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Abstract. We define the principal matrix solution Z(t, s) of the
linear Volterra vector integro-differential equation

x′(t) = A(t)x(t) +

∫

t

s

B(t, u)x(u) du

in the same way that it is defined for x′ = A(t)x and prove that it
is the unique matrix solution of

∂

∂t
Z(t, s) = A(t)Z(t, s) +

∫

t

s

B(t, u)Z(u, s) du, Z(s, s) = I.

Furthermore, we prove that the solution of

x′(t) = A(t)x(t) +

∫

t

τ

B(t, u)x(u) du + f(t), x(τ) = x0

is unique and given by the variation of parameters formula

x(t) = Z(t, τ)x0 +

∫

t

τ

Z(t, s)f(s) ds.

We also define the principal matrix solution R(t, s) of the adjoint
equation

r′(s) = −r(s)A(s) −

∫

t

s

r(u)B(u, s) du

and prove that it is identical to Grossman and Miller’s resolvent,
which is the unique matrix solution of

∂

∂s
R(t, s) = −R(t, s)A(s) −

∫

t

s

R(t, u)B(u, s) du, R(t, t) = I.

Finally, we prove that despite the difference in their definitions
R(t, s) and Z(t, s) are in fact identical.
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1. Introduction: Resolvent vs Principal Matrix Solution

The variation of parameters formula

(1.1) x(t) = R(t, 0)x0 +

∫ t

0

R(t, s)f(s) ds

gives the unique solution of the linear nonhomogeneous Volterra vector
integro-differential equation

(1.2) x′(t) = A(t)x(t) +

∫ t

0

B(t, u)x(u) du + f(t)

satisfying the initial condition x(0) = x0. It has been around for at
least 36 years: Grossman and Miller defined the matrix function R(t, s),
called the resolvent, and used it to derive (1.1) in 1970 in their classic
paper [12]. They formally defined R(t, s) by

(1.3) R(t, s) = I +

∫ t

s

R(t, u)Ψ(u, s) du (0 ≤ s ≤ t < ∞)

where I is the identity matrix and

(1.4) Ψ(t, s) = A(t) +

∫ t

s

B(t, v) dv.

They proved that R(t, s) exists and is continuous for 0 ≤ s ≤ t and
that it satisfies

(1.5)
∂

∂s
R(t, s) = −R(t, s)A(s) −

∫ t

s

R(t, u)B(u, s) du, R(t, t) = I

on the interval [0, t], for each t > 0. With this they were able to derive
the variations of parameters formula (1.1) (cf. [12, Lemma 1, p. 459]).

Despite the prominence of the resolvent R(t, s) in the literature and
its indispensability, its definition (1.3) is not as conceptually simple as
one would like. However, there is a more fundamental way to look at
R(t, s) and that is from the standpoint of linear systems of ODEs. In
1979 in my dissertation [1, Ch. II], results for (1.2) were obtained with
this point of view. There the principal matrix solution Z(t, s) of the
homogeneous Volterra equation

(1.6) x′(t) = A(t)x(t) +

∫ t

s

B(t, u)x(u) du

was first introduced. Its definition looks exactly like the definition of
the principal matrix solution of the homogeneous vector differential
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equation

x′(t) = A(t)x(t)

that is given by Hale in [14, p. 80]: Z(t, s) is a matrix solution of
(1.6) with columns that are linearly independent such that Z(s, s) = I.
Using Z(t, s) instead of R(t, s), the variation of parameters formula

(1.7) x(t) = Z(t, 0)x0 +

∫ t

0

Z(t, s)f(s) ds

for (1.2) is a natural extension of the variation of parameters formula
for the nonhomogeneous vector differential equation

x′(t) = A(t)x(t) + f(t).

The principal matrix version of the resolvent equation (1.5), namely,

(1.8)
∂

∂t
Z(t, s) = A(t)Z(t, s) +

∫ t

s

B(t, u)Z(u, s) du, Z(s, s) = I

has been instrumental in a number of papers for obtaining results that
might not have otherwise been obtained with (1.5) alone.

The principal matrix solution Z(t, s), the variation of parameters
formula (1.7), and the principal matrix equation (1.8) are used and
cited in papers by Becker et al. [3], Burton [6, 7], Eloe et al. [11], Islam
and Raffoul [17], Raffoul [19], Hino and Murakami [20, 21], Zhang [22],
and in the monographs [4, Ch. 7] and [8, Ch. 5] by T. A. Burton.
Burton synopsizes some of the results from [1] in Section 7.1 of [4] and
perceptively contrasts the difference in the definitions of the principal
matrix solution Z(t, s) and Grossman and Miller’s resolvent R(t, s).
However, complete proofs of these results and concomitant definitions
and applications have never been published—for that reason we do so
now in Sections 2–5 of this paper.

