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Abstract

We study resonances of the semi-classical Schrödinger operator
H = −h2∆+V on L2(IRN ). We consider the case where the potential
V have an absolute degenerate maximum. Then we prove that H has

resonances with energies E = V0 + e
−i π

σ+1 h
2σ

σ+1 kj + O(h
2σ+1

σ+1 ), where
kj is in the spectrum of some quartic oscillator.

1 Introduction and main results.

We are interested in this paper to study the asymptotic behavior for Schrödinger
operator:

H = −h2∆ + V (1)

on L2(IRN), where V is a bounded real function having an absolute maximum
V0 realized at a unique point that we suppose to be x = 0. Under some
assumptions on V, one can define on L2(IRN) the operator Hθ(x, hD) with
domain the Sobolev space W 2(IRN) obtained by analytic dilation :

Hθ(x, hD) = UθH(x, hD)U−θ = e−2iθh2D2 + V (xeiθ).

Here Uθ denotes the group of unitary operators on L2(IRN), given by Uθu(x) =

e−
iNθ
2 u(eiθx), for θ in IR such that 0 ≤ θ < θ0 < π

2
. D denotes the differen-

tial operator (−i ∂
∂x1

,−i ∂
∂x2

, ...,−i ∂
∂xN

). Isolated eigenvalues of Hθ with finite
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multiplicities which are not discrete eigenvalues of H are called resonances
of H .
In [2] and [3] Ph.Briet, J.M.Combes and P.Duclos consider the same problem
with V having a non degenerate maximum at x = 0. They prove existence of
resonance values of H near 0. They prove too that these values are located
outside a ball of radius O(h). In the second paper they give the first factor in
the asymptotic expansion of resonance values of H . We are interested here
to generalize results of [2] and [3] to cases of degenerate potential barrier
of order σ i.e V (x) ∼ −(λ1x

2σ
1 + ... + λNx2σ

N ) + O(x2σ+1) as x → 0 in IRN .
Here σ > 1 is an integer and λ1, . . . λN some strictly positive real constants.
We prove that resonance values of H are located outside a ball centered at

0 and of radius O(h
2σ

σ+1 ). This power of h exists already in the results of
Martinez-Rouleux [5]. The authors study there asymptotic of eigenvalues of
the operator H in the case of degenerate minimum of order σ for V . They
prove that H has no eigenvalue inside a ball centered at 0 and of radius

O(h
2σ

σ+1 ). In fact this result is closely related to the Taylor expansion of V

near 0. Our second aim is to get more precise result under more precise
assumption on the Taylor expansion of V . We notice that in a recent paper
[1] we study the resonances of H in the one dimensional case where the po-
tential V have a degenerate maximum of quartic type. We give in that paper
the full asymptotic expansion of resonance values near the barrier maximum.
The method used there is the BKW techniques. This method is specific to
the one dimensional case. Here we use local analysis on the resolvent of the
operator. To state the results assume the following hypothesis on V :
(A1) V is a bounded real function having an absolute degenerate maximum
of order σ at x = 0.
(A2) Vθ(x) = V (eθx), θ ∈ IR has an analytic continuation to complex θ in
Sα = {θ ∈ IC, | Imθ |< α} as a family of bounded operators.
(A3) ∃θ0 = iβ0, 0 < β0 < α, ∀δ > 0, ∃Cδ > 0, such that

∀x, | x |> δ, Im(e2θ0Vθ0
) < −Cδβ0.

(A4) Near x = 0 , Vθ has the Taylor expansion :

Vθ(x) = −e2σθ(λ1x
2σ
1 + ... + λNx2σ

N ) + O(x2σ+1)

for all θ ∈ Sα, with λ1, ...λN non vanishing positive real constants.
Consider the operator given by :

K = −∆ + (λ1x
2σ
1 + ... + λNx2σ

N ).
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It is well known that the spectrum of K is discrete. We use (kj)j≥1 for
eigenvalues of K. We recall that the operator Hθ has a domain D(Hθ) =
W 2(IRN) independent of θ. This operator has an analytic continuation to an
analytic family of type A in Sα (see [4] and [6], section XIII). We get :

Théorème 1 Consider the operator Hθ0
= −h2e−2θ0∆+Vθ0

and assume the
hypothesis (A1,2,3,4) on V . For all kj ∈ σ(K) there exits a ball B(h) centered

at e−i π
σ+1h

2σ
σ+1 kj with radius O(h

2σ+1

σ+1 ) such that for h small enough , Hθ0
has

purely discrete spectrum inside B(h) with total algebraic multiplicity equal to
the multiplicity of kj.

