Positive Solutions to an N^{th} Order Right Focal Boundary Value Problem

Mariette Maroun Department of Mathematics and Physics University of Louisiana at Monroe Monroe, Louisiana 71209, USA maroun@ulm.edu

Abstract

The existence of a positive solution is obtained for the n^{th} order right focal boundary value problem $y^{(n)} = f(x, y), 0 < x \leq 1, y^{(i)}(0) =$ $y^{(n-2)}(p) = y^{(n-1)}(1) = 0, i = 0, \dots, n-3$, where $\frac{1}{2} is$ fixed and where <math>f(x, y) is singular at x = 0, y = 0, and possibly at $y = \infty$. The method applies a fixed-point theorem for mappings that are decreasing with respect to a cone.

Key words: Fixed point theorem, boundary value problem. AMS Subject Classification: 34B15.

1 Introduction

In this paper, we establish the existence of a positive solution for the n^{th} order right focal boundary value problem,

$$y^{(n)} = f(x, y), \text{ for } x \in (0, 1],$$
 (1)

$$y^{(i)}(0) = y^{(n-2)}(p) = y^{(n-1)}(1) = 0, \quad i = 0, \cdots, n-3,$$
 (2)

where $\frac{1}{2} is fixed and <math>f(x, y)$ is singular at x = 0, y = 0, and may be singular at $y = \infty$.

We assume the following conditions hold for f:

- (H1) $f(x,y): (0,1] \times (0,\infty) \longrightarrow (0,\infty)$ is continuous, and f(x,y) is decreasing in y for every x.
- (H2) $\lim_{y\to 0^+} f(x,y) = +\infty$ and $\lim_{y\to\infty} f(x,y) = 0$ uniformly on compact subsets of (0,1].

We reduce the problem to a third order integro-differential problem. We establish decreasing operators for which we find fixed points that are solutions to this third order problem. Then, we use Gatica, Oliker, and Waltman methods to find a positive solution to the integro-differential third order problem. We integrate the positive solution n-3 times to obtain the positive solution to the n^{th} order right focal boundary value problem. The role of $\frac{1}{2} is fundamental for the positivity of the Green's function which in turn is fundamental for the positivity of desired solutions. The existence of positive solutions to a similar third order right focal boundary value problem was established in [22].$

Singular boundary value problems for ordinary differential equations have arisen in numerous applications, especially when only positive solutions are useful. For example, when n = 2, Taliaferro [28] has given a nice treatment of the general problem, Callegari and Nachman [9] have studied existence questions of this type in boundary layer theory, and Lunning and Perry [21] have established constructive results for generalized Emden-Fowler boundary value problems. Also, Bandle, Sperb, and Stakgold [3] and Bobisud, *et al.* [6], [7], [8], have obtained results for singular boundary value problems that arise in reaction-diffusion theory, while Callegari and Nachman [10] have considered such boundary conditions in non-Newtonian fluid theory as well as in the study of pseudoplastic fluids. Nachman and Callegari point to applications in glacial advance and transport of coal slurries down conveyor belts. See [10] for references. Other applications for these boundary value problems appear in problems such as in draining flows [1], [5] and semipositone and positone problems [2].

In addition, much attention has been devoted to theoretical questions for singular boundary value problems. In some studies on singular boundary value problems, the underlying technique has been to obtain *a priori* estimates on solutions to an associated two-parameter family of problems, and then use these bounds along with topological transversality theorems to obtain solutions of the original problem; for example, see Granas, Guenther, and Lee [15] and Dunninger and Kurtz [11]. This method has been fairly exploited in a number of recent papers by O'Regan, [24], [25], [26]. Baxley [4] also used to some degree this latter technique in his work on singular boundary value problems for membrane response of a spherical cap. Wei [30] gave necessary and sufficient conditions for the existence of positive solutions for the singular Emden-Fowler equation satisfying Sturm-Liouville boundary

conditions employing upper and lower solutions methods. Guoliang [16] also gave necessary and sufficient conditions for a higher order singular boundary value problem, using superlinear and sublinear conditions to show the existence of a positive solution.

2 Definitions and Properties of Cones

In this section, we begin by giving some definitions and some properties of cones in a Banach space.

Let $(\mathcal{B}, \|\cdot\|)$ be a real Banach space. A nonempty set $\mathcal{K} \subset \mathcal{B}$ is called a *cone* if the following conditions are satisfied:

(a) the set \mathcal{K} is closed;

(b) if $u, v \in \mathcal{K}$ then $\alpha u + \beta v \in \mathcal{K}$, for all $\alpha, \beta \ge 0$;

(c) $u, -u \in K$ imply u = 0.