Not found in [1] is an alternative to Grossman and Miller’s definition
of R(t, s). It is this: R(t, s) is the transpose of the principal matrix
solution of the adjoint equation

(1.9) y′(s) = −AT (s)y(s) −

∫ t

s

BT (u, s)y(u) du

for 0 ≤ s ≤ t. Details are given in Section 6. The paper culminates
with the proof in Section 7 that, notwithstanding the difference in their
definitions, Z(t, s) and R(t, s) are identical.
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2. Existence and Uniqueness

Let us begin by establishing the existence and uniqueness of solutions
of the nonhomogeneous equation

(2.1) x′(t) = A(t)x(t) +

∫ t

s

B(t, u)x(u) du + f(t),

where s is a fixed nonnegative number, A is an n × n matrix function
that is continuous on [0,∞), B is an n × n matrix function that is
continuous for 0 ≤ u ≤ t < ∞, and f is a continuous n-vector function
on [0,∞).

In [1, pp. 6–13], we established that solutions of (2.1) exist on [s,∞)
and are unique by referring to the existence and uniqueness theorems in
Driver [10, pp. 406–408] for the general Volterra functional differential
equation

(2.2) x′(t) = F (t, x(·)).

However, here we present a proof that avoids such references; instead
we change the initial value problem consisting of (2.1) and an initial
condition x(s) = x0 to an equivalent integral equation from which
we construct a contraction mapping with a unique fixed point—which
will be the unique solution. Burton [4, p. 221-222] does just that for
the associated homogeneous equation (i.e., (2.1) with f(t) ≡ 0) by
constructing a contraction mapping on a variant of the complete metric
space (C[a, b], ρr) that is described in the next paragraph. The proof for
the nonhomogeneous equation (2.1) is essentially the same aside from
an additional term: an integral of the forcing term f(t). Nonetheless,
we present the proof for the sake of clarity and unity with the rest of
this paper. But first let us describe the metric space (C[a, b], ρr).

Let |·| be any vector norm for Rn. Let |·| also denote the matrix
norm induced by the vector norm; that is, for an n × n matrix A

|A| = sup{ |Ax| : |x| ≤ 1 }.

Let C[a, b] be the vector space of continuous functions φ : [a, b] → Rn.
For a fixed real number r, let |·|r be the norm on C[a, b] that is defined
as follows: for φ ∈ C[a, b],

|φ|r := sup{ |φ(t)|e−r(t−a) : a ≤ t ≤ b }.

Let ρr denote the induced norm metric; that is, for φ, η ∈ C[a, b],

(2.3) ρr(φ, η) := |φ − η|r = sup{ |φ(t) − η(t)|e−r(t−a) : a ≤ t ≤ b }.
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The space C[a, b] with the metric ρr is complete, which we denote by
(C[a, b], ρr).

Definition 2.1. Let x0 ∈ Rn. A solution of (2.1) on the interval [s, T ),
where s < T ≤ ∞, with the initial value x0 at t = s is a differentiable
function x : [s, T ) → Rn that satisfies (2.1) on (s, T ) and the initial
condition x(s) = x0.

Theorem 2.2. For a given x0 ∈ Rn, there is a unique solution of

x′(t) = A(t)x(t) +

∫ t

s

B(t, u)x(u) du + f(t)

on the interval [s,∞) satisfying the initial condition x(s) = x0.

Proof. We begin by inverting (2.1) to obtain an equivalent integral
equation from which we will be able to define a contraction mapping.
Integrating (2.1) from s to t and replacing x(s) with x0, we get

x(t) = x0 +

∫ t

s

A(v)x(v) dv +

∫ t

s

∫ v

s

B(v, u)x(u) du dv +

∫ t

s

f(v) dv.

Interchanging the order of integration in the iterated integral, we have

(2.4) x(t) = x0 +

∫ t

s

[

A(u) +

∫ t

u

B(v, u) dv

]

x(u) du +

∫ t

s

f(u) du.

This shows that a differentiable function x(t) that satisfies (2.1) and the
initial condition x(s) = x0 also satisfies the integral equation (2.4). For
such a function the integrand B(v, u)x(u) is continuous, which justifies
the interchange in the order of integration.

Conversely, if x(t) is a continuous function that satisfies (2.4), then
the integrands in (2.4) are continuous; as a result, x(t) is also differen-
tiable. Differentiating (2.4) with the aid of Leibniz’s rule, we find that
x(t) also satisfies (2.1). Setting t = s in (2.4), we have x(s) = x0.