In the direction to get the full asymptotic expansion of resonance values of
H , we try more subtle approach and we get the following result: Assume
(A5) Near x = 0 , Vθ has the Taylor expansion :

Vθ(x) = −e2σθ(λ1x
2σ
1 + ... + λNx2σ

N ) + O(x2σ+p)

with p > 0 an integer.

Théorème 2 Assume (A1,2,3,5). For all kj ∈ σ(K) there exits a ball B(h)

centered at e−i π
σ+1 h

2σ
σ+1kj with radius O(h

2σ+p

σ+1 ) such that for h small enough,
Hθ0

has purely discrete spectrum inside B(h) with the same algebraic multi-
plicity as kj.

Finally to interpret the eigenvalues of Hθ0
mentioned in the Theorem 1

as resonance values of H we state the following theorem :

Théorème 3 Let φ be in the domain D of analytic dilation dense in L2(IRN).
For all C > 0 and h small enough ((H − z)−1φ, φ) has meromorphic con-
tinuation from IC+ = {z ∈ IC, Imz > 0} into a complex disk centered at 0

with radius Ch
2σ

σ+1 . The poles of this continuation belong to the set of the
eigenvalues of Hθ0

given in theorem 1.

This theorem shows in particular that there is no other part of the spectrum
of Hθ0

in the disk other than the eigenvalues mentioned in the Theorem 1.
The authors of [2] and [3] established the same result in the case σ = 1.
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2 Localisation Formula

To prove theorems we decompose the operator H into a direct sum of an
interior operator and an exterior one. To do this we use ji and je ∈ C∞(IRN),

with ji = 0 outside the ball B(0, h
1

σ+1δi) et je = 0 inside the ball B(0, h
1

σ+1 δe),
satisfying to j2

i + j2
e = 1. Here 0 < δe < δi are two positive constants

to be chosen later. The support of ∇ji and ∇je is located in Ω0 = {x ∈

IRN , 0 < h
1

σ+1δe <| x |< h
1

σ+1δi}. Let H = L2(IRN) and Hd = L2(IRN) ⊕
L2( support of je), we define the application J by

J : Hd → H

J(u ⊕ v) = jiu + jev.

We have JJ∗ = idH.

For Imθ 6= 0, we define Hd
θ = H i

θ ⊕ He
θ where

H i
θ = −h2e−2θ∆ − e2σθ(λ1x

2σ
1 + ... + λNx2σ

N ) (2)

on L2(IRN) and
He

θ = −h2e−2θ∆ + Vθ

on L2( support of je) with Dirichlet conditions on the boundary of the sup-
port of je. Hence we have J(D(Hd

θ )) ⊂ D(Hθ) and we can write the resolvent
equation:

(Hθ − z)−1 = J(Hd
θ − z)−1J∗ − (Hθ − z)−1Π(Hd

θ − z)−1J∗ (3)

where Π is the operator given by Π = HθJ − JHd
θ acting on Hd as follows:

Π(u ⊕ v) = wu − h2e−2θ([∆, ji]u + [∆, je]v)

where
w = (Vθ + e2σθ(λ1x

2σ
1 + . . . + λNx2σ

N ))ji.

For the study of the interior operator H i
θ one prove the following lemma:

Lemme 1 Let H i
θ defined by (2) with domain D(H i

θ) = W 2(IRN) ∩ D(x2σ)
we have :
i) {H i

θ, 0 < Imθ < π
σ+1

} is an analytic family of type A of sector-operators
with sector

Σ = {z ∈ IC,−π + 2Imθ ≤ argz ≤ −2Imθ}.
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ii) The spectrum of H i
θ is θ independent, purely discrete and given by :

σ(H i
θ) = σ(H i

i π
2σ+2

) = e−i π
σ+1 h

2σ
σ+1σ(K).

Proof : The proof of i) can be reduced to prove the same properties for the
one dimensional operator :

hθ = −h2e−2θ ∂2

∂x2
− e2σθx2σ.

the domain of hθ is D(hθ) = W 2(IR)∩D(x2σ). To prove that the family (hθ)
is analytic of type A, one proves that hθ is closed for all θ, 0 < Im(θ) < π

σ+1
.

