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Abstract

In this paper we study the existence of solutions for the generated boundary value prob-
lem, with initial datum being an element of L1(Ω) + W−1,p′(Ω, w∗)

−diva(x, u,∇u) + g(x, u,∇u) = f − divF

where a(.) is a Carathéodory function satisfying the classical condition of type Leray-Lions
hypothesis, while g(x, s, ξ) is a non-linear term which has a growth condition with respect to
ξ and no growth with respect to s, but it satisfies a sign condition on s.

1 Introduction.

Let Ω be a bounded subset of IRN (N ≥ 2), 1 < p < ∞, and w = {wi(x); i = 0, ..., N} , be a
collection of weight functions on Ω i.e., each wi is a measurable and strictly positive function
everywhere on Ω and satisfying some integrability conditions (see section 2). Let us consider
the non-linear elliptic partial differential operator of order 2 given in divergence form

Au = −div(a(x, u,∇u)) (1.1)

It is well known that equation Au = h is solvable by Drabek, Kufner and Mustonen in [7] in
the case where h ∈ W−1,p′(Ω, w∗).
In this paper we investigate the problem of existence solutions of the following Dirichlet
problem

Au + g(x, u,∇u) = µ in Ω. (1.2)

∗AMS Subject Classification: 35J15, 35J20, 35J70.
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where µ ∈ L1(Ω) +
N
∏

i=1

Lp′(Ω, w1−p′

i ).

In this context of nonlinear operators, if µ belongs to W−1,p′(Ω, w∗) existence results for
problem (1.2) have been proved in [2], where the authors have used the approach based on
the strong convergence of the positive part u+

ε (resp. ngative part u−
ε ).

The case where µ ∈ L1(Ω) is investigated in [3] under the following coercivity condition,

|g(x, s, ξ)| ≥ β
N
∑

i=1

wi|ξi|
p for |s| ≥ γ, (1.3)

Let us recall that the results given in [2, 3] have been proved under some additional conditions
on the weight function σ and the parameter q introduced in Hardy inequality.
The main point in our study to prove an existence result for some class of problem of the
kind (1.2), without assuming the coercivity condition (1.3). Moreover, we didn’t supose any
restriction for weight function σ and parameter q.
It would be interesting at this stage to refer the reader to our previous work [1]. For different
appproach used in the setting of Orlicz Sobolev space the reader can refer to [4], and for same
results in the Lp case, to [10].
The plan of this is as follows : in the next section we will give some preliminaries and some
technical lemmas, section 3 is concerned with main results and basic assumptions, in section
4 we prove main results and we study the stability and the positivity of solution.

2 Preliminaries.

Let Ω be a bounded open subset of IRN (N ≥ 2). Let 1 < p < ∞, and let w = {wi(x); 0 ≤ i ≤ N} ,
be a vector of weight functions i.e. every component wi(x) is a measurable function which is
strictly positive a.e. in Ω. Further, we suppose in all our considerations that for 0 ≤ i ≤ N

wi ∈ L1
loc(Ω) and w

− 1
p−1

i ∈ L1
loc(Ω). (2.1)

We define the weighted space with weight γ in Ω as

Lp(Ω, γ) = {u(x) : uγ
1
p ∈ L1(Ω)},

which is endowed with, we define the norm

‖u‖p,γ =

(
∫

Ω
|u(x)|pγ(x) dx

)
1
p

.

We denote by W 1,p(Ω, w) the weighted Sobolev space of all real-valued functions u ∈ Lp(Ω, w0)
such that the derivatives in the sense of distributions satisfy

∂u

∂xi
∈ Lp(Ω, wi) for all i = 1, ..., N.

This set of functions forms a Banach space under the norm

‖u‖1,p,w =

(

∫

Ω
|u(x)|pw0 dx +

N
∑

i=1

∫

Ω
|
∂u

∂xi
|pwi(x) dx

)

1
p

. (2.2)
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To deal with the Dirichlet problem, we use the space

X = W 1,p
0 (Ω, w)

defined as the closure of C∞
0 (Ω) with respect to the norm (2.2). Note that, C∞

0 (Ω) is dense
in W 1,p

0 (Ω, w) and (X, ‖.‖1,p,w) is a reflexive Banach space.

We recall that the dual of the weighted Sobolev spaces W 1,p
0 (Ω, w) is equivalent to W−1,p′(Ω, w∗),

where w∗ = {w∗
i = w1−p′

i }, i = 1, ..., N and p′ is the conjugate of p i.e. p′ = p
p−1 . For more

details we refer the reader to [8].
We introduce the functional spaces, we will need later.
For p ∈ (1,∞), T 1,p

0 (Ω, w) is defined as the set of measurable functions u : Ω −→ IR such
that for k > 0 the truncated functions Tk(u) ∈ W 1,p

0 (Ω, w).
We give the following lemma which is a generalization of Lemma 2.1 [5] in weighted Sobolev
spaces.