The point is that Theorem 2.2 is equivalent to the statement that
there is a unique continuous function x that satisfies (2.4) on [s,∞)
for a given x0 ∈ Rn. So proving the latter would prove Theorem 2.2.
In other words, we need to prove that a unique continuous function x

exists such that x(t) = (Px)(t), where (Px)(t) is the right-hand side
of (2.4). To this end, choose any T > s and let

Cx0
[s, T ] := {φ ∈ C[s, T ] : φ(s) = x0 }.
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That is, Cx0
[s, T ] is the set of continuous functions φ : [s, T ] → Rn with

φ(s) = x0. Now define the mapping P by

(2.5) (Pφ)(t) := x0+

∫ t

s

[

A(u) +

∫ t

u

B(v, u) dv

]

φ(u) du+

∫ t

s

f(u) du

for all φ ∈ Cx0
[s, T ]. For each such φ, Pφ is continuous on [s, T ]. This

and (Pφ)(s) = x0 establishes that P maps Cx0
[s, T ] into itself.

For a fixed real number r, whose value will be addressed shortly,
let (C[s, T ], ρr) be the complete metric space described earlier. Then
Cx0

[s, T ] with the metric ρr is also complete since it is a closed subset
of C[s, T ].

Now we can show that P is a contraction mapping on Cx0
[s, T ]. For

any φ, η ∈ Cx0
[s, T ],

|(Pφ)(t) − (Pη)(t)| =

∣

∣

∣

∣

∫ t

s

[

A(u) +

∫ t

u

B(v, u) dv

]

(φ(u) − η(u)) du

∣

∣

∣

∣

≤

∫ t

s

[

|A(u)| +

∫ t

u

|B(v, u)| dv

]

|φ(u) − η(u)| du.

Since A(t) and B(t, u) are continuous for s ≤ u ≤ t ≤ T , there is an
r > 1 such that

|A(u)| +

∫ t

u

|B(v, u)| dv ≤ r − 1.

For such an r,

|(Pφ)(t) − (Pη)(t)| ≤

∫ t

s

(r − 1) |φ(u)− η(u)| du.

Thus,

|(Pφ)(t) − (Pη)(t)|e−r(t−s)

≤

∫ t

s

(r − 1)e−r(t−s)+r(u−s) |φ(u) − η(u)|e−r(u−s) du

≤ |φ − η|r

∫ t

s

(r − 1)e−r(t−u) du ≤
r − 1

r
|φ − η|r.

From this it follows that

ρr(Pφ, Pη) ≤
r − 1

r
ρr(φ, η).
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By Banach’s contraction mapping principle, P has a unique fixed point
in Cx0

[s, T ]. It follows that there is a unique continuous solution x of
(2.4) on [s,∞) since T was arbitrarily chosen from (s,∞). �

3. Joint Continuity

For a given x0 ∈ Rn, the homogeneous equation

(3.1) x′(t) = A(t)x(t) +

∫ t

s

B(t, u)x(u) du

has a unique solution xs satisfying the initial condition xs(s) = x0 by
Theorem 2.2 (with f(t) ≡ 0). Equivalently, by (2.4), xs is the unique
continuous solution of

(3.2) x(t) = x0 +

∫ t

s

Φ(t, u)x(u) du

where

(3.3) Φ(t, u) := A(u) +

∫ t

u

B(v, u) dv.

Up to now the value of s has been fixed. But with that restriction
removed, the totality of values xs(t) defines a function, x say, on the
set

Ω := { (t, s) : 0 ≤ s ≤ t < ∞}

whose value at (t1, s1) ∈ Ω is the value of the solution xs1
at t = t1.

Definition 3.1. For a given x0 ∈ Rn, let x denote the function with
domain Ω whose value at (t, s) is

(3.4) x(t, s) := xs(t)

where xs is the unique solution of (3.1) on [s,∞) satisfying the initial
condition xs(s) = x0.

Since x(t, s) is continuous in t for a fixed s, it is natural to ask if it is
also continuous in s for a fixed t—and if so, is it jointly continuous in t

and s? The next theorem answers both of these in the affirmative. This
will play an essential role in the proof of the variation of parameters
formula for (2.1) that is given in Section 5.

Theorem 3.2. The function x(t, s) defined by (3.4) is continuous for

0 ≤ s ≤ t < ∞.
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Proof. First extend the domain Ω of the function x to the entire plane
by defining x(t, s) = x0 for s > t. For any T > 0, consider x(t, s) on
[0, T ] × [0, T ]. We will prove x(t, s) is continuous in s uniformly for
t ∈ [0, T ], which means that for every ε > 0, there exists a δ > 0 such
that |s1 − s2| < δ implies that

(3.5) |x(t, s1) − x(t, s2| < ε

for all s1, s2 ∈ [0, T ] and all t ∈ [0, T ]. This and the continuity of x(t, s)
in t for each fixed s would establish that x(t, s) is jointly continuous in
both variables on the set [0, T ] × [0, T ] by the Moore-Osgood theorem
(cf. [13, Thm. 5, p. 102], [16, p. 13], or [18, Ex. 31, p. 310]).