Given a cone, \mathcal{K} , a *partial order*, \leq , is induced on \mathcal{B} by $x \leq y$, for $x, y \in \mathcal{B}$ iff $y-x \in \mathcal{K}$. (For clarity we sometimes write $x \leq y$ (w.r.t. \mathcal{K})). If $x, y \in \mathcal{B}$ with $x \leq y$, let $\langle x, y \rangle$ denote the *closed order interval between* x and y given by, $\langle x, y \rangle = \{z \in \mathcal{K} | x \leq z \leq y\}$. A cone \mathcal{K} is *normal* in \mathcal{B} provided there exists $\delta > 0$ such that $||e_1+e_2|| \geq \delta$, for all $e_1, e_2 \in \mathcal{K}$ with $||e_1|| = ||e_2|| = 1$.

Remark: If \mathcal{K} is a normal cone in \mathcal{B} , then closed order intervals are norm bounded.

3 Gatica, Oliker, and Waltman Fixed Point Theorem

Now we state the fixed point theorem due to Gatica, Oliker, and Waltman on which most of the results of this paper depend.

Theorem 3.1 Let \mathcal{B} be a Banach space, \mathcal{K} a normal cone in \mathcal{B} , \mathcal{C} a subset of \mathcal{K} such that if x, y are elements of $\mathcal{C}, x \leq y$, then $\langle x, y \rangle$ is contained in \mathcal{C} , and let $T:\mathcal{C} \to \mathcal{K}$ be a continuous decreasing mapping which is compact on any closed order interval contained in \mathcal{C} . Suppose there exists $x_0 \in \mathcal{C}$ such that $T^2(x_0)$ is defined (where $T^2(x_0) = T(Tx_0)$), and furthermore, Tx_0 and T^2x_0 are order comparable to x_0 . Then T has a fixed point in \mathcal{C} provided that either,

(I) $Tx_0 \leq x_0$ and $T^2x_0 \leq x_0$, or $Tx_0 \geq x_0$ and $T^2x_0 \geq x_0$, or

(II) The complete sequence of iterates $\{T^n x_0\}_{n=0}^{\infty}$ is defined, and there exists $y_0 \in \mathcal{C}$ such that $y_0 \leq T^n x_0$, for every n.

We consider the following Banach space, \mathcal{B} , with associated norm, $\|\cdot\|$:

$$\mathcal{B} = \{ u : [0,1] \to R \mid u \text{ is continuous} \},$$
$$\|u\| = \sup_{x \in [0,1]} |u(x)|.$$

We also define a cone, \mathcal{K} , in \mathcal{B} by,

$$\mathcal{K} = \{ u \in \mathcal{B} | u(x) \ge 0, g(x)u(p) \le u(x) \le u(p) \text{ and } u(x) \text{ is concave on } [0,1] \},\$$

where

$$g(x) = \frac{x(2p-x)}{p^2}$$
, for $0 \le x \le 1$.

4 The Integral Operator

In this section, we will define a decreasing operator \mathcal{T} that will allow us to use the stated fixed point theorem.

First, we define k(x) by,

$$k(x) = \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} g(s) ds,$$

Given g(x) and k(x) above, we define $g_{\theta}(x)$ and $k_{\theta}(x)$, for $\theta > 0$, by

$$g_{\theta}(x) = \theta \cdot g(x),$$

and

$$k_{\theta}(x) = \theta \cdot k(x),$$

and we will assume hereafter

(H3) $\int_0^1 f(x, k_\theta(x)) dx < \infty$, for each $\theta > 0$.

We note that the function $f(x,y) = \frac{1}{\sqrt[4]{xy}}$ also satisfies (H3). In particular, for each $\theta > 0$, $\int_0^1 f(x, g_\theta(x)) dx = \sqrt[4]{(\frac{p^2}{\theta})} [\frac{2}{\sqrt[4]{2p}} + 4 \frac{(2p-1)^{\frac{3}{4}} - (2p)^{\frac{3}{4}}}{3(\sqrt{2p})} < \infty.$

If y is a solution of (1)-(2), then

$$u(x) = y^{(n-3)}(x),$$

is positive and concave. Hence, if in addition $u \in \mathcal{K}$, then ||u|| = u(p).