Lemma 2.1. For every u ∈ T 1,p
0 (Ω, w), there exists a unique measurable function v : Ω −→

IRN such that

∇Tk(u) = vχ{|u|<k}, almost everywhere in Ω, for every k > 0.

We will define the gradient of u as the function v, and we will denote it by v = ∇u.

Lemma 2.2. Let λ ∈ IR and let u and v be two functions which are finite almost everywhere,
and which belongs to T 1,p

0 (Ω, w). Then,

∇(u + λv) = ∇u + λ∇v a.e. in Ω,

where ∇u, ∇v and ∇(u + λv) are the gradients of u, v and u + λv introduced in Lemma 2.1.

The proof of this lemma is similar to the proof of Lemma 2.12 [6] for the non weighted case.

Definition 2.1. Let Y be a reflexive Banach space, a bounded operator B from Y to its dual
Y ∗ is called pseudo-monotone if for any sequence un ∈ Y with un ⇀ u weakly in Y . Bun ⇀ χ
weakly in Y ∗ and lim sup

n→∞
〈Bun, un〉 ≤ 〈χ, u〉, we have

Bun = Bu and 〈Bun, un〉 → 〈χ, u〉 as n → ∞.

Now, we state the following assumptions.
(H1)-The expression

‖u‖X =

(

N
∑

i=1

∫

Ω
|
∂u

∂xi
|pwi(x) dx

)

1
p

, (2.3)

is a norm defined on X and is equivalent to the norm (2.2). (Note that (X, ‖u‖X ) is a
uniformly convex (and reflexive) Banach space.
-There exist a weight function σ on Ω and a parameter q, 1 < q < ∞, such that the Hardy
inequality

(
∫

Ω
|u|qσ(x) dx

)
1
q

≤ C

(

N
∑

i=1

∫

Ω
|
∂u

∂xi
|pwi(x) dx

)

1
p

, (2.4)
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holds for every u ∈ X with a constant C > 0 independent of u. Moreover, the imbeding

X ↪→ Lq(Ω, σ) (2.5)

determined by the inequality (2.4) is compact.
We state the following technical lemmas which are needed later.

Lemma 2.3 [2]. Let g ∈ Lr(Ω, γ) and let gn ∈ Lr(Ω, γ), with ‖gn‖Ω,γ ≤ c, 1 < r < ∞. If
gn(x) → g(x) a.e. in Ω, then gn ⇀ g weakly in Lr(Ω, γ).

Lemma 2.4 [2]. Assume that (H1) holds. Let F : IR → IR be unifomly Lipschitzian,
with F (0) = 0. Let u ∈ W 1,p

0 (Ω, w). Then F (u) ∈ W 1,p
0 (Ω, w). Moreover, if the set D of

discontinuity points of F ′ is finite, then

∂F (u)

∂xi
=

{

F ′(u) ∂u
∂xi

a.e. in {x ∈ Ω : u(x) /∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

From the previous lemma, we deduce the following.

Lemma 2.5 [2]. Assume that (H1) holds. Let u ∈ W 1,p
0 (Ω, w), and let Tk(u), k ∈ IR+, be

the usual truncation, then Tk(u) ∈ W 1,p
0 (Ω, w). Moreover, we have

Tk(u) → u strongly in W 1,p
0 (Ω, w).

3 Main results.

Let Ω be a bounded open subset of IRN (N ≥ 2). Consider the second order operator
A : W 1,p

0 (Ω, w) −→ W−1,p′(Ω, w∗) in divergence form

Au = −div(a(x, u,∇u)),

where a : Ω×IR×IRN → IRN is a Carathéodory function Satisfying the following assumptions:
(H2) For i = 1, ..., N

|ai(x, s, ξ)| ≤ βw
1
p

i (x)[k(x) + σ
1
p′ |s|

q

p′ +
N
∑

j=1

w
1
p′

j (x)|ξj |
p−1], (3.1)

[a(x, s, ξ) − a(x, s, η)](ξ − η) > 0 for all ξ 6= η ∈ IRN , (3.2)

a(x, s, ξ)ξ ≥ α
N
∑

i=1

wi(x)|ξi|
p. (3.3)

where k(x) is a positive function in Lp′(Ω) and α, β are positive constants.
Assume that g : Ω × IR × IRN −→ IR is a Carathéodory function satisfying :
(H3) g(x, s, ξ) is a Carathéodory function satisfying

g(x, s, ξ).s ≥ 0, (3.4)
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|g(x, s, ξ)| ≤ b(|s|)(
N
∑

i=1

wi(x)|ξi|
p + c(x)), (3.5)

where b : IR+ → IR+ is a positive increasing function and c(x) is a positive function which
belong to L1(Ω).
Furthermore we suppose that

µ = f − divF, f ∈ L1(Ω), F ∈
N
∏

i=1

Lp′(Ω, w1−p′

i ), (3.6)

Consider the nonlinear problem with Dirichlet boundary condition

(P )































u ∈ T 1,p
0 (Ω, w), g(x, u,∇u) ∈ L1(Ω)

∫

Ω
a(x, u,∇u)∇Tk(u − v) dx +

∫

Ω
g(x, u,∇u)Tk(u − v) dx

≤

∫

Ω
fTk(u − v) dx +

∫

Ω
F∇Tk(u − v) dx

∀v ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω) ∀k > 0.

