p-N}{p-1}+\tau}\right), \quad 1<p<N,
$$

with positive number τ. Nicolosi et al. [16] obtained a precise condition for the removability of singularities, it has the form

$$
u(x)=o\left(\left|x-x_{0}\right|^{\frac{p-N}{p-1}}\right), \quad 1<p<N .
$$

For equations with weighted functions v, w, Mamedov and Harman [17] proved that an isolated singular point x_{0} is removable for solutions of equation (1.1) if the condition of weighted functions

$$
v\left(B\left(x_{0}, \varepsilon\right)\right)\left(\frac{w\left(B\left(x_{0}, \varepsilon\right)\right)}{\varepsilon^{p} v\left(B\left(x_{0}, \varepsilon\right)\right)}\right)^{\frac{q}{q-p+1}}=o(1), \quad \varepsilon \rightarrow 0
$$

and $p>1, q>p-1$ are fulfilled. For the removability of singularities for solutions of elliptic equations with absorption term (see $[18,19]$).

Recently, there have been a few papers on the study of the removability of singularities for the equations with nonstandard growth. Lukkari [20] investigated the removability of a compact set for the equation $-\operatorname{div}\left(|D u|^{p(x)-2} D u\right)=0$. For the anisotropic elliptic equation, the removability of a compact set was proved by Cianci [21]. Cataldo and Cianci [22] considered the conditions of removability of an isolated singular point for equation (1.1) in the case of $g(x, u)=|u|^{q-2} u$.

In this paper, following Moser's method [23], we establish the condition

$$
\begin{equation*}
1<\frac{(p(x)-\alpha) q(x)}{q(x)-p(x)+1}+\alpha \ll N \quad \text { a.e. on } \bar{\Omega} \tag{1.6}
\end{equation*}
$$

to ensure the removability of singularities.

2 Preliminaries

We first recall some facts on spaces $L^{p(x)}$ and $W^{k, p(x)}$. For the details see [4, 8].
Let $\mathbf{P}(\Omega)$ be the set of all Lebesgue measurable functions $p: \Omega \rightarrow[1, \infty]$, we denote

$$
\rho_{p(x)}(u)=\int_{\Omega \backslash \Omega_{\infty}}|u|^{p(x)} d x+\sup _{x \in \Omega_{\infty}}|u(x)|,
$$

where $\Omega_{\infty}=\{x \in \Omega: p(x)=\infty\}$.
The variable exponent Lebesgue space $L^{p(x)}(\Omega)$ is the class of all functions u such that $\rho_{p(x)}(t u)<\infty$, for some $t>0 . L^{p(x)}(\Omega)$ is a Banach space equipped with the norm

$$
\|u\|_{L^{p(x)}}=\inf \left\{\lambda>0: \rho_{p(x)}\left(\frac{u}{\lambda}\right) \leq 1\right\} .
$$

For any $p \in \mathbf{P}(\Omega)$, we define the conjugate function $p^{\prime}(x)$ as

$$
p^{\prime}(x)= \begin{cases}\infty, & x \in \Omega_{1}=\{x \in \Omega: p(x)=1\}, \\ 1, & x \in \Omega_{\infty} \\ \frac{p(x)}{p(x)-1}, & x \in \Omega \backslash\left(\Omega_{1} \cup \Omega_{\infty}\right) .\end{cases}
$$

Theorem 2.1 Let $p \in \mathbf{P}(\Omega)$. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p^{\prime}(x)}(\Omega)$,

$$
\int_{\Omega}|u v| d x \leq 2\|u\|_{L^{p(x)}}\|v\|_{L^{p^{\prime}(x)}} .
$$

Theorem 2.2 Let $p \in \mathbf{P}(\Omega)$ with $p^{+}<\infty$. For any $u \in L^{p(x)}(\Omega)$, we have
(1) if $\|u\|_{L^{p(x)}} \geq 1$, then $\|u\|_{L^{p(x)}}^{p^{-}} \leq \int_{\Omega}|u|^{p(x)} d x \leq\|u\|_{L^{p(x)}}^{p^{+}}$;
(2) if $\|u\|_{L^{p(x)}}<1$, then $\|u\|_{L^{p(x)}}^{p^{+}} \leq \int_{\Omega}|u|^{p(x)} d x \leq\|u\|_{L^{p(x)}}^{p^{-}}$.

The variable exponent Sobolev space $W^{1, p(x)}(\Omega)$ is the class of all functions $u \in L^{p(x)}(\Omega)$ such that $|\nabla u| \in L^{p(x)}(\Omega) . W^{1, p(x)}(\Omega)$ is a Banach space equipped with the norm

$$
\|u\|_{W^{1, p(x)}}=\|u\|_{L^{p(x)}}+\|\nabla u\|_{L^{p(x)}} .
$$

We say that the function $u(x)$ belongs to the space $W_{l o c}^{1, p(x)}(\Omega)$ if $u(x)$ belongs to $W^{1, p(x)}(G)$ in any subdomain $G, \bar{G} \subset \Omega$.

Theorem 2.3 For any $u \in W^{1, p(x)}(\Omega)$, we have
(1) if $\|u\|_{W^{1, p(x)}} \geq 1$, then $\|u\|_{W^{1, p(x)}}^{p^{-}} \leq \int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x \leq\|u\|_{W^{1, p(x)}}^{p^{+}}$;
(2) if $\|u\|_{W^{1, p(x)}}<1$, then $\|u\|_{W^{1, p(x)}}^{p^{+}} \leq \int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x \leq\|u\|_{W^{1, p(x)}}^{p^{-}}$.

From Zhikov [5, 6], we know smooth functions are not dense in $W^{1, p(x)}(\Omega)$ without additional assumptions on the exponent $p(x)$. To study the Lavrentiev phenomenon, he considered the following log-Hölder continuous condition

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{C}{-\log (|x-y|)} \tag{2.1}
\end{equation*}
$$

for all $x, y \in \bar{\Omega}$ such that $|x-y| \leq \frac{1}{2}$. If the log-Hölder continuous condition holds, then smooth functions are dense in $W^{1, p(x)}(\Omega)$ and we can define the Sobolev spaces with zero boundary values $W_{0}^{1, p(x)}(\Omega)$, as the closure of $C_{0}^{\infty}(\Omega)$ with the norm of $\|\cdot\|_{W^{1, p(x)}(\Omega)}$.

Theorem 2.4 If $u \in W_{0}^{1, p}\left(B_{R}(a)\right), 1 \leq p<N$, then for any $1 \leq q \leq p^{*}$, the inequality

$$
\begin{equation*}
\left(\int_{B_{R}(a)}|u|^{q} d x\right)^{\frac{1}{q}} \leq C(N, p) R^{1+\frac{N}{q}-\frac{N}{p}}\left(\int_{B_{R}(0)}|D u|^{p} d x\right)^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

is valid, where $B_{R}(a)$ is the ball of radius R with centre a.
We define $p_{\delta}^{+}=\sup _{y \in \overline{B_{\delta}(0)} \cap \bar{\Omega}} p(y), p_{\delta}^{-}=\inf _{y \in \overline{B_{\delta}(0)} \cap \bar{\Omega}} p(y), q_{\delta}^{+}=\sup _{y \in \overline{B_{\delta}(0)} \cap \bar{\Omega}} q(y), q_{\delta}^{-}=\inf _{y \in \overline{B_{\delta}(0)} \cap \bar{\Omega}} q(y)$, where $\delta>0$ is a constant.