Also, we get,

$$u''' = f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u(s) ds\right),\tag{3}$$

$$u(0) = u'(p) = u''(1) = 0.$$
 (4)

Since g(x) is concave with g(0) = 0 and ||g(x)|| = g(p), then we observe, that for each positive solution, u(x), of (3)-(4), there is some $\theta > 0$, such that $g_{\theta}(x) \leq u(x)$, for $0 \leq x \leq 1$.

Next, we let $\mathcal{D} \subseteq \mathcal{K}$ be defined by

$$\mathcal{D} = \{ u \in \mathcal{K} | \text{ there exists } \theta(u) > 0 \text{ so that } g_{\theta}(x) \le u(x), 0 \le x \le 1 \}.$$

We note that for each $u \in \mathcal{K}$,

$$||u|| = \sup_{x \in [0,1]} |u(x)| = u(p).$$

Next, we define an integral operator $\mathcal{T}: \mathcal{D} \to \mathcal{K}$ by

$$(\mathcal{T}u)(x) = \int_0^1 G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} u(s) ds\right) dt,$$

where G(x,t) is the Green's function for y''' = 0 satisfying (4), and given by

$$G(x,t) = \begin{cases} \frac{x(2t-x)}{2}, & x \le t \le p \\ \frac{t^2}{2}, & t \le x, t \le p \\ \frac{x(2p-x)}{2}, & x \le t, t \ge p \\ \frac{x(2p-x)}{2} + \frac{(x-t)^2}{2}, & x \ge t \ge p \end{cases};$$

see [14].

First, we show \mathcal{T} is a decreasing operator. Let $u \in \mathcal{D}$ be given. Then there exists $\theta > 0$ such that $g_{\theta}(x) \leq u(x)$. Then, by condition (H1), $f(x, u(x)) \leq f(x, g_{\theta}(x))$. Now, let $u(x) \leq v(x)$ for $u(x), v(x) \in \mathcal{D}$. Then,

$$\int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u(s) ds \le \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} v(s) ds.$$

Then by condition (H1),

$$f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} v(s) ds\right) \le f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u(s) ds\right).$$

And since G(x,t) > 0, we have by (H1) and (H3),

$$\begin{split} \int_{0}^{1} G(x,t) f\left(t, \int_{0}^{x} \frac{(x-s)^{n-4}}{(n-4)!} v(s) ds\right) dt &< \int_{0}^{1} G(x,t) f\left(t, \int_{0}^{x} \frac{(x-s)^{n-4}}{(n-4)!} u(s) ds\right) dt \\ &\leq \int_{0}^{1} G(x,t) f\left(t, \int_{0}^{x} \frac{(x-s)^{n-4}}{(n-4)!} g_{\theta}(s) ds\right) dt \\ &= \int_{0}^{1} G(x,t) f(x,k_{\theta}(x)) \\ &< \infty, \end{split}$$

where $g_{\theta}(x) \leq u(x)$.

Therefore, \mathcal{T} is well-defined on \mathcal{D} and \mathcal{T} is a decreasing operator.

Remark: We claim that $\mathcal{T}: \mathcal{D} \to \mathcal{D}$. To see this, suppose $u \in \mathcal{D}$ and let

$$w(x) = (\mathcal{T}u)(x) = \int_0^1 G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} u(s) ds\right) dt \ge 0.$$

Thus, for $0 \le x \le 1$, $w(x) \ge 0$. Also by properties of G,

$$w'''(x) = f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u(s)ds\right) > 0, \text{ for } 0 < x \le 1,$$

and w(x) satisfies (5.4). As we argued previously, ||w|| = w(p). Since we have that w''(1) = 0 and w'''(x) > 0, then w is concave. Also, with w(p) = ||w(x)||, then $w(x) \ge w(p)g(x) = g_{w(p)}(x)$. Therefore, $w \in \mathcal{D}$, and $\mathcal{T} : \mathcal{D} \to \mathcal{D}$.

Remark: It is well-known that $\mathcal{T}u = u$ iff u is a solution of (3)-(4). Hence, we seek solutions of (3)-(4) that belong to \mathcal{D} .

5 A Priori Bounds on Norms of Solutions

In this section, we will show that solutions of (3)-(4) have positive *a priori* upper and lower bounds on their norms. The proofs will be done by contradiction.

Lemma 5.1 If f satisfies (H1)-(H3), then there exists S > 0 such that $||u|| \leq S$ for any solution u of (3)-(4) in \mathcal{D} .