We shall prove the following existence theorem

Theorem 3.1. Assume that (H1) − (H3) hold true. Then there exists at least one solution
of the problèm (P ).

Remark 3.1. If wi = σ = q = 1, the result of the preceding theorem coincides with those of
Porretta (see [10]).

4 Proof of main results.

In order to prove the existence theorem we need the following

Lemma 4.1 [2]. Assume that (H1) and (H2) are satisfied, and let (un)n be a sequence in
W 1,p

0 (Ω, w) such that

1) un ⇀ u weakly in W 1,p
0 (Ω, w),

2)

∫

Ω
[a(x, un,∇un) − a(x, un,∇u)]∇(un − u) dx → 0

then,
un → u in W 1,p

0 (Ω, w).

We give now the proof of theorem 3.1.
STEP 1. The approximate problem.

Let fn be a sequence of smooth functions which strongly converges to f in L1(Ω).
We Consider the sequence of approximate problems:































un ∈ W 1,p
0 (Ω, w),

∫

Ω
a(x, un,∇un)∇v dx +

∫

Ω
gn(x, un,∇un)v dx

=

∫

Ω
fnv dx +

∫

Ω
F∇v dx

∀v ∈ W 1,p
0 (Ω, w).

(4.1)
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where gn(x, s, ξ) = g(x,s,ξ)

1+ 1
n
|g(x,s,ξ)|

θn(x) with θn(x) = nT1/n(σ1/q(x)).

Note that gn(x, s, ξ) satisfises the following conditions

gn(x, s, ξ)s ≥ 0, |gn(x, s, ξ)| ≤ |g(x, s, ξ)| and |gn(x, s, ξ)| ≤ n.

We define the operator Gn : X −→ X∗ by,

〈Gnu, v〉 =

∫

Ω
gn(x, u,∇u)v dx

and

〈Au, v〉 =

∫

Ω
a(x, u,∇u)∇v dx

Thanks to Hölder’s inequality, we have for all u ∈ X and v ∈ X,

∣

∣

∣

∣

∫

Ω
gn(x, u,∇u)v dx

∣

∣

∣

∣

≤

(
∫

Ω
|gn(x, u,∇u)|q

′

σ
− q′

q dx

)
1
q′
(
∫

Ω
|v|qσ dx

)
1
q

≤ n

(
∫

Ω
σq′/qσ−q′/q dx

)
1
q′

‖v‖q,σ

≤ Cn‖v‖X ,

(4.2)

the last inequality is due to (2.3) and (2.4).

Lemma 4.2. The operator Bn = A + Gn from X into its dual X∗ is pseudomonotone.
Moreover, Bn is coercive, in the following sense:

< Bnv, v >

‖v‖X
−→ +∞ if ‖v‖X −→ +∞, v ∈ W 1,p

0 (Ω, w).

This Lemma will be proved below.
In view of Lemma 4.2, there exists at least one solution un of (4.1) (cf. Theorem 2.1 and
Remark 2.1 in Chapter 2 of [11] ).
STEP 2. A priori estimates.

Taking v = Tk(un) as test function in (4.1), gives
∫

Ω
a(x, un,∇un)∇Tk(un) dx +

∫

Ω
gn(x, un,∇un)Tk(un) dx

=

∫

Ω
fnTk(un) dx +

∫

Ω
Fn∇Tk(un) dx

and by using in fact that gn(x, un,∇un)Tk(un) ≥ 0, we obtain
∫

{|un|≤k}
a(x, un,∇un)∇un dx ≤ ck +

∫

Ω
Fn∇Tk(un) dx.

Thank’s to Young’s inequality and (3.3), one easily has

α

2

∫

Ω

N
∑

i=1

|
∂Tk(un)

∂xi
|pwi(x) dx ≤ c1k. (4.3)

STEP 3. Almost everywhere convergence of un.

We prove that un converges to some function u locally in measure (and therefore, we can
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aloways assume that the convergence is a.e. after passing to a suitable subsequence). To
prove this, we show that un is a Cauchy sequence in measure in any ball BR.
Let k > 0 large enough, we have

k meas({|un| > k} ∩ BR) =

∫

{|un|>k}∩BR

|Tk(un)| dx ≤

∫

BR

|Tk(un)| dx

≤

(
∫

Ω
|Tk(un)|pw0 dx

)
1
p
(
∫

BR

w1−p′

0 dx

)
1
q′

≤ c0

(

∫

Ω

N
∑

i=1

|
∂Tk(un)

∂xi
|pwi(x) dx

)

1
p

≤ c1k
1
p .