Proving (3.5) will require bounds for x(t, s). For a fixed s ∈ [0, T ]
and for t ∈ [s, T ], we see from (3.2) that

|x(t, s)| ≤ |x0| +

∫ t

s

|Φ(t, u)| |x(u, s)| du

≤ |x0| +

∫ t

s

[

|A(u)| +

∫ t

u

|B(v, u)| dv

]

|x(u, s)| du(3.6)

≤ |x0| +

∫ t

s

k |x(u, s)| du,

where k is a constant chosen so that

(3.7) |Φ(t, u)| ≤ |A(u)| +

∫ t

u

|B(v, u)| dv ≤ k

for 0 ≤ u ≤ t ≤ T . By Gronwall’s inequality,

|x(t, s)| ≤ |x0|e
∫

t

s
k du = |x0|e

k(t−s)

for 0 ≤ s ≤ t ≤ T . Since |x(t, s)| = |x0| for s > t, we have

(3.8) |x(t, s)| ≤ |x0|e
kT

for all (t, s) ∈ [0, T ] × [0, T ].
With the aid of (3.8) we now prove (3.5). For definiteness, suppose

s2 > s1. For t ∈ [0, s1],

(3.9) |x(t, s1) − x(t, s2)| = 0

as x(t, s) = x0 for t ≤ s.
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For t ∈ (s1, s2], it follows from (3.2) and (3.7) that

|x(t, s1) − x(t, s2)| = |x(t, s1) − x0| ≤

∫ t

s1

|Φ(t, u) | |x(u, s1)| du

≤

∫ s2

s1

|Φ(t, u) | |x(u, s1)| du ≤

∫ s2

s1

k|x(u, s1)| du.

Then by (3.8),

(3.10) |x(t, s1) − x(t, s2)| ≤

∫ s2

s1

k|x0|e
kT du = k|x0|e

kT (s2 − s1).

For t ∈ (s2, T ], we have

|x(t, s1) − x(t, s2)| =

∣

∣

∣

∣

∫ t

s1

Φ(t, u)x(u, s1) du−

∫ t

s2

Φ(t, u)x(u, s2) du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

s1

Φ(t, u)x(u, s1) du −

∫ t

s2

Φ(t, u)x(u, s1) du

+

∫ t

s2

Φ(t, u)x(u, s1) du−

∫ t

s2

Φ(t, u)x(u, s2) du

∣

∣

∣

∣

≤

∫ s2

s1

|Φ(t, u) | |x(u, s1)| du +

∫ t

s2

|Φ(t, u) | |x(u, s1) − x(u, s2)| du

≤

∫ s2

s1

k |x(u, s1)| du +

∫ t

s2

k |x(u, s1) − x(u, s2)| du.

Applying (3.8) again,

|x(t, s1) − x(t, s2)| ≤ k|x0|e
kT (s2 − s1) +

∫ t

s2

k |x(u, s1) − x(u, s2)| du.

By (3.10), this holds at t = s2 as well. Therefore, for t ∈ [s2, T ],

(3.11) |x(t, s1) − x(t, s2)| ≤ k|x0|e
kT (s2 − s1)e

k(t−s2)

by Gronwall’s inequality.
It follows from (3.9)–(3.11) that

(3.12) |x(t, s1) − x(t, s2)| ≤ k|x0|e
2kT (s2 − s1)

for all t ∈ [0, T ] and s2 > s1. Of course, it is also true for s2 = s1.
We conclude

(3.13) |x(t, s1) − x(t, s2)| ≤ k|x0|e
2kT |s1 − s2|
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for all s1, s2 ∈ [0, T ] and t ∈ [0, T ], which implies (3.5). Therefore,
x(t, s) is continuous on [0, T ] × [0, T ]. Since T is arbitrary, x(t, s) is
continuous on [0,∞) × [0,∞), a fortiori, for 0 ≤ s ≤ t < ∞. �

4. Principal Matrix Solution

For a fixed s ≥ 0, let S denote the set of all solutions of (3.1) on the
interval [s,∞) that correspond to initial vectors. Let x(t, s) and x̃(t, s)
be two such solutions satisfying the initial conditions x(s, s) = x0 and
x̃(s, s) = x1, respectively. Linearity of (3.1) implies the principle of

superposition, namely, that the linear combination c1x(t, s) + c2x̃(t, s)
is a solution of (3.1) on [s,∞) for any c1, c2 ∈ R. Consequently, the
set S is a vector space. Note that S comprises all solutions that have
their initial values specified at t = s, but not those for which an initial
function is specified on an initial interval [s, t0] for some t0 > s.

Theorem 4.1. For a fixed s ∈ [0,∞), let S be the set of all solutions

of (3.1) on the interval [s,∞) corresponding to initial vectors. Then S

is an n-dimensional vector space.