Proof: We assume that the conclusion of the lemma is false. Then there exists a sequence, $\{u_m\}_{m=1}^{\infty}$, of solutions of (3)-(4) in \mathcal{D} such that $u_m(x) > 0$, for $x \in (0, 1]$, and

$$||u_m|| \le ||u_{m+1}||$$
 and $\lim_{m \to \infty} ||u_m|| = \infty$.

For a solution u of (3)-(4), we have

$$u''' = f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u(s) ds\right) > 0, \text{ for } 0 < x \le 1,$$

or $u'' < 0, \text{ for } 0 < x \le 1.$

This says that u is concave. In particular, the graphs of the sequence of solutions, u_m , are concave. Furthermore, for each m, the boundary conditions (4) and the concavity of u_m give us,

$$u_m(x) \ge u_m(p)g(x) = ||u_m||g(x) = g_{||u_m||}(x)$$
 for all x ,

and so for every 0 < c < 1,

$$\lim_{m \to \infty} u_m(x) = \infty \text{ uniformly on } [c, 1].$$

Now, let us define

$$M := \max\{G(x,t) : (x,t) \in [0,1] \times [0,1]\}.$$

Then, from condition (H2), there exists m_0 such that, for all $m \ge m_0$ and $x \in [p, 1]$,

$$f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u_m(s) ds\right) \le \frac{1}{M(1-p)}$$

Let

$$\theta = \|u_{m_0}\| = u_{m_0}(p).$$

Then, for all $m \ge m_0$,

$$u_m(x) \ge g_{\theta}(x) = ||u_{m_0}||g(x)|, \text{ for } 0 \le x \le 1.$$

So, for $m \ge m_0$, and for $0 \le x \le 1$, we have

$$\begin{split} u_m(x) &= (\mathcal{T}u_m)(x) \\ &= \int_0^1 G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} u_m(s) ds\right) dt \\ &= \int_0^p G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} u_m(s) ds\right) dt \\ &+ \int_p^1 G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} u_m(s) ds\right) dt \\ &\leq \int_0^p G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} g_\theta(s) ds\right) dt + \int_p^1 M \frac{1}{M(1-p)} dt \\ &\leq \int_0^p G(x,t) f(t, k_\theta(t)) dt + 1 \\ &\leq \int_0^1 G(x,t) f(t, k_\theta(t)) dt + 1 \\ &\leq M \int_0^1 f(t, k_\theta(t)) dt + 1. \end{split}$$

This is a contradiction to $\lim_{m\to\infty} ||u_m|| = \infty$. Hence, there exists an S > 0 such that ||u|| < S for any solution $u \in \mathcal{D}$ of (3)-(4).

Now we deal with positive *a priori* lower bounds on the solution norms.

Lemma 5.2 If f satisfies (H1)-(H3), then there exists R > 0 such that $||u|| \ge R$ for any solution u of (5.3)-(5.4) in \mathcal{D} .

Proof: We assume the conclusion of the lemma is false. Then, there exists a sequence $\{u_m\}_{m=1}^{\infty}$ of solutions of (3)-(4) in \mathcal{D} such that $u_m(x) > 0$, for $x \in (0, 1]$, and

$$\|u_m\| \ge \|u_{m+1}\|$$

and

$$\lim_{m \to \infty} \|u_m\| = 0.$$

Now we define

$$\bar{m} := \min\{G(x,t) : (x,t) \in [p,1] \times [p,1]\} > 0.$$

From condition (H2), $\lim_{y\to 0^+} f(x, y) = \infty$ uniformly on compact subsets of (0, 1].

Thus, there exists $\delta > 0$ such that, for $x \in [p, 1]$ and $0 < y < \delta$,

$$f(x,y) > \frac{1}{\bar{m}(1-p)}.$$

In addition, there exists m_0 such that, for all $m \ge m_0$ and $x \in (0, 1]$

$$0 < u_m(x) < \frac{\delta}{2},$$

$$0 < \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u_m(s) ds < \frac{\delta}{2}.$$