Which implies that

meas({|un| > k} ∩ BR) ≤
c1

k1− 1
p

∀k > 1. (4.4)

Moreover, we have, for every δ > 0,

meas({|un − um| > δ} ∩ BR) ≤ meas({|un| > k} ∩ BR) + meas({|um| > k} ∩ BR)
+meas{|Tk(un) − Tk(um)| > δ}.

(4.5)
Since Tk(un) is bounded in W 1,p

0 (Ω, w), there exists some vk ∈ W 1,p
0 (Ω, w), such that

Tk(un) ⇀ vk weakly in W 1,p
0 (Ω, w)

Tk(un) → vk strongly in Lq(Ω, σ) and a.e. in Ω.

Consequently, we can assume that Tk(un) is a Cauchy sequence in measure in Ω.
Let ε > 0, then, by (4.4) and (4.5), there exists some k(ε) > 0 such that meas({|un − um| >
δ} ∩ BR) < ε for all n,m ≥ n0(k(ε), δ, R). This proves that (un)n is a Cauchy sequence in
measure in BR, thus converges almost everywhere to some measurable function u. Then

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω, w),

Tk(un) → Tk(u) strongly in Lq(Ω, σ) and a.e. in Ω.

STEP 4. Strong convergence of truncations.

We fix k > 0, and let h > k > 0.
We shall use in (4.1) the test function

{

vn = φ(wn)
wn = T2k(un − Th(un) + Tk(un) − Tk(u)),

(4.6)

with φ(s) = seγs2
, γ = ( b(k)

α )2.
It is well known that

φ′(s) −
b(k)

α
|φ(s)| ≥

1

2
∀s ∈ IR, (4.7)

It follows that
∫

Ω
a(x, un,∇un)∇wnφ′(wn) dx +

∫

Ω
gn(x, un,∇un)φ(wn) dx

=

∫

Ω
fnφ(wn) dx +

∫

Ω
F∇φ(wn) dx.

(4.8)

EJQTDE, 2006 No. 19, p. 7



Since φ(wn)gn(x, un,∇un) > 0 on the subset {x ∈ Ω, |un(x)| > k}, we deduce from (4.8) that

∫

Ω
a(x, un,∇un)∇wnφ′(wn) dx +

∫

{|un|≤k}
gn(x, un,∇un)φ(wn) dx

≤

∫

Ω
fnφ(wn) dx +

∫

Ω
F∇φ(wn) dx.

(4.9)

Denote by ε1
h(n), ε2

h(n), ... various sequences of real numbers which converge to zero as n
tends to infinity for any fixed value of h.
We will deal with each term of (4.9). First of all, observe that

∫

Ω
fnφ(wn) dx =

∫

Ω
fφ(T2k(u − Th(u))) dx + ε1

h(n) (4.10)

and

∫

Ω
F∇φ(wn) dx =

∫

Ω
F∇T2k(u − Th(u))φ′(T2k(u − Th(u))) dx + ε2

h(n). (4.11)

Splitting the first integral on the left hand side of (4.9) where |un| ≤ k and |un| > k, we can
write,

∫

Ω
a(x, un,∇un)∇wnφ′(wn) dx

=

∫

{|un|≤k}
a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(u)]φ′(wn) dx

+

∫

{|un|>k}
a(x, un,∇un)∇wnφ′(wn) dx.

(4.12)

Setting m = 4k + h, using a(x, s, ξ)ξ ≥ 0 and the fact that ∇wn = 0 on the set where
|un| > m, we have

∫

{|un|>k}
a(x, un,∇un)∇wnφ′(wn) dx

≥ −φ′(2k)

∫

{|un|>k}
|a(x, Tm(un),∇Tm(un))||∇Tk(u)| dx,

(4.13)
and since a(x, s, 0) = 0 ∀s ∈ IR, we have

∫

{|un|≤k}
a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(u)]φ′(wn) dx

=

∫

Ω
a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(u)]φ′(wn) dx.

(4.14)

Combining (4.13) and (4.14), we get

∫

Ω
a(x, un,∇un)∇wnφ′(wn) dx

≥

∫

Ω
a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(u)]φ′(wn) dx

−φ′(2k)

∫

{|un|>k}
|a(x, Tm(un),∇Tm(un))||∇Tk(u)| dx.

(4.15)
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The second term of the right hand side of the last inequality tends to 0 as n tends to infinity.

Indeed. Since the sequence (a(x, Tm(un),∇Tm(un)))n is bounded in
N
∏

i=1

Lp′(Ω, w1−p′

i ) while

∇Tk(u)χ|un|>k tends to 0 strongly in
N
∏

i=1

Lp(Ω, wi), which yields

∫

Ω
a(x, un,∇un)∇wnφ′(wn) dx

≥

∫

Ω
a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(u)]φ′(wn) dx + ε3

h.
(4.16)

On the other hand, the term of the right hand side of (4.16) reads as
∫

Ω
a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(u)]φ′(wn) dx

=

∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))]

×[∇Tk(un) −∇Tk(u)]φ′(wn) dx

+

∫

Ω
a(x, Tk(un),∇Tk(u))∇Tk(un)φ′(Tk(un) − Tk(u)) dx

−

∫

Ω
a(x, Tk(un),∇Tk(u))∇Tk(u)φ′(wn) dx.