Lemma 2.1 Since $q(x) \gg p(x)-1$, then the set $S=\left\{\delta: p_{\delta}^{+}-1<q_{\delta}^{-}\right\}$is nonempty, bounded above and $\delta_{0}=\sup \left\{\delta: p_{\delta}^{+}-1<q_{\delta}^{-}\right\}<+\infty$.

Proof. As $q(x), p(x)$ are continuous on $\bar{\Omega}$, for $\varepsilon_{1} \in(0,1)$ and $0 \in \Omega$, there exists $\delta>0$ such that $|q(0)-q(y)|<\varepsilon_{1}$ and $|p(0)-p(y)|<\varepsilon_{1}$ whenever $|y|<\delta$. For any $y \in B_{\delta}(0) \cap \bar{\Omega}$, we have

$$
p(y)-1<p(0)-1+\varepsilon_{1},
$$

and

$$
q(y)>q(0)-\varepsilon_{1}
$$

As $q(x) \gg p(x)-1$, take $\varepsilon_{1}=\frac{1}{4} \inf _{x \in \bar{\Omega}}(q(x)-p(x)+1)$,

$$
q(0)-\varepsilon_{1}-\left(p(0)-1+\varepsilon_{1}\right) \geq \frac{1}{2} \inf _{x \in \bar{\Omega}}(q(0)-p(0)+1)>0
$$

then

$$
p(y)-1<p(0)-1+\varepsilon_{1}<q(0)-\varepsilon_{1}<q(y),
$$

and further

$$
p_{\delta}^{+}-1=\sup _{y \in \frac{\sup _{\delta}(0) \cap \bar{\Omega}}{}}(p(y)-1)<q_{\delta}^{-}=\inf _{y \in B_{\delta}(0) \cap \bar{\Omega}} q(y) .
$$

So the set $S=\left\{\delta: p_{\delta}^{+}-1<q_{\delta}^{-}\right\}$is nonempty. From the definition of the $q(x) \gg p(x)-1$, we know the set S is bounded above. By the Continuum Property, it has a smallest upper bound δ_{0}. This smallest upper bound δ_{0} is called the supremum of the set S. We write $\delta_{0}=\sup S=\sup \left\{\delta: p_{\delta}^{+}-1<q_{\delta}^{-}\right\}$.

Consider a solution $u(x)$ of equation (1.1) with an isolated singularity. Assume that $0 \in \Omega$ and zero is a singular point of the solution $u(x)$. We say that $u(x)$ is a solution of equation (1.1) in $\Omega \backslash\{0\}$ if $u \in W^{1, p(x)}(\Omega \backslash\{0\})$ and for any test function $\varphi \in W_{0}^{1, p(x)}(\Omega \backslash\{0\}) \cap L^{\infty}(\Omega \backslash\{0\})$ in $\Omega \backslash\{0\}$, the following equality is true:

$$
\begin{equation*}
\int_{\Omega}(A(x, u, \nabla u) \nabla \varphi+g(x, u) \varphi) d x=0 \tag{2.3}
\end{equation*}
$$

We say that the solution $u(x)$ of equation (1.1) has a removable singularity at the point 0 if the function $u(x)$ is a solution in $\Omega \backslash\{0\}$ and $u \in W^{1, p(x)}(\Omega \backslash\{0\}) \cap L^{\infty}(\Omega \backslash\{0\})$ implies that it belongs to the space $W^{1, p(x)}(\Omega) \cap L^{\infty}(\Omega)$ and satisfies (2.3) for any test function $\varphi \in$ $W_{0}^{1, p(x)}(\Omega) \cap L^{\infty}(\Omega)$.

3 Proof of theorems

In this section we state and prove the following theorems.
In the sequel by C we denote a constant, the value of which may vary from line to line.

Theorem 3.1 Let $u \in W^{1, p(x)}(\Omega \backslash\{0\}) \cap L^{\infty}(\Omega \backslash\{0\})$ be a solution of equation (1.1) in $\Omega \backslash\{0\}$. Assume that conditions (1.2) - (1.5), (2.1) are satisfied. Then for any $0<|x| \leq R<$ $\min \left\{\operatorname{dist}(0, \partial \Omega), \delta_{0}, 1\right\}$, the estimate

$$
\begin{equation*}
|u(x)| \leq C|x|^{-Q}, \tag{3.1}
\end{equation*}
$$

holds almost everywhere, where $Q=Q\left(N, \alpha, p_{R}^{-}, p_{R}^{+}, q_{R}^{-}\right)$and $C=C\left(N, \mu_{1}, \mu_{2}, p_{R}^{-}, p_{R}^{+}, q_{R}^{-}, q_{R}^{+}, R\right)$.
Proof. For $\rho<R$ we define a smooth cut-off function $\varphi_{1}(x)$ satisfying conditions: $\varphi_{1}(x)=1$ for $\frac{\rho}{2}<|x|<\frac{3 \rho}{4}, \varphi_{1}(x)=0$ outside the set for $\frac{\rho}{4} \leq|x| \leq \rho,\left|\nabla \varphi_{1}(x)\right| \leq \frac{C}{\rho}$ and $0 \leq \varphi_{1}(x) \leq 1$.

Take the test function

$$
\psi(x)=(1+|u(x)|)^{m} u(x) \varphi_{1}(x)^{n+p_{R}^{+}} \in W_{0}^{1, p(x)}\left(B_{R}(0) \backslash\{0\}\right),
$$

$m, n \geq 0$ are nonnegative numbers to be determined later, and then

$$
\begin{aligned}
\nabla \psi(x)= & m(1+|u(x)|)^{m-1} \nabla u(x)|u(x)| \varphi_{1}(x)^{n+p_{R}^{+}}+(1+|u(x)|)^{m} \nabla u(x) \varphi_{1}(x)^{n+p_{R}^{+}} \\
& +(1+|u(x)|)^{m} u(x)\left(n+p_{R}^{+}\right) \varphi_{1}(x)^{n+p_{R}^{+-1}} \nabla \varphi_{1}(x) .
\end{aligned}
$$

We substitute the test function $\psi(x)$ into the integral identity (2.3), we obtain

$$
\begin{aligned}
& \int_{B_{R}(0)} m A(x, u, \nabla u)(1+|u(x)|)^{m-1} \nabla u(x)|u(x)| \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
& +\int_{B_{R}(0)} A(x, u, \nabla u)(1+|u(x)|)^{m} \nabla u(x) \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
& +\int_{B_{R}(0)} g(x, u)(1+|u(x)|)^{m} u(x) \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
& +\int_{B_{R}(0)} A(x, u, \nabla u)(1+|u(x)|)^{m} u(x)\left(n+p_{R}^{+}\right) \varphi_{1}(x)^{n+p_{R}^{+}-1} \nabla \varphi_{1}(x) d x=0
\end{aligned}
$$