Proof. We have already established that S is a vector space. To com-
plete the proof, we must find n linearly independent solutions spanning
S. To this end, let e1, . . . , en be the standard basis for Rn, where ei

is the vector whose ith component is 1 and whose other components
are 0. By Theorem 2.2, there are n unique solutions xi(t, s) of (3.1) on
[s,∞) with xi(s, s) = ei (i = 1, . . . , n). By the usual argument, these
solutions are linearly independent.

To show they span S, choose any x(t, s) ∈ S. Suppose its value at
t = s is the vector x0. Let ξ1, . . . , ξn be the unique scalars such that
x0 = ξ1e

1 + · · · + ξne
n. By the principle of superposition, the linear

combination

(4.1) ξ1x
1(t, s) + · · ·+ ξnxn(t, s) =

n
∑

i=1

ξix
i(t, s)

is a solution of (3.1). Since its value at t = s is x0, the uniqueness part
of Theorem 2.2 implies

(4.2) x(t, s) =

n
∑

i=1

ξix
i(t, s).

Hence, the n solutions x1(t, s), . . . , xn(t, s) span S. This and their linear
independence make them a basis for S. �
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If we define an n × n matrix function Z(t, s) by

(4.3) Z(t, s) :=
[

x1(t, s) x2(t, s) · · · xn(t, s)
]

,

where the columns x1(t, s), . . . , xn(t, s) are the basis for S defined in
the proof of Theorem 4.1, then (4.2) can be written as

(4.4) x(t, s) = Z(t, s)x0.

Since xi(s, s) = ei,

(4.5) Z(s, s) = I,

the n × n identity matrix.
If B is the zero matrix, then the columns of Z(t, s) become linearly

independent solutions of the ordinary vector differential equation

(4.6) x′(t) = A(t)x(t).

This makes Z(t, s) a fundamental matrix solution of (4.6) (cf. [9, p. 64],
[14, p. 80]). In fact, because Z(s, s) = I, it is the so-called principal

matrix solution (cf. [5, p. 29], [14, p. 80]). These terms are also used
for the integro-differential equation (3.1) (cf. [1, p. 10], [5, p. 78], [20]).

Definition 4.2. The principal matrix solution of (3.1) is the n × n

matrix function Z(t, s) defined by (4.3). In other words, Z(t, s) is a
matrix with n columns that are linearly independent solutions of (3.1)
and whose value at t = s is the identity matrix I.

Remark 4.3. An alternative term from integral equations is resolvent

(cf. [4, Sec 7.1], [6], [8, Sec. 5.2]), an apt term in view of (4.2), which
states that every solution of (3.1) can be resolved into the n columns
constituting Z(t, s).

Theorem 3.2 implies that each of the columns xi(t, s) of Z(t, s) are
continuous for 0 ≤ s ≤ t < ∞. Consequently, we have the following.

Theorem 4.4. Z(t, s), the principal matrix solution of equation (3.1),
is continuous for 0 ≤ s ≤ t < ∞.

Since the ith column of Z(t, s) is the unique solution of (3.1) whose
value at t = s is ei, Z(t, s) is the unique matrix solution of the initial
value problem

(4.7)
∂

∂t
Z(t, s) = A(t)Z(t, s) +

∫ t

s

B(t, u)Z(u, s) du, Z(s, s) = I
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for 0 ≤ s ≤ t < ∞. Equivalently, it is the unique matrix solution of

(4.8) Z(t, s) = I +

∫ t

s

[

A(u) +

∫ t

u

B(v, u) dv

]

Z(u, s) du

by (3.2) and (3.3). Note that this is the principal matrix counterpart
of Grossman and Miller’s resolvent equation (1.3).

5. Variation of Parameters Formula

Let X(t) be any fundamental matrix solution of the homogeneous
differential equation

(5.1) x′(t) = A(t)x(t).

By definition, the columns of a fundamental matrix solution X(t) are
linearly independent solutions of (5.1). So for c ∈ Rn, x(t) = X(t)c
is a solution of (5.1) by the principle of superposition. If x(τ) = x0,
then X(τ)c = x0. Since X(τ) is nonsingular (cf. [9, p. 62]), the unique
solution x(t) of (5.1) satisfying x(τ) = x0 is

(5.2) x(t) = X(t)X−1(τ)x0.

Now compare (5.2) to the unique solution of the nonhomogeneous
equation

(5.3) x′(t) = A(t)x(t) + f(t)

satisfying x(τ) = x0. The method of variation of parameters applied
to (5.3) (cf. [9, p. 65]) yields the following well-known formula for the
solution

(5.4) x(t) = X(t)X−1(τ)x0 +

∫ t

τ

X(t)X−1(s)f(s) ds.