For this we have to establish for all θ = iβ such that 0 <| β − π
2σ+2

|< π
2σ+2

,

the following inequality :

‖ hθu ‖2 + ‖ u ‖2≥ c(h4 ‖ u′′ ‖2 + ‖ x2σu ‖2) (4)

on D(hθ), where c is a positive constant. We have:

‖hθu‖
2 = h4‖u′′‖2 + ‖x2σu‖2 + 2h2Re(e−i(2+2σ)β(u′′, x2σu))

We write

h2(u′′, x2σu) = −h2
∫

x2σu′u′dx − h2
∫

2σx2σ−1u′udx. (5)

One can estimate the second integral in this equation as follows :

h2|
∫

2σx2σ−1u′udx| ≤ ‖h2u′‖2 + ‖2σx2σ−1u‖2.

By integration by parts we get:

‖h2u′‖2 ≤ h8‖u′′‖2 + ‖u‖2. (6)

Let B(R) denotes the ball centered at 0 with radius R > 0 and B(R)c the
complementary set of this ball. We write :

‖2σx2σ−1u‖2 =
∫

B(R)∪B(R)c
(2σx2σ−1)2uudx

≤ 4σ2R4σ−2‖u‖2 +
4σ2

R2
‖x2σu‖2.
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This yields in combination with (6):

h2|
∫

2σx2σ−1u′udx| ≤ h8‖u′′‖2 + ‖u‖2 + 4σ2R4σ−2‖u‖2 +
4σ2

R2
‖x2σu‖2. (7)

For the first integral in the equation 5 :

2h2|
∫

x2σu′u′dx| ≤ h4‖u′′‖2 + ‖x2σu‖2 + 2h2|
∫

2σx2σ−1u′udx|. (8)

We now write :

‖hθu‖
2 = h4‖u′′‖2+‖x2σu‖2+2Re[e−i(2+2σ)β(−h2

∫
x2σu′u′dx−h2

∫
2σx2σ−1u′udx)]

≥ h4‖u′′‖2+‖x2σu‖2−2| cos((2+2σ)β)|h2
∫

x2σu′u′dx−2h2|
∫

2σx2σ−1u′udx|

Therefore by (7) and (8)we get :

‖hθu‖
2 ≥ [1 − | cos((2 + 2σ)β)| − 2h4(| cos((2 + 2σ)β)| + 1)]‖h2u′′‖2+

(1 − | cos((2 + 2σ)β)| − 8(| cos((2 + 2σ)β)| + 1) σ2

R2 )‖x
2σu‖2−

2(| cos((2 + 2σ)β)| + 1)(1 + 4σ2R4σ−2)‖u‖2.

Finally choosing R big enough we get (4).
To prove ii), notice that H i

θ has a compact resolvent for 0 < Imθ <
π

σ+1
. By analyticity of (H i

θ)θ the spectrum of H i
θ is independent of θ, hence

σ(H i
θ) = σ(H i

i π
2σ+2

). Using the scaling of order h
1

σ+1 we get:

H i
i π
2σ+2

= e−i π
σ+1h

2σ
σ+1 K.

Therefore:
σ(H i

θ) = e−i π
σ+1 h

2σ
σ+1σ(K).

In the exterior domain our operator H here has the same shape as this
one studied in [3]. Here we localize more closely to the boss of the barrier.
So we get more precise results than lemma II-5 in [3].

Lemme 2 Under assumptions (A1,2,3,4) and for θ0 = iβ0 we have :
i) The resolvent set of He

θ0
contains a complex neighborhood Υ of 0 in the

form:

Υ = {z ∈ IC, Im(e2θ0(−z)) < Cβ0h
2σ

σ+1}.
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Here C > 0 is h-independent constant.
ii) For all z ∈ Υ we have,

‖ (He
θ0
− z)−1 ‖≤

1

dist(z, ∂Υ)
.

Proof: We first notice that by assumption A4 there exists ε > 0 independent
of h such that for θ0 = iβ0 with β0 > 0 small enough we get for all | x |< ε:

Im(e2θ0Vθ0
(x)) = −sin((2σ + 1)β0)(λ1x

2σ
1 + . . . + λNx2σ

N ) + O(x2σ+1)
≤ −1

2
sin((2σ + 1)β0)(λ1x

2σ
1 + ... + λNx2σ

N ).