(4.17)

Since ai(x, Tk(un),∇Tk(u))φ′(Tk(un)−Tk(u)) → ai(x, Tk(u),∇Tk(u))φ′(0) strongly in Lp′(Ω, w1−p′

i )

by using the continuity of the Nymetskii operator, while ∂(Tk(un))
∂xi

⇀ ∂(Tk(u))
∂xi

weakly in
Lp(Ω, wi), we have

∫

Ω
a(x, Tk(un),∇Tk(u))∇Tk(un)φ′(Tk(un) − Tk(u)) dx

=

∫

Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)φ′(0) dx + ε4

h(n).
(4.18)

In the same way, we have

−

∫

Ω
a(x, Tk(un),∇Tk(u))∇Tk(u)φ′(wn) dx

= −

∫

Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)φ′(0) dx + ε5

h(n).
(4.19)

Combining (4.16)-(4.19), we get
∫

Ω
a(x, un,∇un)∇wnφ′(wn) dx

≥

∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))]

×[∇Tk(un) −∇Tk(u)]φ′(wn) dx + ε6
h(n).

(4.20)

The second term of the left hand side of (4.9), can be estimated as
∣

∣

∣

∣

∣

∫

{|un|≤k}
gn(x, un,∇un)φ(wn) dx

∣

∣

∣

∣

∣

≤

∫

{|un|≤k}
b(k)

(

c(x) +
N
∑

i=1

wi|
∂Tk(un)

∂xi
|p
)

|φ(wn)| dx

≤ b(k)

∫

Ω
c(x)|φ(wn)| dx

+ b(k)
α

∫

Ω
a(x, Tk(un),∇Tk(un))∇Tk(un)|φ(wn)| dx.

(4.21)
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Since c(x) belongs to L1(Ω) it is easy to see that

b(k)

∫

Ω
c(x)|φ(wn)| dx = b(k)

∫

Ω
c(x)|φ(T2k(u − Th(u)))| dx + ε7

h(n). (4.22)

On the other side, we have
∫

Ω
a(x, Tk(un),∇Tk(un))∇Tk(un)|φ(wn)| dx

=

∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))]

×[∇Tk(un) −∇Tk(u)]|φ(wn)| dx

+

∫

Ω
a(x, Tk(un),∇Tk(un))∇Tk(u)|φ(wn)| dx

+

∫

Ω
a(x, Tk(un),∇Tk(u))[∇Tk(un) −∇Tk(u)]|φ(wn)| dx.

(4.23)

As above, by letting n go to infinity, we can easily see that each one of last two integrals of
the right-hand side of the last equality is of the form ε8

h(n) and then
∣

∣

∣

∣

∣

∫

{|un|≤k}
gn(x, un,∇un)φ(wn) dx

∣

∣

∣

∣

∣

≤

∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))]

×[∇Tk(un) −∇Tk(u)]|φ(wn)| dx

+b(k)

∫

Ω
c(x)|φ(T2k(u − Th(u)))| dx + ε9

h(n).

(4.24)

(4.9)-(4.11), (4.20) and (4.24), we get
∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))]

×[∇Tk(un) −∇Tk(u)](φ′(wn) − b(k)
α |φ(wn)|) dx

≤ b(k)

∫

Ω
c(x)|φ(T2k(u − Th(u)))| dx +

∫

Ω
fφ(T2k(u − Th(u))) dx,

+

∫

Ω
F∇T2k(u − Th(u))φ′(T2k(u − Th(u))) dx + ε10

h (n),

which and (4.7) implies that
∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))]

×[∇Tk(un) −∇Tk(u)] dx

≤ 2b(k)

∫

Ω
c(x)|φ(T2k(u − Th(u)))| dx + 2

∫

Ω
fφ(T2k(u − Th(u))) dx,

+2

∫

Ω
F∇T2k(u − Th(u))φ′(T2k(u − Th(u))) dx + ε11

h (n),

in which, we can pass to the limit as n → +∞ to obtain

lim sup
n→∞

∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))][∇Tk(un) −∇Tk(u)] dx

≤ 2b(k)

∫

Ω
c(x)|φ(T2k(u − Th(u)))| dx + 2

∫

Ω
fφ(T2k(u − Th(u))) dx,

+2

∫

Ω
F∇T2k(u − Th(u))φ′(T2k(u − Th(u))) dx.