So, for $x \in [p, 1]$ and $m \ge m_0$,

$$u_m(x) = (\mathcal{T}u_m)(x)$$

= $\int_0^1 G(x,t) f\left(t, \int_0^t \frac{(x-s)^{n-4}}{(n-4)!} u_m(s) ds\right) dt$
\geq $\int_p^1 G(x,t) f\left(t, \int_0^t \frac{(x-s)^{n-4}}{(n-4)!} u_m(s) ds\right) dt$

$$\geq \bar{m} \int_{p}^{1} f\left(t, \int_{0}^{t} \frac{(x-s)^{n-4}}{(n-4)!} u_{m}(s) ds\right) dt$$

$$\geq \bar{m} \int_{p}^{1} f\left(t, \frac{\delta}{2}\right) dt$$

$$\geq \bar{m} \int_{p}^{1} \frac{1}{\bar{m}(1-p)} dt$$

$$= 1.$$

Which is a contradiction to $\lim_{m\to\infty} ||u_m(x)|| = 0$ uniformly on [0, 1]. Thus, there exists R > 0 such that $R \leq ||u||$ for any solution u in \mathcal{D} of (5.3)-(5.4). \Box

In summary, there exist 0 < R < S such that, for $u \in \mathcal{D}$, a solution of (3)-(4), Lemma 5.1 and Lemma 5.2 give us

$$R \le \|u\| \le S.$$

The next section gives the main result, an existence theorem, for this problem.

6 Existence Result

In this section, we will construct a sequence of operators, $\{\mathcal{T}_m\}_{m=1}^{\infty}$, each of which is defined on all of \mathcal{K} . We will then show, by applications of Theorem 3.1, that each \mathcal{T}_m has a fixed point, ϕ_m , for every m, in \mathcal{K} . Then, we will show that some subsequence of the $\{\phi_m\}_{m=1}^{\infty}$ converges to a fixed point of \mathcal{T} .

Theorem 6.1 If f satisfies (H1)-(H3), then (3)-(4) has at least one positive solution u in \mathcal{D} , such that $y(x) = \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u(s) ds$ is a positive solution of (1)-(2).

Proof: For all m, let $u_m(x) := \mathcal{T}(m)$, where m is the constant function of that value on [0, 1]. In particular,

$$u_m(x) = \int_0^1 G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} m ds\right) dt$$

=
$$\int_0^1 G(x,t) f\left(t, \frac{m(-s)^{n-3}}{(n-3)!}\right) dt, \text{ for } 0 \le x \le 1.$$

But f is decreasing in its second component, giving us,

 $0 < u_{m+1}(x) \le u_m(x)$, for $0 \le x \le 1$.

By condition (H2), $\lim_{m\to\infty} u_m(x) = 0$, uniformly on [0, 1].

Now, we define $f_m(x,y): (0,1] \times [0,\infty) \to (0,\infty)$ by

$$f_m(x,y) = f\left(x, \max\left\{y, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u_m(s)ds\right\}\right).$$

Then f_m is continuous and f_m does not possess the singularities as found in f at y = 0. Moreover, for $(x, y) \in (0, 1] \times (0, \infty)$ we have that,

$$f_m(x,y) \le f(x,y)$$

and, moreover,

$$f_m(x,y) = f\left(x, \max\left\{y, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u_m(s)ds\right\}\right) \le f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u_m(s)ds\right).$$

Next, we define a sequence of operators, $\mathcal{T}_m : \mathcal{K} \to \mathcal{K}$, for $\phi \in \mathcal{K}$ and $x \in [0, 1]$, by

$$\mathcal{T}_m\phi(x) := \int_0^1 G(x,t) f_m\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi(s) ds\right) dt.$$

It is standard that each \mathcal{T}_m is a compact mapping on \mathcal{K} . Moreover,

$$\begin{aligned} \mathcal{T}_m(0) &= \int_0^1 G(x,t) f_m(t,0) dt \\ &= \int_0^1 G(x,t) f\left(t, \max\left\{0, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} u_m(s) ds\right\}\right) dt \\ &= \int_0^1 G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} u_m(s) ds\right) dt \\ &> 0. \end{aligned}$$

Also,

$$\mathcal{T}_m^2(0) = \mathcal{T}_m\left(\int_0^1 G(x,t)f_m(t,0)dt\right) \ge 0.$$

Then, by theorem (3.1) with $x_0 = 0$, \mathcal{T}_m has a fixed point in \mathcal{K} for every m. Thus, for every m, there exists a $\phi_m \in \mathcal{K}$ so that