By virtue of the conditions (1.2) - (1.5),

$$
\begin{aligned}
& \quad \int_{B_{R}(0)} \mu_{1} m|\nabla u(x)|^{p(x)}(1+|u(x)|)^{m-1}|u(x)| \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
& \quad+\int_{B_{R}(0)} \mu_{1}|\nabla u(x)|^{p(x)}(1+|u(x)|)^{m} \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
& \quad+\int_{B_{R}(0)}|x|^{-\alpha}|u(x)|^{q(x)+1}(1+|u(x)|)^{m} \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
& \leq \int_{B_{R}(0)} \mu_{2}\left(n+p_{R}^{+}\right)|\nabla u(x)|^{p(x)-1}(1+|u(x)|)^{m+1} \varphi_{1}(x)^{n+p_{R}^{+}-1}\left|\nabla \varphi_{1}(x)\right| d x,
\end{aligned}
$$

and using Young's inequality, we have

$$
\begin{aligned}
& \int_{B_{R}(0)} \mu_{1}|\nabla u(x)|^{p(x)}(1+|u(x)|)^{m} \varphi_{1}(x)^{n+p_{R}^{+}} d x+\int_{B_{R}(0)}|x|^{-\alpha}|u(x)|^{q(x)+m+1} \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
\leq & \mu_{2} \int_{B_{R}(0)}(1+|u(x)|)^{m} \varphi_{1}(x)^{n+p_{R}^{+}}\left[|\nabla u(x)|^{p(x)-1}\right]\left[\left(n+p_{R}^{+}\right)(1+|u(x)|) \varphi_{1}(x)^{-1}\left|\nabla \varphi_{1}(x)\right|\right] d x \\
\leq & \mu_{2} C\left(\varepsilon_{2}\right) \int_{B_{R}(0)}\left(n+p_{R}^{+}\right)^{p(x)}(1+|u(x)|)^{p(x)+m} \varphi_{1}(x)^{n+p_{R}^{+}-p(x)}\left|\nabla \varphi_{1}(x)\right|^{p(x)} d x \\
& +\mu_{2} \varepsilon_{2} \int_{B_{R}(0)}(1+|u(x)|)^{m} \varphi_{1}(x)^{n+p_{R}^{+}}|\nabla u(x)|^{p(x)} d x
\end{aligned}
$$

Take $\varepsilon_{2}=\frac{\mu_{1}}{2 \mu_{2}}$, we have

$$
\begin{align*}
& \frac{\mu_{1}}{2} \int_{B_{R}(0)}|\nabla u(x)|^{p(x)}(1+|u(x)|)^{m} \varphi_{1}(x)^{n+p_{R}^{+}} d x+\int_{B_{R}(0)}|x|^{-\alpha}|u(x)|^{q(x)+m+1} \varphi_{1}(x)^{n+p_{R}^{+}} d x \\
\leq & C\left(\mu_{1}, \mu_{2}\right) \int_{B_{R}(0)}\left(n+p_{R}^{+}\right)^{p(x)} \frac{1}{\rho^{p(x)}}(1+|u(x)|)^{p(x)+m} \varphi_{1}(x)^{n+p_{R}^{+}-p(x)} d x . \tag{3.2}
\end{align*}
$$

Denote $p_{R}^{-*}=\frac{N p_{R}^{-}}{N-p_{R}^{-}}=k p_{R}^{-}$. Since $u(x) \in W^{1, p(x)}\left(B_{R}(0) \backslash\{0\}\right)$, then $u(x) \in W^{1, p_{R}^{-}}\left(B_{R}(0) \backslash\{0\}\right)$ and $\phi(x)=\left[(1+|u(x)|)^{t+p_{R}^{+}} \varphi_{1}(x)^{s+p_{R}^{+}}\right]^{\frac{1}{k p_{R}^{-}}} \in W_{0}^{1, p_{R}^{-}}\left(B_{R}(0)\right)$, where $t+p_{R}^{+}>k p_{R}^{-}, s+p_{R}^{+}>k p_{R}^{+}$. As $1<p_{R}^{-}<N$, applying (2.2) to the function $\phi(x)$, we have

$$
\begin{align*}
& \int_{B_{R}(0)}(1+|u(x)|)^{t+p_{R}^{+}} \varphi_{1}(x)^{s+p_{R}^{+}} d x \\
\leq & C\left(N, p_{R}^{-}\right)\left(\int_{B_{R}(0)}|\nabla \phi(x)|^{p_{R}^{-}} d x\right)^{k} \\
= & C\left(N, p_{R}^{-}\right)\left\{\int _ { B _ { R } (0) } \left[\left(\frac{t+p_{R}^{+}}{k p_{R}^{-}}\right)^{p_{R}^{-}}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}-p_{R}^{-}}|\nabla u(x)|^{p_{R}^{-}} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}}\right.\right. \\
& \left.\left.+\left(\frac{s+p_{R}^{+}}{k p_{R}^{-}}\right)^{p_{R}^{-}}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}-p_{R}^{-}}\left|\nabla \varphi_{1}\right|^{p_{R}^{-}}\right] d x\right\}^{k} \tag{3.3}\\
\leq & C\left(N, p_{R}^{-}\right)\left(\frac{t+s+p_{R}^{+}}{k p_{R}^{-}}\right)^{k p_{R}^{-}}\left\{\int _ { B _ { R } (0) } \left[(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}-p_{R}^{-}}|\nabla u(x)|^{p_{R}^{-}} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}}\right.\right. \\
& \left.\left.+\left(\frac{1}{\rho}\right)^{p_{R}^{-}}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}-p_{R}^{-}}\right] d x\right\}^{k} .
\end{align*}
$$

EJQTDE, 2013 No. 58, p. 7

Taking $m=\frac{t+p_{R}^{+}}{k}-p_{R}^{-}, n+p_{R}^{+}=\frac{s+p_{R}^{+}}{k}$ in (3.2) and using Young's inequality, we have

$$
\begin{align*}
& \int_{B_{R}(0)}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}-p_{R}^{-}}|\nabla u(x)|^{p_{R}^{-}} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}} d x \\
& \leq \int_{B_{R}(0)}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}-p_{R}^{-}}|\nabla u(x)|^{p(x)} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}} d x+\int_{B_{R}(0)}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}-p_{R}^{-}} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}} d x \tag{3.4}\\
& \leq C\left(\mu_{1}, \mu_{2}\right)\left(s+p_{R}^{+}\right)^{p_{R}^{+}} \frac{1}{\rho^{p_{R}^{+}}} \int_{B_{R}(0)}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}-p_{R}^{-}+p(x)} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}-p(x)} d x .
\end{align*}
$$

From (3.3) and (3.4) we get

$$
\begin{align*}
& \int_{B_{R}(0)}(1+|u(x)|)^{t+p_{R}^{+}} \varphi_{1}(x)^{s+p_{R}^{+}} d x \\
\leq & C\left(s+p_{R}^{+}\right)^{k p_{R}^{+}}\left(t+s+p_{R}^{+}\right)^{k p_{R}^{-}} \frac{1}{\rho^{k p_{R}^{+}}}\left[\int_{B_{R}(0)}(1+|u(x)|)^{\frac{t+p_{R}^{+}}{k}-p_{R}^{-}+p_{R}^{+}} \varphi_{1}^{\frac{s+p_{R}^{+}}{k}-p_{R}^{+}} d x\right]^{k}, \tag{3.5}
\end{align*}
$$

where $C=C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}\right)$.
Denote

$$
\begin{aligned}
& I_{i}=\int_{B_{R}(0)}(1+|u(x)|)^{t_{i}+p_{R}^{+}} \varphi_{1}(x)^{s_{i}+p_{R}^{+}} d x, \\
& t_{i}=\left(q_{R}^{-}+k p_{R}^{-}\right) k^{i}-p_{R}^{+}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}, \\
& s_{i}=\left(s_{0}+p_{R}^{+}+\frac{N p_{R}^{+}}{p_{R}^{-}}\right) k^{i}-p_{R}^{+}-\frac{N p_{R}^{+}}{p_{R}^{-}},
\end{aligned}
$$

where

$$
s_{0}=\frac{p_{R}^{+}\left(q_{R}^{+}+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{+}+1}\right)}{q_{R}^{-}-p_{R}^{+}+1}-p_{R}^{+}+1 .
$$