Of course, (5.4) reduces to (5.2) if f ≡ 0.
As for the integro-differential equation (3.1), the counterpart of (5.2)

is (4.4), which is stated next as a lemma.

Lemma 5.1. The solution of

(5.5) x′(t) = A(t)x(t) +

∫ t

τ

B(t, u)x(u) du (τ ≥ 0)

on [τ,∞) satisfying the initial condition x(τ) = x0 is

(5.6) x(t) = Z(t, τ)x0,

where Z(t, τ) is the principal matrix solution of (5.5).
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Suppose B ≡ 0 (zero matrix). Then (5.2), (5.6), and uniqueness of
solutions imply that

Z(t, τ) = X(t)X−1(τ).

In that case, the variation of parameters formula (5.4) simplifies to

(5.7) x(t) = Z(t, τ)x0 +

∫ t

τ

Z(t, s)f(s) ds.

Lemma 5.1 extends a classical result for the homogeneous differential
equation (5.1) to the homogeneous integro-differential equation (3.1).
This suggests that a variation of parameters formula similar to (5.7)
may also hold for the nonhomogeneous integro-differential equation
(2.1).

The essential element in the derivation of the variation of parameters
formula (5.4) is the nonsingularity of X(t) for each t. If the same were
true of the principal matrix solution Z(t, s) of (3.1), then a variation
of parameters formula could be derived for (2.1) as well. In fact, as
Theorem 5.2 shows, there are examples of (3.1) other than (5.1) for
which det Z(t, s) is never zero.

Theorem 5.2. (Becker [2, Cor. 3.4]) Assume a, b : [0,∞) → R are

continuous functions and b(t) ≥ 0 on [0,∞). Let x(t) be the unique

solution of the scalar equation

(5.8) x′(t) = −a(t)x(t) +

∫ t

s

b(t − u)x(u) du (s ≥ 0)

on [s,∞) satisfying the initial condition x(s) = x0. If x0 ≥ 0, then

(5.9) x0e
−

∫

t

s
a(u) du ≤ x(t) ≤ x0e

−

∫

t

s
p(u) du

for all t ≥ s, where

(5.10) p(u) := a(u) −

∫ u−s

0

e
∫

u

u−v
a(r) drb(v) dv.

It follows that the principal solution x(t, s) of (5.8) (i.e., the solution
whose value at t = s is 1) is always positive. In our notation, Z(t, s) is
the 1 × 1 matrix [x(t, s)] and so

det Z(t, s) = x(t, s) > 0

for all t ≥ s ≥ 0.
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However, unlike the differential equation (5.1), the principal matrix
solution of the integro-differential equation (3.1) may be singular at
points as the next theorem of Burton shows.

Theorem 5.3. (Burton [5, p. 86]) Assume a ≥ 0 and b : [0,∞) → R

is continuous, where b(t) ≤ 0 on [0,∞). Let x(t) be the unique solution

of

(5.11) x′(t) = −ax(t) +

∫ t

0

b(t − u)x(u) du

satisfying the initial condition x(0) = 1. If there exists a t1 > 0 such

that

(5.12)

∫ t

t1

∫ t1

0

b(v − u) du dv → −∞

as t → ∞, then there exists a t2 > 0 such that x(t2) = 0.

Theorem 5.3 establishes that the determinant of the principal matrix
solution Z(t, s) of (3.1) may vanish. Consequently, unlike the nonho-
mogeneous differential equation (5.3), we cannot derive a formula like
(5.7) in general for the nonhomogeneous integro-differential equation
(2.1) by directly applying the method of variation of parameters to it.
Nevertheless, in the next proof we use uniqueness of solutions to verify
that the function given by the variation of parameters formula (5.14)
always satisfies (5.13), regardless of the values of det Z(t, s).

Theorem 5.4. (Variation of Parameters) The solution of

(5.13) x′(t) = A(t)x(t) +

∫ t

τ

B(t, u)x(u) du + f(t) (τ ≥ 0)

on [τ,∞) satisfying the initial condition x(τ) = x0 is

(5.14) x(t) = Z(t, τ)x0 +

∫ t

τ

Z(t, s)f(s) ds,

where Z(t, s) is the principal matrix solution of

x′(t) = A(t)x(t) +

∫ t

s

B(t, u)x(u) du.