 $\mathcal{T}_m \phi_m(x) = \phi_m(x), \ 0 \le x \le 1.$

Hence, for $m \ge 1$, ϕ_m satisfies the boundary conditions (4) of the problem. Also,

$$\begin{aligned} \mathcal{T}_{m}\phi_{m}(x) &= \int_{0}^{1} G(x,t)f_{m}\Big(t,\int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!}\phi_{m}(s)ds\Big)dt \\ &= \int_{0}^{1} G(x,t)f\Big(t,max\Big\{\int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!}\phi_{m}(s)ds,\int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!}u_{m}(s)ds\Big\}\Big)dt \\ &\leq \int_{0}^{t} G(x,t)f\Big(t,\int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!}u_{m}(s)ds\Big)dt \\ &= \mathcal{T}u_{m}(x). \end{aligned}$$

That is, $\phi_m(x) = \mathcal{T}_m \phi_m(x) \leq \mathcal{T} u_m(x)$, for $0 \leq x \leq 1$, and for every m.

Proceeding as in lemmas 5.1 and 5.2, there exists S > 0 and R > 0 such that

$$R < \|\phi_m\| < S$$

for every m.

Now, let $\theta = R$. Since $\phi_m \in \mathcal{K}$, then for $x \in [0, 1]$ and every m,

$$\phi_m(x) \ge \phi_m(p)g(x) = \|\phi_m\| \cdot g(x) > R \cdot g(x) = \theta \cdot g(x) = g_\theta(x).$$

Thus, with $\theta = R$, $g_{\theta}(x) \leq \phi_m(x)$ for $x \in [0, 1]$, for every m. Thus, $\{\phi_m\}_{m=1}^{\infty}$ is contained in the closed order interval $\langle g_{\theta}, S \rangle$. Therefore, the sequence $\{\phi_m\}_{m=1}^{\infty}$ is contained in \mathcal{D} . Since \mathcal{T} is a compact mapping, we may assume $\lim_{m\to\infty} \mathcal{T}\phi_m$ exist; say the limit is ϕ^* .

To conclude the proof of this theorem, we still need to show that

$$\lim_{m \to \infty} \left(\mathcal{T}\phi_m(x) - \phi_m(x) \right) = 0$$

uniformly on [0, 1]. This will give us that $\phi^* \in \langle g_{\theta}, S \rangle$. Still with $\theta = R$, then $k_{\theta}(x) = \int_0^1 \frac{(x-s)^{n-4}}{(n-4)!} g_{\theta}(s) ds \leq \int_0^1 \frac{(x-s)^{n-4}}{(n-4)!} \phi_m(s) ds$ for every m and $0 \leq x \leq 1$. Let $\epsilon > 0$ be given and choose $\delta, 0 < \delta < 1$, such that

$$\int_0^\delta f(t,k_\theta(t))dt < \frac{\epsilon}{2M},$$

where again $M := \max\{G(x,t) : (x,t) \in [0,1] \times [0,1]\}$. Then, there exists m_0 such that, for $m \ge m_0$ and for $x \in [\delta, 1]$,

$$\int_0^1 \frac{(x-s)^{n-4}}{(n-4)!} u_m(x) \le k_\theta(x) \le \int_0^1 \frac{(x-s)^{n-4}}{(n-4)!} \phi_m(x).$$

So, for $x \in [\delta, 1]$,

$$f_m \Big(x , \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} \phi_m(s) ds \Big) = f\Big(x, \max\Big\{ \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} \phi_m(s) ds, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} u_m(s) ds \Big\} \Big) = f\Big(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} \phi_m(s) ds \Big).$$

Then, for $0 \le x \le 1$,

$$\begin{aligned} \mathcal{T}\phi_{m}(x) - \phi_{m}(x) &= \mathcal{T}\phi_{m}(x) - \mathcal{T}_{m}\phi_{m}(x) \\ &= \int_{0}^{1} G(x,t)f\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt \\ &- \int_{0}^{1} G(x,t)f_{m}\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt \\ &= \int_{0}^{\delta} G(x,t)f\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt \\ &+ \int_{\delta}^{1} G(x,t)f\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt \\ &- \int_{0}^{\delta} G(x,t)f_{m}\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt \\ &= \int_{0}^{\delta} G(x,t)f\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt \\ &= \int_{0}^{\delta} G(x,t)f\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt \\ &- \int_{0}^{\delta} G(x,t)f_{m}\left(t, \int_{0}^{t} \frac{(t-s)^{n-4}}{(n-4)!} \phi_{m}(s)ds\right) dt. \end{aligned}$$