From (3.5), we get

$$
\begin{equation*}
I_{i} \leq C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}\right)\left(t_{i}+s_{i}+p_{R}^{+}\right)^{2 k p_{R}^{+}} \frac{1}{\rho^{k p_{R}^{+}}} I_{i-1}^{k} . \tag{3.6}
\end{equation*}
$$

Since

$$
\begin{aligned}
t_{i}+s_{i}+p_{R}^{+} & \leq\left(q_{R}^{-}+k p_{R}^{-}\right) k^{i}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}+\left(s_{0}+p_{R}^{+}+\frac{N p_{R}^{+}}{p_{R}^{-}}\right) k^{i}-\frac{N p_{R}^{+}}{p_{R}^{-}} \\
& \leq\left(q_{R}^{-}+k p_{R}^{-}+s_{0}+p_{R}^{+}+\frac{N p_{R}^{+}}{p_{R}^{-}}\right) k^{i},
\end{aligned}
$$

iterate (3.6), then we have

$$
\begin{aligned}
I_{i} & \leq C\left(q_{R}^{-}+k p_{R}^{-}+s_{0}+p_{R}^{+}+\frac{N p_{R}^{+}}{p_{R}^{-}}\right)^{2 k p_{R}^{+}} k^{2 k i p_{R}^{+}} \frac{1}{\rho^{k p_{R}^{+}}} I_{i-1}^{k} \\
& \leq C\left(q_{R}^{-}+k p_{R}^{-}+s_{0}+p_{R}^{+}+\frac{N p_{R}^{+}}{p_{R}^{-}}\right)^{2 \sum_{j=1}^{i} k^{j} p_{R}^{+}} k^{2 \sum_{j=1}^{i}(i+1-j) k^{j} p_{R}^{+}}\left(\frac{1}{\rho}\right)^{\sum_{j=1}^{i} k^{j} p_{R}^{+}} I_{0}^{k^{i}},
\end{aligned}
$$

then

$$
\begin{align*}
& {\left[\int_{B_{R}(0)}(1+|u(x)|)^{\left(q_{R}^{-}+k p_{R}^{-}\right) k^{i}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}} \varphi_{1}(x)^{s_{i}+p_{R}^{+}} d x\right]^{\frac{1}{k^{i}}} } \tag{3.7}\\
\leq & C\left(q_{R}^{-}+k p_{R}^{+}+s_{0}+p_{R}^{+}+\frac{N p_{R}^{+}}{p_{R}^{-}}\right)^{2 \sum_{j=1}^{i} k^{j-i} p_{R}^{+}} k^{2 \sum_{j=1}^{i}(i+1-j) k^{j-i} p_{R}^{+}}\left(\frac{1}{\rho}\right)^{\sum_{j=1}^{i} k^{j-i} p_{R}^{+}} I_{0},
\end{align*}
$$

where $C=C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}\right)$.
Since

$$
\begin{align*}
{\left[\int_{B_{R}(0)}|u(x)|^{q_{R}^{-} k^{i}} \varphi_{1}(x)^{s_{i}+p_{R}^{+}} d x\right]^{\frac{1}{k^{i}}} } & \leq\left[\int_{B_{R}(0)}(1+|u(x)|)^{q_{R}^{-} k^{i}} \varphi_{1}(x)^{s_{i}+p_{R}^{+}} d x\right]^{\frac{1}{k^{i}}} \\
& \leq\left[\int_{B_{R}(0)}(1+|u(x)|)^{\left(q_{R}^{-}+k p_{R}^{-}\right) k^{i}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}} \varphi_{1}(x)^{s_{i}+p_{R}^{+}} d x\right]^{\frac{1}{k^{i}}}, \tag{3.8}
\end{align*}
$$

combining (3.7) and (3.8), and passing to the limit as $i \rightarrow \infty$, we obtain

$$
\begin{align*}
\|u(x)\|_{L^{\infty}\left(\frac{\rho}{2}<|x|<\frac{3 \rho}{4}\right)}^{q_{-}^{-}} & \leq\|1+|u(x)|\|_{L^{\infty}\left(\frac{\rho}{2}<|x|<\frac{3 \rho}{4}\right)}^{q^{-}} \\
& \leq C\left(\frac{1}{\rho}\right)^{\frac{k_{p_{R}^{+}}^{k-1}}{k-1}}\left[\int_{B_{R}(0)}(1+|u(x)|)^{q_{R}^{-}+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}} \varphi_{1}(x)^{s_{0}+p_{R}^{+}} d x\right], \tag{3.9}
\end{align*}
$$

where $C=C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}\right)$.
Taking $m=k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}, n=s_{0}$ in (3.2), we have

$$
\begin{align*}
& \int_{B_{R}(0)}|x|^{-\alpha}|u(x)|^{q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right)^{N}}{p_{R}^{-}}+1} \varphi_{1}(x)^{s_{0}+p_{R}^{+}} d x \\
\leq & C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}\right) \int_{B_{R}(0)} \frac{1}{\rho^{p(x)}}(1+|u(x)|)^{p(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right)^{N}}{p_{R}^{-}}} \varphi_{1}(x)^{s_{0}+p_{R}^{+}-p(x)} d x, \tag{3.10}
\end{align*}
$$

and further by (3.10), we get

$$
\begin{aligned}
& \int_{B_{R}(0)}(1+|u(x)|)^{q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right)^{N}}{p_{R}^{-}}+1} \varphi_{1}(x)^{s_{0}+p_{R}^{+}} d x \\
& \leq C\left(N, p_{R}^{+}, p_{R}^{-}, q_{R}^{+}\right) \int_{B_{R}(0)}\left(1+|u(x)|^{q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right)^{N}}{p_{R}^{-}}+1}\right) \varphi_{1}^{s_{0}+p_{R}^{+}} d x \\
& \leq C+C \int_{B_{R}(0)} \rho^{\alpha-p_{R}^{+}}(1+|u(x)|)^{p(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right)^{N}}{p_{R}^{-}}} \varphi_{1}^{s_{0}+p_{R}^{+}-p(x)} d x \\
& \leq C+C \varepsilon_{3} \int_{B_{R}(0)}(1+|u(x)|)^{q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}+1} \varphi_{1}(x)^{s_{0}+p_{R}^{+}} d x+ \\
& C\left(\varepsilon_{3}\right) \int_{B_{R}(0)} \rho^{\left(\alpha-p_{R}^{+}\right) \frac{q(x)+k p_{R}^{-}}{q^{+}} \frac{\left.\left(p_{R}^{+}-p_{R}^{-}\right)\right)^{N}}{q(x)-p(x)+1}+1} \varphi_{1}^{s_{0}^{-}+p_{R}^{+}-\frac{p(x)\left(q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}\right)}{q(x)-p(x)+1}} d x .
\end{aligned}
$$

