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CONDITIONS FOR THE SOLVABILITY OF THE CAUCHY

PROBLEM FOR LINEAR FIRST-ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS

E. I. BRAVYI

Abstract. Conditions for the unique solvability of the Cauchy problem for a

certain family of scalar functional differential equations are obtained. These
conditions are sufficient for the solvability of the Cauchy problem for every

equation from the given family. Moreover, obtained conditions are optimal

and cannot be weakened. In contrast to many known articles, we consider
equations with functional operators acting into the space of essentially bounded

functions.

Introduction

In this article, the well-known integral conditions for the solvability of the Cauchy
problem for linear functional differential equations (Theorem 1) are added to nec-
essary and sufficient conditions with point-wise restrictions on functional operators
(Theorem 2). Also some conditions for solvability of the Cauchy problem for a
family of quasilinear equations are obtained.

We use the following notation: R is the space of real numbers; C = C[a, b] is the
Banach space of continuous functions x : [a, b]→ R with the norm

‖x‖C = max
t∈[a,b]

|x(t)|;

L∞ = L∞[a, b] is the Banach space of essentially bounded measurable functions
z : [a, b]→ R with the norm

‖x‖L∞
= vrai sup

t∈[a,b]
|x(t)|;

L = L[a, b] is the Banach space of integrable functions z : [a, b]→ R with the norm

‖z‖L =

∫ b

a

|z(t)| dt,

it is supposed that all inequalities and equalities with functions from L and L∞
hold almost everywhere on [a, b]; AC = AC[a, b] is the Banach space of absolutely
continuous functions x : [a, b]→ R with the norm

‖x‖AC = |x(a)|+
∫ b

a

|ẋ(t)| dt,
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1 (t) ≡ 1 is the unit function; an operator T : C → L is said to be positive (or
isotonic in the terminology of [5]) if it maps each non-negative continuous function
into an almost everywhere non-negative function.

Consider the Cauchy problem for a first-order functional differential equation

ẋ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [a, b], (1)

x(a) = c, (2)

where T+, T− : C→ L are linear positive operators, f ∈ L, c ∈ R.
A solution of (1)–(2) is a function x ∈ AC satisfying the initial conditions (2)

such that equality (1) holds almost everywhere on [a, b]. Problem (1)–(2) is called
uniquely solvable if it has a unique solution for every pair f ∈ L, c ∈ R.

The positiveness of operators T+ and T− implies their u-boundedness (or the
strong boundedness in other terminology) [6]. This property guarantees the Fred-
holm property of problem (1)–(2) [5, 7]. From the Fredholm property it follows
that problem (1)–(2) is uniquely solvable if and only if the problem has a unique
solution for at least one pair f ∈ L, c ∈ R. In particular, the problem is uniquely
solvable if and only if the homogeneous problem{

ẋ(t) = (T+x)(t)− (T−x)(t), t ∈ [a, b],
x(a) = 0,

(3)

has only the trivial solution.
If the linear positive operators T+, T− : C → L are Volterra type operators,

then the Cauchy problem is uniquely solvable without additional conditions (see,
for example, [5]). Some conditions – optimal in a sense – for the unique solvability
of problem (1)–(2) are found in [1] (see also [2, 3, 4]) for, generally speaking, non-
Volterra operators. We give here this result in the form of necessary and sufficient
conditions for the solvability. Note, that each linear positive operator T : C → L
is bounded, its norm is defined by the equality

‖T‖C→L =

∫ b

a

(T1 )(t) dt.

Theorem 1 ([2]). Let the non-negative numbers T +, T − be given. Problem (1)–
(2) is uniquely solvable for all linear positive operators T+, T− : C → L with the
given norms ‖T+‖C→L = T +, ‖T−‖C→L = T − if and only if the inequalities

T + < 1, T − < 1 + 2
√

1− T + (4)

hold.

As far as we know, no unimprovable conditions in terms of norm operators T+,
T− : C→ L∞ have been obtained for the solvability of the Cauchy problem (1)–(2)
yet.

The main result is the statement, which is similar to Theorem 1, but deals with
operators acting from the space C into the space of essentially bounded functions
L∞. The norm of linear positive operator T : C→ L∞ is defined by the equality

‖T‖C→L∞
= vrai sup

t∈[a,b]
(T1 )(t).
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For short, we use the notation

A ≡ (b− a) T +, B ≡ (b− a) T −.
From Theorem 1 it is easy to achieve a sufficient condition for the solvability.