Thus, for $0 \le x \le 1$, we have,

$$\begin{split} \left| \mathcal{T}\phi_m(x) - \phi_m(x) \right| &= \left| \int_0^{\delta} G(x,t) f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \right| \\ &- \int_0^{\delta} G(x,t) f_m\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \right| \\ &\leq M \left[\left| \int_0^{\delta} f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \right| \\ &+ \left| \int_0^{\delta} f_m\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \right| \\ &= M \left[\int_0^{\delta} f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \\ &+ \int_0^{\delta} f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \right] \\ &= M \left[\int_0^{\delta} f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \\ &+ \int_0^{\delta} f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \\ &+ \int_0^{\delta} f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \\ &= 2M \int_0^{\delta} f\left(t, \int_0^t \frac{(t-s)^{n-4}}{(n-4)!} \phi_m(s) ds \right) dt \\ &\leq 2M \int_0^{\delta} f\left(t, \int_0^1 \frac{(x-s)^{n-4}}{(n-4)!} g_{\theta}(s) ds \right) ds \\ &= 2M \int_0^{\delta} f(t, k_{\theta}(t)) dt \\ &= 2M \int_0^{\delta} f(t, k_{\theta}(t)) dt \\ &= 2M \frac{\epsilon}{2M} \frac{\epsilon}{2M} = \epsilon. \end{split}$$

Thus, for $m \ge m_0$,

$$\|\mathcal{T}\phi_m - \phi_m\| < \epsilon$$

In particular, $\lim_{m\to\infty} \left(\mathcal{T}\phi_m(x) - \phi_m(x) \right) = 0$ uniformly on [0, 1], and for $0 \le x \le 1$

$$\mathcal{T}\phi^*(x) = \mathcal{T}\left(\lim_{m \to \infty} \mathcal{T}\phi_m(x)\right)$$
$$= \mathcal{T}\left(\lim_{m \to \infty} \phi_m(x)\right)$$
$$= \lim_{m \to \infty} \left(\mathcal{T}\phi_m(x)\right)$$
$$= \phi^*(x).$$

Thus,

$$\mathcal{T}\phi^* = \phi^*,$$

and ϕ^* is a desired solution of (3)-(4).

Now, if $\phi^*(x)$ is the solution of (3)-(4), let $y(x) = \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} \phi^*(s) ds$. Then we have

$$y(0) = \int_0^0 \frac{(x-s)^{n-4}}{(n-4)!} \phi^*(s) ds = 0,$$

and by the Fundamental Theorem of Calculus,

$$y^{(n-3)}(x) = \phi^*(x).$$

Thus,

$$y^{(n-3)}(0) = \phi^*(0) = 0$$

Also,

$$y^{(n-2)}(x) = (\phi^*)'(x),$$

thus,

$$y^{(n-2)}(p) = (\phi^*)'(p) = 0.$$

And,

$$y^{(n-1)}(x) = (\phi^*)''(x)$$
$$y^{(n-1)}(1) = (\phi^*)''(1) = 0.$$

Moreover,

$$y^{(n)}(x) = (\phi^*)'''(x) = (\mathcal{T}\phi^*)'''(x) = f\left(x, \int_0^x \frac{(x-s)^{n-4}}{(n-4)!}\phi^*(s)ds\right) = f(x,y).$$

Thus, $y(x) = \int_0^x \frac{(x-s)^{n-4}}{(n-4)!} \phi^*(s) ds > 0, \ 0 \le x \le 1$ solves (1)-(2).

This completes the proof.

Remark: The results of this paper extend to Boundary Value Problems for $y^{(n)} = f(x, y, y', \cdot, y^{(n-3)})$ under the same boundary conditions.

Acknowledgment: The author is indebted to the referee's suggestions. These have greatly improved this paper.

References

 R. P. Agarwal and D. O'Regan, Singular problems on the infinite interval modelling phenomena in draining flows, *IMA Journal of Applied Mathematics*, 66 (2001), 621-709.