Take $\varepsilon_{3}=\frac{1}{2 C}$, we have

$$
\begin{aligned}
& \int_{B_{R}(0)}(1+|u(x)|)^{q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right)^{N}}{p_{R}^{-}}+1} \varphi_{1}(x)^{s_{0}+p_{R}^{+}} d x \\
\leq & C\left(1+\int_{B_{R}(0)} \rho^{\left(\alpha-p_{R}^{+}\right) \frac{q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N^{N}}{p_{R}^{R}}+1}{q(x)-p(x)+1}} d x\right),
\end{aligned}
$$

where $C=C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}, q_{R}^{+}, R\right)$.
From (3.9), we have

$$
\begin{equation*}
\|u(x)\|_{L^{\infty}\left(\frac{\rho}{2}<|x|<\frac{3 \rho}{4}\right)}^{q^{-}} \leq C\left(\rho^{-\frac{k p_{R}^{+}}{k-1}}+\rho^{-\frac{k p_{R}^{+}}{k-1}} \int_{B_{R}(0)} \rho^{\left(\alpha-p_{R}^{+}\right) \frac{q(x)+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right)}{p_{R}^{-}}+1}{q(x)-p(x)+1}} d x\right) . \tag{3.11}
\end{equation*}
$$

If $p_{R}^{+} \leq \alpha<N$, we have

$$
\|u(x)\|_{L^{\infty}\left(\frac{\rho}{2}<|x|<\frac{3 \rho}{4}\right)}^{q_{\bar{R}}^{-}} \leq C \rho^{-\frac{k p_{R}^{+}}{k-1}}
$$

and

$$
|u(x)| \leq C|x|^{-\frac{k p_{R}^{+}}{(k-1) q_{R}^{-}}}, \quad \text { a.e. }
$$

where $C=C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}, q_{R}^{+}, q_{R}^{-}, R\right)$.

If $\alpha<p_{R}^{+}$, we have

$$
\|u(x)\|_{L^{\infty}\left(\frac{\rho}{2}<|x|<\frac{3 \rho}{4}\right)}^{q_{-}^{-}} \leq C \rho^{-\frac{\left(p_{R}^{+}-\alpha\right)\left(q_{R}^{+}+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}+1\right)}{q_{R}^{-}-p_{R}^{+}+1}}-\frac{k p_{R}^{+}}{k-1},
$$

and

$$
|u(x)| \leq C|x| \quad-\left\{\frac{\left(p_{R}^{+}-\alpha\right)\left(q_{R}^{+}+k p_{R}^{-}+\frac{\left(p_{R}^{+}-p_{R}^{-}\right) N}{p_{R}^{-}}+1\right)}{\left(q_{R}^{-}-p_{R}^{+}+1\right) q_{R}^{-}}+\frac{k p_{R}^{+}}{(k-1) q_{R}^{-}}\right\},
$$

where $C=C\left(N, \mu_{1}, \mu_{2}, p_{R}^{+}, p_{R}^{-}, q_{R}^{+}, q_{R}^{-}, R\right)$.
The following is the main theorem in this paper.
Theorem 3.2 Let conditions (1.2) - (1.6), (2.1) be fulfilled. If u is a solution of equation (1.1) in $\Omega \backslash\{0\}$, then the singularity of $u(x)$ at the point 0 is removable.

Proof. For $0<r<R<\min \left\{\operatorname{dist}(0, \partial \Omega), \delta_{0}, 1\right\}$, we denote $m(r)=\sup \{|u(x)|: r \leq|x| \leq$ $R\}$. For sufficiently small $r \leq \min \left\{\frac{1}{e^{2}}, R^{2}\right\}$, we define the function $\psi_{r}(x)$ as follows:

$$
\begin{aligned}
& \psi_{r}(x) \equiv 0 \quad \text { for } \quad|x|<r \\
& \psi_{r}(x) \equiv 1 \quad \text { for } \quad|x|>\sqrt{r}, \\
& \psi_{r}(x)=\frac{2}{\ln \frac{1}{r}} \ln \frac{|x|}{r} \quad \text { for } \quad r \leq|x| \leq \sqrt{r} .
\end{aligned}
$$

We take the following test function

$$
\begin{equation*}
\varphi(x)=\psi_{r}^{\gamma}(x)\left[\ln \frac{u}{m(\varrho)}\right]_{+}, \tag{3.12}
\end{equation*}
$$

for any $x \in \Omega_{\varrho}$, where $0<\varrho<R, \Omega_{\varrho}=\left\{x \in B_{R}(0): u(x)>m(\varrho)\right\}, \gamma=\sup _{x \in \bar{\Omega}} \frac{p(x) q(x)}{q(x)-p(x)+1}$ is a constant and $\varphi(x) \equiv 0$ for $x \notin \Omega_{\varrho}$.

For some $0<\varrho<R$, let the domain Ω_{ϱ} be nonempty. Since $\varphi(x) \in W_{0}^{1, p(x)}(\Omega \backslash\{0\}) \cap$ $L^{\infty}(\Omega \backslash\{0\})$, testing the equality (2.3) by φ, we have

$$
\begin{aligned}
& \int_{\Omega_{\varrho}} A(x, u, \nabla u) \nabla u \frac{\psi_{r}^{\gamma}}{u}+g(x, u) \psi_{r}^{\gamma}(x) \ln \frac{u}{m(\varrho)} d x \\
& +\int_{\Omega_{\varrho}} A(x, u, \nabla u) \gamma \psi_{r}^{\gamma-1}(x) \nabla \psi_{r} \ln \frac{u}{m(\varrho)} d x=0 .
\end{aligned}
$$

By virtue of the conditions (1.2) - (1.4), we have

$$
\begin{aligned}
& \int_{\Omega_{\varrho}} \mu_{1} \frac{|\nabla u|^{p(x)}}{u} \psi_{r}^{\gamma}(x) d x+\int_{\Omega_{\varrho}}|x|^{-\alpha} u^{q(x)} \psi_{r}^{\gamma}(x) \ln \frac{u}{m(\varrho)} d x \\
\leq & \mu_{2} \gamma \int_{\Omega_{\varrho}}|\nabla u|^{p(x)-1}\left|\nabla \psi_{r}\right| \psi_{r}^{\gamma-1}(x) \ln \frac{u}{m(\varrho)} d x .
\end{aligned}
$$

By Young's inequality,

$$
\begin{aligned}
& \mu_{2} \gamma \int_{\Omega_{\varrho}}|\nabla u|^{p(x)-1}\left|\nabla \psi_{r}\right| \psi_{r}^{\gamma-1}(x) \ln \frac{u}{m(\varrho)} d x \\
\leq & C\left(\varepsilon_{4}\right) \int_{\Omega_{\varrho}} u^{p(x)-1} \psi_{r}^{\gamma-p(x)}\left|\nabla \psi_{r}\right|^{p(x)}\left(\ln \frac{u}{m(\varrho)}\right)^{p(x)} d x+\mu_{2} \gamma \varepsilon_{4} \int_{\Omega_{\varrho}} \psi_{r}^{\gamma} u^{-1}|\nabla u|^{p(x)} d x,
\end{aligned}
$$

take $\varepsilon_{4}=\frac{\mu_{1}}{2 \mu_{2} \gamma}$, then

$$
\begin{aligned}
& \frac{\mu_{1}}{2} \int_{\Omega_{\varrho}} \frac{|\nabla u|^{p(x)}}{u} \psi_{r}^{\gamma}(x) d x+\int_{\Omega_{\varrho}}|x|^{-\alpha} u^{q(x)} \psi_{r}^{\gamma}(x) \ln \frac{u}{m(\rho)} d x \\
\leq & C\left(\mu_{1}, \mu_{2}, \gamma\right) \int_{\Omega_{e}} u^{p(x)-1} \psi_{r}^{\gamma-p(x)}\left|\nabla \psi_{r}\right|^{p(x)}\left(\ln \frac{u}{m(\rho)}\right)^{p(x)} d x .
\end{aligned}
$$