Therefore we get ∀x such that h
1

σ+1 δe <| x |< ε :

Im(e2θ0Vθ0
) < −Cβ0h

2σ
σ+1 ,

for a convenient C > 0 independent of h. Hence by this and assumption A3

we get:

∀x, | x |> h
1

σ+1 δe, Im(e2θ0Vθ0
) < −Cβ0h

2σ
σ+1 . (9)

Let u ∈ D(He
θ0

) be such that ‖ u ‖= 1, and let z ∈ Υ. Since (∆u, u) has a
real value, we get by (9):

Im(e2iβ0(He
θ0
− z)u, u) = Im(e2iβ0(Vθ0

− z)u, u)

≤ Im(−e2iβ0z − Cβ0h
2σ

σ+1 )
≤ −dist(z, ∂Υ)

,

where (., .) denotes the inner product in L2(IRN). Hence we get:

‖ (He
θ0
− z)u ‖ ≥| Im(e2iβ0(He

θ0
− z)u, u) |

≥ dist(z, ∂Υ).
(10)

This proves that Ker(He
θ0
− z) = {0} and (He

θ0
− z) has a closed image. On

the other hand (He
θ0
− z)∗ = He

θ̄0
− z̄, and we get by the same way:

‖ (He
θ0
− z)∗u ‖≥ dist(z̄, ∂Ῡ).

Therefore Ker(He
θ0
−z)∗ = {0}, and hence the image of (He

θ0
−z) is the whole

L2(supportje). This leads to i). For ii) it is immediately given by (10).
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This lemma means that the operator valued function z 7→ (He
θ0
− z)−1 is

holomorphic inside Υ. By the same argument one gets the following:

Lemme 3 Let g ∈ C∞
0 (IRN) with support(g) ⊂ {x ∈ IRN , 0 < h

1

σ+1 δ <| x |
}. The operator valued functions z 7→ g(Hd

θ0
− z)−1J∗ and z 7→ (Hθ0

− z)−1g

have no poles inside Υ for a convenient C.

Let now kj ∈ σ(K) and γ denotes the closed curve given by:

γ = {z ∈ IC, | z − Ed |= ρh
2σ

σ+1}. (11)

Here Ed = e−i π
σ+1 h

2σ
σ+1 kj and ρ > 0 is a constant independent of h to be

chosen later small enough. We have:

Lemme 4 Let γ be the closed curve defined by (11), then for ρ small enough
we have by assumptions (A1,2,3,4) :
i) γ is in the resolvent set of Hθ0

.

ii) ‖ (Hθ0
− z)−1 ‖= O(h

−2σ
σ+1 ) uniformly for z ∈ γ as h −→ 0.

By our localization formula close to the boss of the barrier, the proof of this
lemma seems to be much more complicated than if we do this using standard
localization formula as in [3]. This is largely due to the contribution of the
commutator part in Π in the equation (3). The estimation of this contribution
becomes here not precise. By the same way as in [3] we get the same results.
To avoid needless repetition we shall not rewrite proof.

3 Proof of Theorems

The following lemma shows that the spectrum of Hθ0
is discrete inside γ. The

total algebraic multiplicity is equal to the multiplicity of Ed as an eigenvalue
of H i

θ0
.

Lemme 5 Let γ be the closed curve given by (11), with ρ small enough but
independent of h. Then under assumptions (A1,2,3,4) for h small enough, Pθ0

and P i
θ0

have the same rank. where Pθ0
and P i

θ0
denote the projectors defined

respectively by:

Pθ0
= −

1

2iπ

∮
γ
(Hθ0

− z)−1dz

and

P i
θ0

= −
1

2iπ

∮
γ
(H i

θ0
− z)−1dz.

EJQTDE, 2006 No. 18, p. 8



Proof : The lemma 4 shows that the operator Pθ0
is well defined for h small

enough. By (3) we get

Pθ0
− jiP

i
θ0

ji = −
1

2iπ

∮
γ
(Hθ0

− z)−1Π(Hd
θ0
− z)−1J∗dz.