Corollary 1. Let the non-negative numbers T +, T − be given. Then, for problem
(1)–(2) to be uniquely solvable for all linear positive operators T+, T− : C →
L∞ with given norms ‖T+‖C→L∞

= T +, ‖T−‖C→L∞
= T − it is necessary and

sufficient that

A < 1, B < 1 + 2
√

1−A. (5)

The forthcoming Theorem 2 shows that for all A < 1 (except A = 0) conditions
(5) can be improved, and for A = 0 the necessary and sufficient condition for the
solvability of the problem

ẋ(t) = −(T−x)(t) + f(t), t ∈ [a, b],

x(a) = c,

for all linear positive operators T− : C→ L∞ with given norm ‖T−‖C→L∞
= T −

remains the inequality B < 3 as in Theorem 1.

1. The main results

Theorem 2. Let the non-negative numbers T +, T − be given. Then, for problem
(1)–(2) to be uniquely solvable for all linear positive operators T+, T− : C →
L∞ with given norms ‖T+‖C→L∞

= T +, ‖T−‖C→L∞
= T −, it is necessary and

sufficient that

(B2 −A2) t2 + (A2 − B2 + B) t+ 1−A > 0 (6)

for all t ∈ [0, 1].

Corollary 2. Let the non-negative numbers T +, T − be given. Then, for problem
(1)–(2) to be uniquely solvable for all linear positive operators T+, T− : C →
L∞ with given norms ‖T+‖C→L∞

= T +, ‖T−‖C→L∞
= T −, it is necessary and

sufficient that at least one of the following conditions be fulfilled:

1)

A < 1, (7)

(2B −A)2 −A2 −
(
B2 −A2 − B + 2A

)2
> 0 for B > 1 +

√
1 +A2

2
; (8)

2)

A < 1, B < min
t∈(0,1)

t+
√

(2t(1− t)A− 1)2 + (1− t)(3t− 1)

2t(1− t)
; (9)

3)

A < 1 for B ∈
[
0, (1 +

√
5)/2

]
,

A < min
t∈(0,1)

1−
√

(2t(1− t)B − t)2 − (1− t)(3t− 1)

2t(1− t)
for B ∈

(
(1 +

√
5)/2, 3

)
.
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Let us remark an obvious corollary of Theorem 2, which can easily be proved
by the Schauder fixed point theorem (see, for example, [4, p. 190]). Consider the
quasilinear Cauchy problem{

ẋ(t) = (T+x)(t)− (T−x)(t) + (Fx)(t), t ∈ [a, b],
x(a) = c,

(10)

where T+, T− : C → L∞ are linear positive operators, the operator F : C → L∞
is continuous and bounded (maps bounded sets into bounded ones), c ∈ R.

Corollary 3. Suppose that the linear positive operators T+, T− : C→ L∞ satisfy
the conditions of Theorem 2, a continuous bounded operator F : C→ L∞ satisfies
the under linear growth condition

lim
‖x‖C→∞

‖Fx‖L∞

‖x‖C
= 0.

Then the Cauchy problem (10) has a solution.

2. Proofs

To prove Theorem 2 and Corollary 1 we need auxiliary assertions.

Lemma 1. Let the non-negative functions p+, p− ∈ L∞ be given. To problem
(1)–(2) to be uniquely solvable for all linear positive operators T+, T− : C → L∞
satisfying the equalities T+1 = p+ and T−1 = p−, it is necessary and sufficient
that this problem be uniquely solvable for all linear positive operators T+, T− : C→
L such that T+1 ≤ p+, T−1 ≤ p−.

Proof. It is clear that only the assertion on the necessity needs to be proven. Sup-
pose that problem (1)–(2) is not uniquely solvable for some linear positive operators
T+, T− : C→ L∞ such that T+1 ≤ p+, T−1 ≤ p−, therefore (3) has a non-trivial
solution. Then for the perturbed operators

(T̃+x)(t) ≡ (T+x)(t) +
(
p+(t)− (T+1 )(t)

)
x(a), t ∈ [a, b],

(T̃−x)(t) ≡ (T−x)(t) +
(
p−(t)− (T−1 )(t)

)
x(a), t ∈ [a, b],

which satisfy the conditions

T̃+1 = p+, T̃−1 = p−,

the homogeneous problem{
ẋ(t) = (T̃+x)(t)− (T̃−x)(t), t ∈ [a, b],
x(a) = 0,

has the same non-trivial solution. Hence, the corresponding non-homogeneous prob-
lems are not uniquely solvable. �

Taking in Lemma 1 p+(t) = T +, p−(t) = T −, t ∈ [a, b], we obtain the following
result.
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Corollary 4. Let the non-negative numbers T +, T − be given. For problem (1)–
(2) to be uniquely solvable for all linear positive operators T+, T− : C→ L∞ with
given norms ∥∥T+

∥∥
C→L∞

= T +,
∥∥T−∥∥

C→L∞
= T −,

it is necessary and sufficient that the problem be uniquely solvable for all linear
positive operators T+, T− : C→ L∞ such that

(T+1 )(t) = T +, (T−1 )(t) = T −, t ∈ [a, b].