Further,

$$
\begin{aligned}
& \int_{\Omega_{\varrho}} u^{p(x)-1} \psi_{r}^{\gamma-p(x)}\left|\nabla \psi_{r}\right|^{p(x)}\left(\ln \frac{u}{m(\rho)}\right)^{p(x)} d x \\
\leq & \left.C\left(\varepsilon_{5}\right) \int_{\Omega_{\varrho}}|x|^{\frac{\alpha(x)-p(x)+1}{q(x)}-\alpha}\left(\ln \frac{u}{m(\varrho)}\right)^{1+\frac{(p(x)-1)(x)}{q(x)-p(x)+1}} \right\rvert\, \nabla \psi_{r} \frac{\frac{p(x) q(x)}{q(x)-p(x)+1}}{m} d x \\
& +\varepsilon_{5} \int_{\Omega_{\varrho}}|x|^{-\alpha} \ln \frac{u}{m(\varrho)} u^{q(x)} \psi_{r}^{\frac{(\gamma-p(x) q(x)}{p(x)-1}} d x .
\end{aligned}
$$

Take $\varepsilon_{5}=\frac{1}{2 C\left(\mu_{1}, \mu_{2}, \gamma\right)}$. Since $\frac{(\gamma-p(x)) q(x)}{p(x)-1}>\gamma, \psi_{r}(x) \leq 1$, we have

$$
\begin{align*}
& \frac{\mu_{1}}{2} \int_{\Omega_{e}} \frac{|\nabla u|^{p(x)}}{u} \psi_{r}^{\gamma}(x) d x+\frac{1}{2} \int_{\Omega_{e}}|x|^{-\alpha} u^{q(x)} \psi_{r}^{\gamma}(x) \ln \frac{u}{m(\varrho)} d x \\
\leq & C\left(\mu_{1}, \mu_{2}, \gamma\right) \int_{\Omega_{e} \cap\{x: r \leq|x| \leq \sqrt{r}\}}|x|^{\frac{\alpha q(x)}{q(x)-p(x)+1}-\alpha}\left(\ln \frac{u}{m(\varrho)}\right)^{1+\frac{(p(x)-1) q(x)}{q(x)-p(x)+1}}\left|\nabla \psi_{r}\right|^{\frac{p(x) q(x)}{q(x)-p(x)+1}} d x . \tag{3.13}
\end{align*}
$$

By Lemma 2.1, we get $0<1+\frac{\left(p_{R}^{+}-1\right) q_{R}^{+}}{q_{R}^{-}-p_{R}^{+}+1}<\infty$. Denote $\lambda=\sup _{x \in \Omega}\left(\frac{(p(x)-\alpha) q(x)}{q(x)-p(x)+1}+\alpha\right)$, and from Theorem 3.1 and (3.13), we have

$$
\begin{aligned}
& \frac{\mu_{1}}{2} \int_{\Omega_{\varrho}} \frac{|\nabla u|^{p(x)}}{u} \psi_{r}^{\gamma}(x) d x+\frac{1}{2} \int_{\Omega_{\varrho}}|x|^{-\alpha} u^{q(x)} \psi_{r}^{\gamma}(x) \ln \frac{u}{m(\varrho)} d x \\
& \leq C \int_{\Omega_{\varrho} \cap\{x: r \leq|x| \leq \sqrt{r}\}}|x|^{\frac{\alpha q(x)}{q(x)-p(x)+1}-\alpha}\left(\ln |x|^{-Q}+C\right)^{1+\frac{(p(x)-1) q(x)}{q(x)-p(x)+1}}\left(\frac{2}{|x| \ln \frac{1}{r}}\right)^{\frac{p(x) q(x)}{q(x)-p(x)+1}} d x \\
& \leq C\left(\ln \frac{1}{r}\right)^{-\frac{q_{R} p_{R}^{-}}{q_{R}^{T}-p_{R}^{-1}}} \int_{\Omega_{e} \cap\{x: r \leq|x| \leq \sqrt{r}\}}|x|^{\frac{\alpha q(x)}{q(x)-p(x)+1}-\alpha}\left[\left(\ln \frac{1}{|x|}\right)^{1+\frac{(p(x)-1) q(x)}{q(x)-p(x)+1}}+1\right]\left(\frac{1}{|x|}\right)^{\frac{p(x) q(x)}{q(x)-p(x)+1}} d x \\
& \leq C\left(\ln \frac{1}{r}\right)^{-\frac{q_{\bar{R}}^{-} p_{R}^{-}}{q_{R}^{-}-p_{R}^{-1}}} \int_{\Omega_{\rho} \cap\{x: r \leq|x| \leq \sqrt{r}\}}\left(\ln \frac{1}{|x|}\right)^{1+\frac{\left(p_{R}^{+}-1\right) q_{R}^{+}}{q_{R}^{R}-p_{R}^{+}}}\left(\frac{1}{|x|}\right)^{\lambda} d x \\
& \leq C\left(\ln \frac{1}{r}\right)^{-\frac{q_{1}^{-} p^{-}}{q_{R}^{+}-p_{R}^{-}}} \int_{r}^{\sqrt{r}}\left(\frac{1}{t}\right)^{\lambda}\left(\ln \frac{1}{t}\right)^{1+\frac{\left(p_{R}^{+}-1\right) q_{R}^{+}}{q_{R}^{-}-p_{R}^{+}+1}} t^{N-1} d t,
\end{aligned}
$$

where $C=C\left(N, \mu_{1}, \mu_{2}, \gamma, p_{R}^{+}, p_{R}^{-}, q_{R}^{-}, q_{R}^{+}, R\right)$.
Further, by (1.6), we get $\lambda<N$, then

$$
\begin{aligned}
& \left(\ln \frac{1}{r}\right)^{-\frac{q_{R}^{-} p_{R}^{-}}{q_{R}^{-}-p_{R}^{-}+1}} \int_{r}^{\sqrt{r}}\left(\frac{1}{t}\right)^{\lambda}\left(\ln \frac{1}{t}\right)^{1+\frac{\left(p_{R}^{+}-1\right) q_{R}^{+}}{q_{R}^{-}-p_{R}^{+}+1}} t^{N-1} d t \\
\leq & \left(\ln \frac{1}{r}\right)^{-\frac{q^{-}-p^{-}}{q_{R}^{+}} p_{R}^{-p_{R}^{-1}}}\left(\ln \frac{1}{r}\right)^{1+\frac{\left(p_{R}^{+}-1 q_{q_{R}^{+}}^{+}\right.}{q_{R}^{-}-p_{R}^{+}+1}} \int_{r}^{\sqrt{r}} t^{N-1-\lambda} d t \\
= & \left(\ln \frac{1}{r}\right)^{-\frac{q_{R}^{-} p_{R}^{-}}{q_{R}^{+}-p_{R}^{-}+1}}\left(\ln \frac{1}{r}\right)^{1+\frac{\left(p_{R}^{+}-1\right) q_{R}^{+}}{q_{R}^{-}-p_{R}^{+}+1}} \frac{1}{N-\lambda} r^{\frac{1}{2}(N-\lambda)}\left(1-r^{\frac{1}{2}(N-\lambda)}\right) \\
\rightarrow & 0,
\end{aligned}
$$