EJQTDE, 2007 No. 4, p. 14

- [2] R. P. Agarwal, D. O'Regan, and P. J. Y. Wong, *Positive Solutions of Differential, Difference and Integral Equations*, Dordrecht, The Netherlands, 1999, 86-105.
- [3] C. Bandle, R. Sperb, and I. Stakgold, Diffusion and reaction with monotone kinetics, *Nonlinear Anaylsis* 18 (1984), 321-333.
- [4] J. V. Baxley, A singular boundary value problem: membrane response of a spherical cap, SIAM Journal of Applied Mathematics 48 (1988), 855-869.
- [5] F. Bernis and L. A. Peletier, Two problems from draining flows involving third order ordinary differential equations, SIAM Journal of Applied Mathematics 27 (1996), 515-527.
- [6] L. E. Bobisud, D. O'Regan, and W. D. Royalty, Singular boundary value problems, *Applied Analysis* 23 (1986), 233-243.
- [7] L. E. Bobisud, D. O'Regan, and W. D. Royalty, Existence and nonexistence for a singular boundary value problem, *Applied Analysis* 28 (1988), 245-256.
- [8] L. E. Bobisud, D. O'Regan, and W. D. Royalty, Solvability of some nonlinear singular boundary value problem, *Nonlinear Analysis* 12 (1988), 855-869.
- [9] A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, *Journal of Mathematical Analysis* and Applications 64 (1978), 96-105.
- [10] A. Callegari and A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM Journal of Applied Mathematics 38 (1980), 275-281.
- [11] D. R. Dunninger and J. C. Kurtz, Existence of solutions for some nonlinear boundary value problem, *Journal of Mathematical Analysis and Applications* **115** (1986), 396-405.
- [12] P. Eloe and J. Henderson, Singular nonlinear boundary value problems for higher ordinary differential equations, *Nonlinear Anal.* 17 (1991), 1-10.
- [13] J.A. Gratica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second-order differential equations, *J. Differential Equations* **79** (1989), 62-78.
- [14] J. R. Graef and B. Yang, Positive solutions of a nonlinear third order eigenvalue problem, *Dynamic Systems and Applications*, in press.

- [15] A. Granas, R. B. Guenther, and J. W. Lee, A note on the Thomas-Fermi equation, Zeitschrift für Angewandte Mathematik und Mechanik 61 (1981), 204-205.
- [16] S. Guoliang, On the existence of positive solution for n order singular boundary value problems, *Chinese Quart. Journal of Math*, Vol. 13, No 3, (1998).
- [17] K. S. Ha and Y. H. Lee, Existence of multiple positive solutions of singular boundary value problems, *Nonlinear Analysis, Methods and Applications* 28 (1997), 1429-1438.
- [18] J. Henderson and W. Yin, Singular (n,n-k) boundary value problems betweens conjugate and right focal positive solutions of nonlinear problems. J. Comput. Appl. Math. 88 (1998), 57-69.
- [19] M. A. Krasnosel'skii, Positive Solutions to Operator Equations, Noordhoff, Groningen, The Netherlands, (1964).
- [20] Y. H. Lee, A multiplicity result of positive solutions for the generalized Gelfand type singular boundary value problems *Nonlinear Analysis*, *Theory, Meth. and Appl.* **30** (1997), 3829-3835.
- [21] C. D. Lunning and W. L. Perry, Positive solutions of negative exponent generalized Emden-Fowler boundary value problems, SIAM Journal of Applied Mathematics 12 (1981), 874-879.
- [22] M. Maroun, Positive solutions to a third-order right focal boundary value problem, *Communications on Applied Nonlinear Analysis* 12 (2005), Number 3, 71–82.
- [23] D. O'Regan, Existence of solutions to third order boundary value problems, Proc. Royal Irish Acad. Sect. A 90 (1990), 173-189.
- [24] D. O'Regan, Positive solutions to singular and non-singular second-order boundary value problems, *Journal of Mathematical Analysis and Applications* 142 (1989), 40-52.
- [25] D. O'Regan, Some new results for second order boundary value problems, Journal of Mathematical Analysis and Applications 148 (1990), 548-570.
- [26] D. O'Regan, Existence of positive solutions to some singular and nonsingular second order boundary value problems, *Journal of Differential Equations* 84 (1990), 228-251.
- [27] P. Singh, A second-order singular three point boundary value problem, Appl. Math. Letters 17 (2004), 969-976.

- [28] S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis 3 (1979), 897-904.
- [29] W. -B. Qu, Z. -X. Zhang and J. -D. Wu, Positive solutions to a singular second order three-point boundary value problem, *Appl. Math. and Mechanics* 23 (2002), 759-770.
- [30] Z. Wei, Positive solutions of singular sublinear second order boundary value problems, Systems Science and Mathematical Sciences 11 (1998), 80-88.
- [31] F. -H. Wong, Positive solutions for singular boundary value problems, Computers Math. Applic., 32 (1996), 41-49.
- [32] X. Yang, Positive solutions for nonlinear singular boundary value problems, *Appl. Math. and Computations* **130** (2002), 225-234.

(Received June 22, 2006)