(4.25)
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It remains to show, for our purposes, that the all terms on the right hand side of (4.25)
converge to zero as h goes to infinity. The only difficulty that exists is in the last term. For
the other terms it suffices to apply Lebesgue’s theorem.
We deal with this term. Let us observe that, if we take φ(T2k(un − Th(un))) as test function
in (4.1) and use (3.3), we obtain

α

∫

{h≤|un|≤2k+h}

N
∑

i=1

|
∂un

∂xi
|pwiφ

′(T2k(un − Th(un))) dx

+

∫

Ω
gn(x, un,∇un)φ(T2k(un − Th(un))) dx

≤

∫

{h≤|un|≤2k+h}
F∇unφ′(T2k(un − Th(un))) dx

∫

Ω
fnφ(T2k(un − Th(un))) dx,

and thanks to the sign condition (3.4), we get

α

∫

{h≤|un|≤2k+h}

N
∑

i=1

|
∂un

∂xi
|pwiφ

′(T2k(un − Th(un))) dx

≤

∫

{h≤|un|≤2k+h}
F∇unφ′(T2k(un − Th(un))) dx

+

∫

Ω
fnφ(T2k(un − Th(un))) dx.

Using the Young inequality we have

α
2

∫

{h≤|un|≤2k+h}

N
∑

i=1

|
∂un

∂xi
|pwiφ

′(T2k(un − Th(un))) dx

≤

∫

Ω
fnφ(T2k(un − Th(un))) dx + ck

∫

{h≤|un|}
|w

−1
p .F |p

′

dx,

(4.26)

so that, since φ′ ≥ 1, we have

∫

Ω

N
∑

i=1

∣

∣

∣

∣

∂T2k(u − Th(u))

∂xi

∣

∣

∣

∣

p

wi dx

≤

∫

Ω

N
∑

i=1

∣

∣

∣

∣

∂T2k(u − Th(u))

∂xi

∣

∣

∣

∣

p

wiφ
′(T2k(u − Th(u))) dx,

again because the norm is lower semi-continuity, we get

∫

Ω

N
∑

i=1

∣

∣

∣

∣

∂T2k(u − Th(u))

∂xi

∣

∣

∣

∣

p

wiφ
′(T2k(u − Th(u))) dx

≤ ck

∫

Ω

N
∑

i=1

∣

∣

∣

∣

∂T2k(u − Th(u))

∂xi

∣

∣

∣

∣

p

wi dx

≤ lim inf
n→∞

∫

Ω

N
∑

i=1

∣

∣

∣

∣

∂T2k(un − Th(un))

∂xi

∣

∣

∣

∣

p

wi dx

≤ ck lim inf
n→∞

∫

Ω

N
∑

i=1

∣

∣

∣

∣

∂T2k(un − Th(un))

∂xi

∣

∣

∣

∣

p

wiφ
′(T2k(un − Th(un))) dx

(4.27)
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Consequently, in view of (4.26) and (4.27), we obtain

∫

Ω

N
∑

i=1

∣

∣

∣

∣

∂T2k(u − Th(u))

∂xi

∣

∣

∣

∣

p

wiφ
′(T2k(u − Th(u))) dx

≤ lim inf
n→∞

ck

∫

{h≤|un|}
|w

−1
p F |p

′

dx

+ lim inf
n→∞

∫

Ω
fnφ(T2k(un − Th(un))) dx.

Finally, the strong convergence in L1(Ω) of fn, we have, as first n and then h tend to infinity,

lim sup
h→∞

∫

{h≤|u|≤2k+h}

N
∑

i=1

|
∂u

∂xi
|pwiφ

′(T2k(u − Th(u))) dx = 0,

hence

lim
h→∞

∫

Ω
F∇T2k(u − Th(u))φ′(T2k(u − Th(u))) dx = 0.

Therefore by (4.25), letting h go to infinity, we conclude,

lim
n→∞

∫

Ω
[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))][∇Tk(un) −∇Tk(u)] dx = 0,

which and using Lemma 4.1 implies that

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω, w) ∀k > 0. (4.28)

STEP 5. Passing to the limit.

By using Tk(un − v) as test function in (4.1), with v ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω), we get

∫

Ω
a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx +

∫

Ω
gn(x, un,∇un)Tk(un − v) dx

=

∫

Ω
fnTk(un − v) dx +

∫

Ω
F∇Tk(un − v) dx.

(4.29)
By Fatou’s lemma and the fact that

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un)) ⇀ a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))

weakly in
N
∏

i=1

Lp′(Ω, w1−p′

i ) one easily sees that

∫

Ω
a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))∇Tk(u − v) dx

≤ lim inf
n→∞

∫

Ω
a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx.

(4.30)

For the second term of the right hand side of (4.29), we have

∫

Ω
F∇Tk(un − v) dx −→

∫

Ω
F∇Tk(u − v) dx as n → ∞. (4.31)
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since ∇Tk(un − v) ⇀ ∇Tk(u − v) weakly in
N
∏

i=1

Lp(Ω, wi), while F ∈
N
∏

i=1

Lp′(Ω, w1−p′

i ).