as $r \rightarrow 0$. Therefore, we obtain

$$
\lim _{r \rightarrow 0} \frac{\mu_{1}}{2} \int_{\Omega_{e}} \frac{|\nabla u|^{p(x)}}{u} \psi_{r}^{\gamma}(x) d x+\frac{1}{2} \int_{\Omega_{e}}|x|^{-\alpha} u^{q(x)} \psi_{r}^{\gamma}(x) \ln \frac{u}{m(\varrho)} d x \leq 0
$$

then

$$
\mu_{1} \int_{\Omega_{\varrho}} \frac{|\nabla u|^{p(x)}}{u} d x+\int_{\Omega_{\varrho}}|x|^{-\alpha} u^{q(x)} \ln \frac{u}{m(\varrho)} d x=0
$$

Hence $u(x)=m(\varrho)$ almost everywhere in Ω_{ϱ} and the Lebesgue measure of Ω_{ϱ} equals to zero. Considering further the function $-u(x)$ instead of $u(x)$, we obtain the boundedness of $-u(x)$ in a neighborhood of the point 0 . Thus we have proved that $u \in L^{\infty}(\Omega)$.

EJQTDE, 2013 No. 58, p. 13

Next, we take the test function

$$
\widetilde{\varphi}=\psi^{p^{+}} u
$$

where $\psi \equiv 1$ in $B_{2 \rho}(0) \backslash B_{\rho}(0), \psi \equiv 0$ outside $B_{\frac{5 \rho}{2}}(0) \backslash B_{\frac{\rho}{2}}(0), 0 \leq \psi(x) \leq 1,|\nabla \psi| \leq \frac{C}{\rho}$ and $0<\rho \leq 1$. Testing the equality (2.3) by $\widetilde{\varphi}$, we have

$$
\int_{\Omega} A(x, u, \nabla u)\left(p^{+} \psi^{p^{+}-1} u \nabla \psi+\psi^{p^{+}} \nabla u\right)+g(x, u) \psi^{p^{+}} u d x=0 .
$$

By virtue of the conditions (1.2) - (1.5), we have

$$
\begin{aligned}
& \int_{B_{\frac{5 \rho}{2}(0)}} \mu_{1}|\nabla u|^{p(x)} \psi^{p^{+}}+|x|^{-\alpha}|u|^{q(x)+1} \psi^{p^{+}} d x \\
\leq & p^{+} \mu_{2} \int_{B_{\frac{5 \rho}{2}}(0)}|\nabla u|^{p(x)-1} \psi^{p^{+}-1}|\nabla \psi||u| d x \\
= & p^{+} \mu_{2} \int_{B_{\frac{5 \rho}{2}}^{2}}\left[|\nabla \psi||u| \psi^{p^{+}-1-\frac{p^{+}}{p^{p}(x)}}\right]\left[|\nabla u|^{p(x)-1} \psi^{\frac{p^{+}}{p^{\prime}(x)}}\right] d x \\
\leq & C\left(\mu_{2}, p^{+}, \varepsilon_{6}\right) \int_{B_{\frac{5 \rho}{2}}(0)}|\nabla \psi|^{p(x)}|u|^{p(x)} \psi^{p^{+}-p(x)} d x+p^{+} \mu_{2} \varepsilon_{6} \int_{B_{\frac{5 \rho}{2}}(0)}|\nabla u|^{p(x)} \psi^{p^{+}} d x .
\end{aligned}
$$

Take $\varepsilon_{6}=\frac{\mu_{1}}{2 p^{\dagger} \mu_{2}}$, we have

$$
\begin{aligned}
\int_{B_{\frac{5 \rho}{2}}(0)}|\nabla u|^{p(x)} \psi^{p^{+}} d x & \leq C\left(\mu_{1}, \mu_{2}, p^{+}\right) \int_{B_{\frac{5 \rho}{2}}(0)}|\nabla \psi|^{p(x)}|u|^{p(x)} \psi^{p^{+}-p(x)} d x \\
& \leq C \frac{1}{\rho^{p^{+}}} \max \left\{\|u\|_{\infty}^{p^{+}},\|u\|_{\infty}^{p^{-}}\right\}\left|B_{\frac{5 \rho}{2}}(0)\right| \\
& \leq C \frac{1}{\rho^{p^{+}}} \omega_{n}\left(\frac{5 \rho}{2}\right)^{N} \\
& =C\left(\mu_{1}, \mu_{2}, p^{+}\right) \rho^{N-p^{+}}
\end{aligned}
$$

where ω_{n} is the volume of the unit ball, $\left|B_{\frac{5 \rho}{2}}(0)\right|$ is the volume of the ball $B_{\frac{5 \rho}{2}}(0)$.
Further,

$$
\begin{equation*}
\int_{B_{2 \rho}(0) \backslash B_{\rho}(0)}|\nabla u|^{p(x)} d x \leq C\left(\mu_{1}, \mu_{2}, p^{+}\right) \rho^{N-p^{+}} \tag{3.14}
\end{equation*}
$$

then we obtain

$$
\begin{aligned}
\int_{B_{\rho}(0)}|\nabla u|^{p(x)} d x & =\sum_{j=1}^{\infty} \int_{B_{2^{1-j_{\rho}}}(0) \backslash B_{2}-j_{\rho}}(0) \\
& \leq C \sum_{j=1}^{\infty}\left(2^{-j} \rho\right)^{N-p^{+}} \\
& \leq C\left(\mu_{1}, \mu_{2}, p^{+}\right) \rho^{N-p^{+}} \\
& \rightarrow 0
\end{aligned}
$$

as $\rho \rightarrow 0$. So $|\nabla u| \in L^{p(x)}(\Omega)$.
Thus, we have proved that $u \in W^{1, p(x)}(\Omega) \cap L^{\infty}(\Omega)$.
Next, we will show that $u(x)$ is a solution of equation (1.1) in the domain Ω. Pick $\eta_{\rho} \in$ $C_{0}^{\infty}\left(R^{N}\right)$ be the cutoff function for the ball $B_{\rho}(0), \eta_{\rho} \equiv 1$ in $B_{\rho}(0), \eta_{\rho} \equiv 0$ outside the ball $B_{2 \rho}(0),\left|\nabla \eta_{\rho}\right| \leq \frac{C}{\rho}$ and $0<\rho \leq 1$. Let $\varphi \in W_{0}^{1, p(x)}(\Omega) \cap L^{\infty}(\Omega)$. Testing the equation (2.3) by the test function $\left(1-\eta_{\rho}\right) \varphi$, we have

$$
\int_{\Omega} A(x, u, \nabla u) \nabla\left[\left(1-\eta_{\rho}\right) \varphi\right] d x+\int_{\Omega} g(x, u)\left(1-\eta_{\rho}\right) \varphi d x=0
$$

that is,

$$
\int_{\Omega} A(x, u, \nabla u)\left(1-\eta_{\rho}\right) \nabla \varphi d x-\int_{\Omega} A(x, u, \nabla u) \varphi \nabla \eta_{\rho} d x+\int_{\Omega} g(x, u)\left(1-\eta_{\rho}\right) \varphi d x=0 .
$$