Lemma 2. Let the non-negative functions p+, p− ∈ L∞ be given. For problem
(1)–(2) to be uniquely solvable for all linear positive operators T+, T− : C → L∞
such that

T+1 = p+, T−1 = p−, (11)

it is necessary and sufficient that the problem{
ẋ(t) = p1(t)x(τ1) + p2(t)x(τ2), t ∈ [a, b],
x(a) = 0,

(12)

to have only the trivial solutions for all points τ1, τ2 ∈ [a, b] and for all functions
p1, p2 ∈ L∞ satisfying the conditions

p1 + p2 = p+ − p−, −p− ≤ p1 ≤ p+. (13)

Proof. To prove the sufficiency suppose that for given non-negative functions p+,
p− ∈ L∞ there exist linear positive operators T+, T− : C→ L∞ such that

T+1 = p+, T−1 = p−

and problem (1)–(2) is not uniquely solvable. Then there exists a non-trivial solu-
tion y ∈ AC of the homogeneous problem (3). Let τ1 be a point of the minimum,
τ2 be a point of the maximum of the solution y. Then

y(τ1) p+(t) = y(τ1) (T+1 )(t) ≤ (T+y)(t) ≤ y(τ2) (T+1 )(t) = y(τ2) p+(t), t ∈ [a, b],

y(τ1) p−(t) = y(τ1) (T−1 )(t) ≤ (T−y)(t) ≤ y(τ2) (T−1 )(t) = y(τ2) p−(t), t ∈ [a, b].

Therefore,

y(τ1) p+ − y(τ2) p− ≤ T+y − T−y ≤ y(τ2) p+ − y(τ1) p−.

It follows that there exists a measurable function ξ : [a, b]→ [0, 1] such that for the
functions

p1 ≡ ξ p+ − (1− ξ) p−, p2 ≡ (1− ξ) p+ − ξ p−,
the equality

(T+y)(t)− (T−y)(t) = p1(t) y(τ1) + p2(t) y(τ2), t ∈ [a, b],

holds. It is clear that conditions (13) for the functions p1, p2 are fulfilled and
problem (12) has a non-trivial solution.

Let us prove the necessity. Suppose that the functions p+, p− ∈ L∞ are non-
negative. Let conditions (13) be fulfilled and problem (12) have a non-trivial solu-
tion. Define the linear positive solutions T+, T− : C→ L∞ by the equalities

(T+x)(t) = p+1 (t)x(τ1) + (p+ − p+1 )x(τ2), t ∈ [a, b],

(T−x)(t) = p−1 (t)x(τ1) + (p− − p−1 )x(τ2), t ∈ [a, b],
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where p+1 and p−1 are the positive and negative parts of the function p1 (p+1 =
(|p1| + p1)/2, p−1 = (|p1| − p1)/2). Then the operators T+, T− satisfy equalities
(11) and, moreover, problem (3) has the same non-trivial solution as well as problem
(12). So, problem (1)–(2) is not uniquely solvable. �

Lemma 3. Let the non-negative numbers T +, T − be given. For problem (12) to
have only the trivial solution for all τ1, τ2 ∈ [a, b] and for all functions p1, p2 ∈ L∞
such that

p1(t) + p2(t) = T + − T −, −T − ≤ p1(t) ≤ T +, t ∈ [a, b], (14)

it is necessary and sufficient that inequalities (7), (8) are valid.

Remark 1. In Lemmas 2 and 3, it is sufficient to consider problem (12) only for the
points τ1, τ2 ∈ [a, b] such that τ1 ≤ τ2.

Proof. Suppose conditions (13) hold. For any solution y of (12) we have

y(t) = y(τ1)

∫ t

a

p1(s) ds+ y(τ2)

∫ t

a

p2(s) ds, t ∈ [a, b].