On the other hand, we have
∫

Ω
fnTk(un − v) dx −→

∫

Ω
fTk(u − v) dx as n → ∞. (4.32)

To conclude the proof of theorem, it only remains to prove

gn(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω), (4.33)

in particular it is enough to prove the equiintegrable of gn(x, un,∇un). To this purpose, we
take Tl+1(un) − Tl(un) as test function in (4.1), we obtain

∫

{|un|>l+1}
|gn(x, un,∇un)| dx ≤

∫

{|un|>l}
|fn| dx.

Let ε > 0. Then there exists l(ε) ≥ 1 such that

∫

{|un|>l(ε)}
|gn(x, un,∇un)| dx < ε/2. (4.34)

For any measurable subset E ⊂ Ω, we have

∫

E
|gn(x, un,∇un)| dx ≤

∫

E
b(l(ε))

(

c(x) +
N
∑

i=1

wi|
∂(Tl(ε)(un))

∂xi
|p
)

dx

+

∫

{|un|>l(ε)}
|gn(x, un,∇un)| dx.

In view of (4.28) there exists η(ε) > 0 such that

∫

E
b(l(ε))

(

c(x) +
N
∑

i=1

wi|
∂(Tl(ε)(un))

∂xi
|p
)

dx < ε/2

for all E such that meas E < η(ε).

(4.35)

Finally, by combining (4.34) and (4.35) one easily has

∫

E
|gn(x, un,∇un)| dx < ε for all E such that meas E < η(ε),

which shows that gn(x, un,∇un) are uniformly equintegrable in Ω as required.
Thanks to (4.30)-(4.33) we can pass to the limit in (4.29) and we obtain that u is a solution
of the problem (P ).
This completes the proof of Theorem 3.1.

Remark 4.1. Note that, we obtain the existence result withowt assuming the coercivity
condition. However one can overcome this difficulty by introduced the function wn = T2k(un−
Th(un) + Tk(un) − Tk(u)) in the test function (4.6).

Proof of Lemma 4.2.

From Hölder’s inequality, the growth condition (3.1) we can show that A is bounded, and by
using (4.2), we have Bn bounded. The coercivity folows from (3.3) and (3.4). it remain to
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show that Bn is pseudo-monotone.
Let a sequence (uk)k ∈ W 1,p

0 (Ω, w) such that

uk ⇀ u weakly in W 1,p
0 (Ω, w),

Bnuk ⇀ χ weakly in W−1,p′(Ω, w∗),

and lim sup
k→∞

〈Bnuk, uk〉 ≤ 〈χ, u〉.

We will prove that

χ = Bnu and 〈Bnuk, uk〉 → 〈χ, u〉 as k → +∞.

Since (uk)k is a bounded sequence in W 1,p
0 (Ω, w), we deduce that (a(x, uk,∇uk))k is bounded

in
N
∏

i=1

Lp′(Ω, w1−p′

i ), then there exists a function h ∈
N
∏

i=1

Lp′(Ω, w1−p′

i ) such that

a(x, uk,∇uk) ⇀ h weakly in
N
∏

i=1

Lp′(Ω, w1−p′

i ) as k → ∞,

similarly, it is easy to see that (gn(x, uk,∇uk))k is bounded in Lq′(Ω, σ1−q′), then there exists
a function kn ∈ Lq′(Ω, σ1−q′) such that

gn(x, uk,∇uk) ⇀ kn weakly in  Lq′(Ω, σ1−q′) as k → ∞.

It is clear that, for all w ∈ W 1,p
0 (Ω, w), we have

〈χ,w〉 = lim
k→+∞

〈Bnuk, w〉

= lim
k→+∞

∫

Ω
a(x, uk,∇uk)∇w dx

+ lim
k→+∞

∫

Ω
gn(x, uk,∇uk).w dx.

Consequently, we get

〈χ,w〉 =

∫

Ω
h∇w dx +

∫

Ω
kn.w dx ∀w ∈ W 1,p

0 (Ω, w). (4.36)

On the one hand, we have

∫

Ω
gn(x, uk,∇uk).uk dx −→

∫

Ω
kn.u dx as k → ∞, (4.37)

and, by hypotheses, we have

lim sup
k→∞

{
∫

Ω
a(x, uk,∇uk)∇uk dx +

∫

Ω
gn(x, uk,∇uk).uk dx

}

≤

∫

Ω
h∇u dx +

∫

Ω
kn.u dx,

therefore

lim sup
k→∞

∫

Ω
a(x, uk,∇uk)∇uk dx ≤

∫

Ω
h∇u dx. (4.38)
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By virtue of (3.2), we have
∫

Ω
(a(x, uk,∇uk) − a(x, uk,∇u))(∇uk −∇u) dx > 0. (4.39)

Consequently
∫

Ω
a(x, uk,∇uk)∇uk dx ≥ −

∫

Ω
a(x, uk,∇u)∇u dx +

∫

Ω
a(x, uk,∇uk)∇u dx

+

∫

Ω
a(x, uk,∇u)∇uk dx,

hence

lim inf
k→∞

∫

Ω
a(x, uk,∇uk)∇uk dx ≥

∫

Ω
h∇u dx.