Indeed,

$$
\begin{aligned}
\left|A(x, u, \nabla u)\left(1-\eta_{\rho}\right) \nabla \varphi\right| & \leq \mu_{2}|\nabla u|^{p(x)-1}|\nabla \varphi| \\
& \leq \mu_{2}\left(\frac{p(x)-1}{p(x)}|\nabla u|^{p(x)}+\frac{1}{p(x)}|\nabla \varphi|^{p(x)}\right) \\
& \in L^{1}(\Omega),
\end{aligned}
$$

therefore, by Lebesgue's Dominated Convergence Theorem, we have

$$
\lim _{\rho \rightarrow 0} \int_{\Omega} A(x, u, \nabla u)\left(1-\eta_{\rho}\right) \nabla \varphi d x=\int_{\Omega} A(x, u, \nabla u) \nabla \varphi d x \text {. }
$$

In the same way,

$$
\lim _{\rho \rightarrow 0} \int_{\Omega} g(x, u)\left(1-\eta_{\rho}\right) \varphi d x=\int_{\Omega} g(x, u) \varphi d x .
$$

Meanwhile, by (3.14), we have

$$
\begin{aligned}
& \left|\int_{\Omega} A(x, u, \nabla u) \varphi \nabla \eta_{\rho} d x\right| \\
\leq & \frac{C \mu_{2}}{\rho} \int_{B_{2 \rho}(0) \backslash B_{\rho}(0)}|\nabla u|^{p(x)-1} d x \\
\leq & \frac{C\left(\mu_{2}\right)}{\rho}\left\||\nabla u|^{p(x)-1}\right\|_{L^{\frac{p(x)}{p(x)-1}}\left(B_{2 \rho}(0) \backslash B_{\rho}(0)\right)}\|1\|_{L^{p(x)}\left(B_{2 \rho}(0) \backslash B_{\rho}(0)\right)} \\
\leq & \frac{C\left(\mu_{2}\right)}{\rho}\left[\int_{B_{2 \rho}(0) \backslash B_{\rho}(0)}|\nabla u|^{p(x)} d x\right]^{\frac{p^{--1}}{p^{+}}} \cdot\left|B_{2 \rho}(0) \backslash B_{\rho}(0)\right|^{\frac{1}{p^{+}}} \\
\leq & \frac{C\left(\mu_{1}, \mu_{2}, p^{+}\right)}{\rho} \rho^{\frac{\left(p^{--1}\right)\left(N-p^{+}\right)}{p^{+}}}\left(\rho^{N}\right)^{\frac{1}{p^{+}}} \\
= & C\left(\mu_{1}, \mu_{2}, p^{+}\right) \rho^{\frac{p^{-}\left(N-p^{+}\right)}{p^{+}}} \\
\rightarrow & 0
\end{aligned}
$$

as $\rho \rightarrow 0$.
So we have obtained that equality (2.3) is fulfilled for any test function.
Therefore, the isolated singular point 0 is removable for solutions of equation (1.1).

References

[1] M. Ružička. Electrorheological fluids: modeling and mathematical theory. Berlin: SpringerVerlag; 2000.
[2] E. Acerbi, G. Mingione. Regularity results for stationary electro-rheological fluids. Arch Ration Mech Anal. 2002; 164: 213-259.
[3] Y. M. Chen, S. Levine, M. Rao. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math. 2006; 66: 1383-1406.
[4] O. Kováčik, J. Rákosnik. On Spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czechoslovak Math J. 1991; 41(116): 592-618.
[5] V. V. Zhikov. On Lavrentiev's phenomenon. Russ J Math Phys. 1995; 3: 249-269.
[6] V. V. Zhikov. On some variational problems. Russ J Math Phys. 1997; 5: 105-116.
[7] D. E. Edmunds, J. Lang, A. Nekvinda. On $L^{p(x)}$ norms. Proc Roy Soc London Ser A. 1999; 455: 219-225.
[8] X. L. Fan, D. Zhao. On the spaces $L^{p(x)}$ and $W^{m, p(x)}$. J Math Anal Appl. 2001; 263: 424-446.
[9] M. Mihăilescu, V. Rădulescu. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc Roy Soc London Ser A. 2006; 462: 2625-2641.
[10] J. Chabrowski, Y. Q. Fu. Existence of solutions for $p(x)$-Laplacian problems on a bounded domain. J Math Anal Appl. 2005; 306: 604-618. Erratum in: J Math Anal Appl. 2006; 323: 1483.
[11] Y. Q. Fu. The principle of concentration compactness in $L^{p(x)}$ spaces and its application. Nonlinear Anal. 2009; 71: 1876-1892.
[12] L. Diening, P. Harjulehto, P. Hästö, M. Ružička. Lebesgue and Sobolev Spaces with variable exponents. Lecture Notes in Mathematics. Vol. 2017. Berlin: Springer; 2011.
[13] J. Serrin. Local behavior of solutions of quasilinear equations. Acta Math. 1964; 111: 247-302.
[14] H. Brezis, L. Veron. Removable singularities of some nonlinear elliptic equations. Arch Ration Mech Anal. 1980; 75: 1-6.
[15] J. Serrin. Isolated singularities of solutions of quasilinear equations. Acta Math. 1965; 113: 219240.
[16] F. Nicolosi, I. V. Skrypnik, I. I. Skrypnik. Precise pointwise growth condition for removable isolated singularities. Comm Partial Differential Equations. 2003; 28: 677-696.
[17] F. I. Mamedov, A. Harman. On the removability of isolated singular points for degenerating nonlinear elliptic equations. Nonlinear Anal. 2009; 71: 6290-6298.
[18] I. I. Skrypnik. Removability of an isolated singularity of solutions of nonlinear elliptic equations with absorption. Ukrainian Math J. 2005; 57: 972-988.
[19] V. Liskevich, I. I. Skrypnik. Isolated singularities of solutions to quasilinear elliptic equations with absorption. J Math Anal Appl. 2008; 338: 536-544.
[20] T. Lukkari. Singular solutions of elliptic equations with nonstandard growth. Math Nachr. 2009; 282: 1770-1787.
[21] P. Cianci. Removability of singularity for an anisotropic elliptic equation of second order with nonstandard growth. Nonlinear Anal. 2010; 73: 1812-1819.
[22] V. Cataldo, P. Cianci. On the removability of singularity for solutions of nonlinear elliptic equations with nonstandard growth. Complex Variables and Elliptic Equations. 2011; 57: 521-531.
[23] J. Moser. A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equation. Comm Pure Appl Math. 1960; 13: 457-468.
(Received July 5, 2013)

[^0]: *This work was supported by the National Natural Science Foundation of China (Grant No. 11371110).
 ${ }^{\dagger}$ Corresponding author. E-mail address: hit_shanyy@163.com