Therefore, the system of equations{
C1 = C1

∫ τ1
a
p1(s) ds+ C2

∫ τ1
a
p2(s) ds,

C2 = C1

∫ τ2
a
p1(s) ds+ C2

∫ τ2
a
p2(s) ds

(15)

has a solution C1 = y(τ1), C2 = y(τ2). Conversely, the solution

x(t) = C1

∫ t

a

p1(s) ds+ C2

∫ t

a

p2(s) ds, t ∈ [a, b],

of the Cauchy problem (12) corresponds to every solution (C1, C2) of system (15).
Thus, problem (12) has no non-trivial solutions if and only if the algebraic system
(15) has no non-trivial solutions with respect to the variables C1, C2, that is, if

4 ≡

∣∣∣∣∣ 1−
∫ τ1
a
p1(s) ds −

∫ τ1
a
p2(s) ds

−
∫ τ2
a
p1(s) ds 1−

∫ τ2
a
p2(s) ds

∣∣∣∣∣ 6= 0.

Consider the determinant 4 for a ≤ τ1 ≤ τ2 ≤ b and for all functions p1, p2
satisfying conditions (14). We have

4 =

∣∣∣∣∣ 1−
∫ τ1
a
p1(s) ds 1− (T + − T −) (τ1 − a)

−
∫ τ2
a
p1(s) ds 1− (T + − T −) (τ2 − a)

∣∣∣∣∣ =

=

∣∣∣∣∣ 1− α 1− (T + − T −) (τ1 − a)

−α− β 1− (T + − T −) (τ2 − a)

∣∣∣∣∣ =

=

∣∣∣∣∣ 1− α 1− (T + − T −) (τ1 − a)

−1− β −(T + − T −) (τ2 − τ1)

∣∣∣∣∣ ,
where under conditions (14) the values

α ≡
∫ τ1

a

p1(s) ds, β ≡
∫ τ2

τ1

p1(s) ds
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can take arbitrary numbers from the intervals

−(τ1 − a) T − ≤ α ≤ (τ1 − a) T +, −(τ2 − τ1) T − ≤ β ≤ (τ2 − τ1) T +. (16)

Since the determinant 4 is continuous with respect to α, β, τ1, τ2 on the con-
nected admissible set of these parameters and 4 = 1 for admissible values α = 0,
β = 0, τ1 = τ2 = 0, then for all problems (12) to have only the trivial solution it is
necessary and sufficient that 4 be positive for all admissible values of these param-
eters. Find the minimal value of 4 for fixed T +, T − and for all rest parameters
satisfying inequalities (16). All problems (12) provided conditions (14) have only
the trivial solutions if and only if for the pair (T +, T −) this minimum is positive.

Find pairs of non-negative numbers (T +, T −) such that M ≡ min4 > 0, where
the minimum is taken over all τ1, τ2 such that a ≤ τ1 ≤ τ2 ≤ b and over all α, β
satisfying inequalities (16). Consider the case T − ≤ T +. For β = 0, τ1 = τ2 we have
4 = 1−(τ1−a) (T +−T −). Then M > 0 if and only if (b−a) (T +−T −) < 1. If this
inequality holds, the determinant 4 takes its minimum value M = 1− (b− a) T +

at α = −(τ1 − a) T −, β = −(τ2 − τ1) T −, τ2 = b, τ1 = a. Then M > 0 if and only
if (b− a) T + < 1.

In the case T + < T −, the minimal value M is taken at α = (τ1 − a)T +,
β = −(τ2 − τ1)T −, τ2 = b,

τ1 − a =


b− a

2
− T −

2((T −)2 − (T +)2)
if

T −

(T −)2 − (T +)2
< b− a;

0 if
T −

(T −)2 − (T +)2
≥ b− a.

For short it is convenient to use new variables A ≡ (b − a) T +, B ≡ (b − a) T −.
Then we have

M =


1−A if B ≤ 1 +

√
1 + 4A2

2
;

(2B −A)2 −A2 −
(
B2 −A2 − B + 2A

)2
4(B2 −A2)

if B > 1 +
√

1 + 4A2

2
.

Therefore, the minimal value M is positive if and only if inequalities (7) and (8)
hold. �

Proofs of Theorem 2 and Corollary 1. Assertion 1) of Corollary 1 follows from lem-
mas 1, 2, and 3.

If in the proof of Lemma 3 we do not minimize with respect to the variable τ1,
then we directly obtain the condition of the positiveness for the minimal value M
that is inequality (6) of Theorem 2. If we solve (6) with respect to the variable B,
then we have condition 2) of Corollary 1, if with respect to the variable A, then we
obtain condition 3). �
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