Proof. By Theorem 2.2, there is a unique solution x(t) of (5.13) on
[τ,∞) such that x(τ) = x0. Let us show that

(5.15) ϕ(t) := Z(t, τ)x0 +

∫ t

τ

Z(t, s)f(s) ds
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is also a solution of (5.13) by differentiating it. To this end, define
Z(t, s) = I for s > t. Then Z(t, s) is continuous on [0,∞) × [0,∞) by
Theorem 4.4. This and (4.7) imply the same is true of its partial deriv-
ative Zt(t, s). Consequently, the integral term in (5.15) is differentiable
by Leibniz’s rule. Differentiating ϕ(t), we obtain

ϕ′(t) =

[

A(t)Z(t, τ) +

∫ t

τ

B(t, u)Z(u, τ) du

]

x0

+ Z(t, t)f(t) +

∫ t

τ

∂

∂t
Z(t, s)f(s) ds

by (4.7) and Leibniz’s rule. Applying (4.7) again, we have

ϕ′(t) = A(t)Z(t, τ)x0 +

∫ t

τ

B(t, u)Z(u, τ)x0 du + If(t)

+

∫ t

τ

[

A(t)Z(t, s) +

∫ t

s

B(t, u)Z(u, s) du

]

f(s) ds

= f(t) + A(t)

[

Z(t, τ)x0 +

∫ t

τ

Z(t, s)f(s) ds

]

+

∫ t

τ

B(t, u)Z(u, τ)x0 du +

∫ t

τ

∫ t

s

B(t, u)Z(u, s)f(s) du ds.

An interchange in the order of integration yields

ϕ′(t) = f(t) + A(t)ϕ(t) +

∫ t

τ

B(t, u)Z(u, τ)x0 du

+

∫ t

τ

∫ u

τ

B(t, u)Z(u, s)f(s) ds du,

which simplifies to

ϕ′(t) = f(t) + A(t)ϕ(t)

+

∫ t

τ

B(t, u)

[

Z(u, τ)x0 +

∫ u

τ

Z(u, s)f(s) ds

]

du

= f(t) + A(t)ϕ(t) +

∫ t

τ

B(t, u)ϕ(u) du.

Thus, ϕ(t) is a solution on [τ,∞). By (5.15), ϕ(τ) = x0. Therefore,
x(t) ≡ ϕ(t) on [τ,∞) by uniqueness of solutions. �

Note that (5.14) reduces to (5.6) when f ≡ 0.
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Corollary 5.5. Let ϕ ∈ C[0, τ ] for any τ > 0. The solution of

(5.16) x′(t) = A(t)x(t) +

∫ t

0

B(t, u)x(u) du + f(t)

on [τ,∞) satisfying the condition x(t) = ϕ(t) for 0 ≤ t ≤ τ is

x(t) = Z(t, τ)ϕ(τ) +

∫ t

τ

Z(t, s)f(s) ds(5.17)

+

∫ t

τ

Z(t, s)

{
∫ τ

0

B(s, u)ϕ(u) du

}

ds.

Proof. Since x(t) ≡ ϕ(t) on [0, τ ], we can rewrite (5.16) as follows:

(5.18) x′(t) = A(t)x(t) +

∫ t

τ

B(t, u)x(u) du + g(t)

where

(5.19) g(t) := f(t) +

∫ τ

0

B(t, u)ϕ(u) du.

By Theorem 2.2, equation (5.18) has a unique solution on [τ,∞) such
that x(τ) = ϕ(τ). By the variation of parameters formula (5.14), the
solution is

x(t) = Z(t, τ)ϕ(τ) +

∫ t

τ

Z(t, s)g(s) ds,

which is (5.17). �

6. The Adjoint Equation

The differential equation

(6.1) y′(t) = −AT (t)y(t),

where AT is the transpose of A, is the so-called adjoint to (5.1). The
associated nonhomogeneous adjoint equation (cf. [15, p. 62]) is

(6.2) y′(t) = −AT (t)y(t) − g(t).

Let us extend this definition to the integro-differential equation (2.1).

Definition 6.1. The adjoint to (2.1) is

(6.3) y′(s) = −AT (s)y(s) −

∫ t

s

BT (u, s)y(u) du− g(s)

where s ∈ [0, t].
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The next theorem establishes that solutions of (6.3) do exist and are
unique.

Theorem 6.2. For a fixed t > 0 and a given y0 ∈ Rn, there is a unique

solution y(s) of

y′(s) = −AT (s)y(s) −

∫ t

s

BT (u, s)y(u) du− g(s)

on the interval [0, t] satisfying the condition y(t) = y0.

Proof. The objective, as it was in proving Theorem 2.2, is to find a
suitable contraction mapping. To this end, integrate (6.3) from s to t:

y(t) − y(s) = −

∫ t

s

AT (v)y(v) dv

−

∫ t

s

∫ t

v

BT (u, v)y(u) du dv −

∫ t

s

g(v) dv.

Replacing y(t) with y0 and interchanging the order of integration, this
becomes

y(s) = y0 +

∫ t

s

AT (v)y(v) dv +

∫ t

s

∫ u

s

BT (u, v)y(u) dv du +

∫ t

s

g(v) dv

or

(6.4) y(s) = y0 +

∫ t

s

[

AT (u) +

∫ u

s

BT (u, v) dv

]

y(u) du +

∫ t

s

g(u) du.