We have for s = i and s = e, [∆, js] = (∆js +2∇js∇) is supported in Ω0. Let

g ∈ C∞
0 (IRN) with support(g) ⊂ {x ∈ IRN , 0 < h

1

σ+1 δ <| x |}, with δ < δe

and satisfying to g(x) = 1 inside Ω0. We have [∆, js] = g[∆, js]g. Then by
lemma 3 the commutator part in the expression of Π has no contribution to
this integral. We get

Pθ0
− jiP

i
θ0

ji = −
1

2iπ

∮
γ
(Hθ0

− z)−1w(H i
θ0
− z)−1jidz.

Let us now prove that :

‖ (Hθ0
− z)−1w(H i

θ0
− z)−1ji ‖= O(h

1−2σ
σ+1 ) (12)

uniformly for z ∈ γ. We have:

‖ (Hθ0
− z)−1w(H i

θ0
− z)−1ji ‖≤‖ (Hθ0

− z)−1 ‖ . ‖ w(H i
θ0
− z)−1ji ‖ .

By lemma 1 ii) one can choose ρ such that dist(γ, σ(H i
θ0

)) > ch
2σ

σ+1 . Hence
one gets

‖ (H i
θ0
− z)−1 ‖= O(h

−2σ
σ+1 ) (13)

uniformly for z ∈ γ. Now by (A4) we have w = O(h
1+2σ
σ+1 ) on the support of

ji. Then we get:

‖ w(H i
θ0
− z)−1 ‖= O(h

1

σ+1 ). (14)

This equation in combination with lemma 4 ii) leads to (12). Since | γ |=

O(h
2σ

σ+1 ), we get :

Pθ0
− jiP

i
θ0

ji = O(h
1

σ+1 ).

This leads to :
Pθ0

− P i
θ0

= O(h
1

σ+1 ),

and then smaller than 1 for h small enough, and the lemma is proved.
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To finish the proof of theorem 1, let E be an eigenvalue of Hθ0
inside γ,

and let φ be the corresponding normalized eigenvector. We have :

(E − Ed)φ = (Hθ0
− Ed)φ = −

1

2iπ

∫
γ
(z − Ed)(Hθ0

− z)−1φdz.

By equation (3) and the fact that the commutator part has no contribution
to the integral we get:

(E − Ed)φ = −
1

2iπ

∫
γ
(z − Ed)(Hθ0

− z)−1w(H i
θ0
− z)−1jiφdz. (15)

Then
| E − Ed |≤ ρ2h

4σ
σ+1 sup

z∈γ
‖(Hθ0

− z)−1w(H i
θ0
− z)−1ji‖.

Therefore equation (12) leads to

| E − Ed | ≤ ρ2h
4σ

σ+1O(h
1−2σ
σ+1 )

= O(h
1+2σ
σ+1 ).

This proves the theorem 1.
To prove theorem 2, Assuming moreover (A5), the equation (14) becomes

‖ w(H i
θ0
− z)−1 ‖= O(h

p

σ+1 ).

Then equation (12) becomes

‖ (Hθ0
− z)−1w(H i

θ0
− z)−1ji ‖= O(h

p−2σ

σ+1 ).

Hence by equation (15) the following holds true:

| E − Ed |= O(h
p+2σ

σ+1 ).

Therefore all eigenvalues of Hθ0
inside γ are inside the ball centered at Ed

and of radius O(h
p+2σ

σ+1 ). This in combination with the theorem 1 proves the
theorem 2.

The proof of theorem 3 is similar to the proof of theorem (2.4) in [3], we

have only to replace h by h
2σ

σ+1 .
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barrière de potentiel dégénérée, Asymptotic Analysis V.47, N.1-2, pp
19-48 ,2006

[2] Briet (Ph.),Combes (J.M.), Duclos (P.) – On the location of resonances
for Schrödinger operator in the semiclassical limit I: Resonances free
domains, J. Math. anal. appl. 126, 90-99, 1987.

[3] Briet (Ph.),Combes (J.M.), Duclos (P.) – On the location of resonances
for Schrödinger operator in the semiclassical limit II: Barrier top reso-
nances, Commun. in Partial Differential Equations 12, 201-222, 1987.

[4] Kato (T.) – Perturbation theory for linear operators, Berlin, heidelberg,
New York : Springer (1966).

[5] Martinez (A.), Rouleux (M.) – Effet tunnel entre puits dégénérés,
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