This implies by using (4.38)

lim
k→∞

∫

Ω
a(x, uk,∇uk)∇uk dx =

∫

Ω
h∇u dx. (4.40)

By means of (4.36), (4.37) and (4.40), we obtain

〈Bnuk, uk〉 → 〈χ, u〉 as k −→ +∞.

On the other hand, by (4.40) and the fact that a(x, uk,∇u) → a(x, u,∇u) strongly in
N
∏

i=1

Lp′(Ω, w1−p′

i ) it can be easily seen that

lim
k→+∞

∫

Ω
(a(x, uk,∇uk) − a(x, uk,∇u))(∇uk −∇u) dx = 0,

and so, thanks to Lemma 4.1
∇un → ∇u a.e. in Ω.

We deduce then that

a(x, uk,∇uk) → a(x, u,∇u) weakly in
N
∏

i=1

Lp′(Ω, w1−p′

i ),

and gn(x, uk,∇uk) → g(x, u,∇u) weakly in Lq′(Ω, w1−q′

i ).

Thus implies that χ = Bnu.

Corollary 4.1. Let 1 < p < ∞. Assume that the hypothesis (H1)− (H3) holds, let fn be any
sequence of functions in L1(Ω) which converge to f weakly in L1(Ω) and let un the solution
of the following problem

(P ′
n)































un ∈ T 1,p
0 (Ω, w), g(x, un,∇un) ∈ L1(Ω)

∫

Ω
a(x, un,∇un)∇Tk(un − v) dx +

∫

Ω
g(x, un,∇un)Tk(un − v) dx

≤

∫

Ω
fnTk(un − v) dx,

∀ v ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω), ∀k > 0.

Then there exists a subsequence of un still denoted un such that un converges to u almost
everywhere and Tk(un) ⇀ Tk(u) strongly in W 1,p

0 (Ω, w), further u is a solution of the problem
(P ) (with F = 0).
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Proof. We give a brief proof.
Step 1. A priori estimates.

As before we take v = 0 as test function in (P ′
n), we get

∫

Ω

N
∑

i=1

wi|
∂Tk(un)

∂xi
|p dx ≤ C1k. (4.41)

Hence, by the same method used in the first step in the proof of Theorem 3.1 there exists a
function u ∈ T 1,p

0 (Ω, w) and a subsequence still denoted by un such that

un → u a.e. in Ω, Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω, w), ∀k > 0.

Step 2. Strong convergence of truncation.

The choice of v = Th(un − φ(wn)) as test function in (P ′
n), we get, for all l > 0

∫

Ω
a(x, un,∇un)∇Tl(un − Th(un − φ(wn))) dx +

∫

Ω
g(x, un,∇un)Tl(un − Th(un − φ(wn)) dx

≤

∫

Ω
fnTl(un − Th(un − φ(wn))) dx.

Which implies that

∫

{|un−φ(wn)|≤h}
a(x, un,∇un)∇Tl(φ(wn))

+

∫

Ω
g(x, un,∇un)Tl(un − Th(un − φ(wn))) dx

≤

∫

Ω
fnTl(un − Th(un − φ(wn))) dx.

Letting h tend to infinity and choosing l large enough, we deduce

∫

Ω
a(x, un,∇un)∇φ(wn) dx +

∫

Ω
g(x, un,∇un)φ(wn) dx

≤

∫

Ω
fnφ(wn) dx,

the rest of the proof of this step is the same as in step 4 of the proof of Theorem 3.1.
Step 3. Passing to the limit.

This step is similar to the step 5 of the proof of Theorem 3.1, by using the Egorov’s theorem
in the last term of (P ′

n).

Remark 4.2. In the case where F = 0, if we suppose that the second member is nonnegative,
then we obtain a nonnegative solution.

Indeed. If we take v = Th(u+) in (P ), we have

∫

Ω
a(x, u,∇u)∇Tk(u − Th(u+)) dx

+

∫

Ω
g(x, u,∇u)Tk(u − Th(u+)) dx

≤

∫

Ω
fTk(u − Th(u+)) dx.
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Since g(x, u,∇u)Tk(u − Th(u+)) ≥ 0, we deduce
∫

Ω
a(x, u,∇u)∇Tk(u − Th(u+)) dx ≤

∫

Ω
fTk(u − Th(u+)) dx,

and remark also that by using f ≥ 0 we have
∫

Ω
fTk(u − Th(u+)) dx ≤

∫

{u≥h}
fTk(u − Th(u)) dx.

On the other hand, thanks to (3.3), we conclude

α

∫

Ω

N
∑

i=1

wi|
∂Tk(u−)

∂xi
|p dx ≤

∫

{u≥h}
fTk(u − Th(u)) dx.

Letting h tend to infinity, we can easily deduce

Tk(u−) = 0, ∀k > 0,

which implies that
u ≥ 0.
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