Clearly, the appropriate set of functions on which to define a mapping
is

Cy0
[0, t] := {φ ∈ C[0, t] : φ(t) = y0 }.

Now define the mapping P̃ by

(P̃φ)(s) := y0 +

∫ t

s

[

AT (u) +

∫ u

s

BT (u, v) dv

]

φ(u) du +

∫ t

s

g(u) du

for all φ ∈ Cy0
[0, t].

For a given φ ∈ Cy0
[0, t], it is apparent that P̃φ is continuous on [0, t]

and that (P̃φ)(t) = y0. Thus, P̃ : Cy0
[0, t] → Cy0

[0, t].
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For an arbitrary pair of functions φ, η ∈ Cy0
[0, t],

|(P̃φ)(s) − (P̃ η)(s)| =

∣

∣

∣

∣

∫ t

s

[

AT (u) +

∫ u

s

BT (u, v) dv

]

(φ(u) − η(u)) du

∣

∣

∣

∣

≤

∫ t

s

[

|AT (u)| +

∫ u

s

|BT (u, v)| dv

]

|φ(u) − η(u)| du.

So if r > 1 is chosen so that

|AT (u)| +

∫ u

s

|BT (u, v)| dv ≤ r − 1

for 0 ≤ s ≤ u ≤ t, then

(6.5) |(P̃φ)(s) − (P̃ η)(s)| ≤

∫ t

s

(r − 1) |φ(u) − η(u)| du.

The proof of Theorem 2.2 takes place in the complete metric space
(Cx0

[s, T ], ρr), where s is fixed and t varies. But now that s varies and
t is fixed, let us alter the metric ρr (cf. (2.3)) slightly in order to show

that P̃ is a contraction mapping: replacing −r with r yields the metric

dr(φ, η) := sup{ |φ(s) − η(s)|ers : 0 ≤ s ≤ t }.

The metric space (Cy0
[0, t], dr) is complete (for the same reason that

(Cx0
[s, T ], ρr) is).

What remains then is to show that P̃ is a contraction on Cy0
[0, t].

Returning to (6.5), we have

|(P̃φ)(s) − (P̃ η)(s)|ers ≤

∫ t

s

(r − 1)ers−ru |φ(u) − η(u)|eru du

≤ dr(φ, η)

∫ t

s

(r − 1)er(s−u) du

≤
r − 1

r
dr(φ, η).

Hence,

dr(Pφ, Pη) ≤
r − 1

r
dr(φ, η).

Therefore, P̃ has a unique fixed point in Cy0
[0, t], which translates to

the existence of a unique solution of (6.4) on the interval [0, t]. �

Definition 6.3. The principal matrix solution of

(6.6) y′(s) = −AT (s)y(s) −

∫ t

s

BT (u, s)y(u) du
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is the n × n matrix function

(6.7) Q(t, s) :=
[

y1(t, s) y2(t, s) · · · yn(t, s)
]

,

where yi(t, s) (t fixed) is the unique solution of (6.6) on [0, t] that
satisfies the condition yi(t, t) = ei.

By virtue of this definition, Q(t, s) is the unique matrix solution of

(6.8)
∂

∂s
Q(t, s) = −AT (s)Q(t, s)−

∫ t

s

BT (u, s)Q(t, u) du, Q(t, t) = I

on the interval [0, t]. Reasoning as in the proof of Theorem 4.1, we
conclude that for a given y0 ∈ Rn, the unique solution of (6.6) satisfying
the condition y(t) = y0 is

(6.9) y(s) = Q(t, s)y0

for 0 ≤ s ≤ t.
Taking the transpose of (6.6) and letting r(s) be the row vector

yT (s), we obtain

r′(s) = −r(s)A(s) −

∫ t

s

r(u)B(u, s) du.

The solution satisfying the condition r(t) = yT
0 =: r0 is the transpose

of (6.9), namely,

(6.10) yT (s) = yT
0 QT (t, s)

or

r(s) = r0R(t, s)

where

(6.11) R(t, s) := QT (t, s).

Consequently, R(t, s) is the principal matrix solution of the transposed
equation. As a result, Lemma 5.1 has the following adjoint counterpart.

Lemma 6.4. The solution of

(6.12) r′(s) = −r(s)A(s) −

∫ t

s

r(u)B(u, s) du

on [0, t] satisfying the condition r(t) = r0 is

(6.13) r(s) = r0R(t, s),

where R(t, s) is the principal matrix solution of (6.12).
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It follows from (6.8) that R(t, s) is the unique matrix solution of

(6.14)
∂

∂s
R(t, s) = −R(t, s)A(s) −

∫ t

s

R(t, u)B(u, s) du, R(t, t) = I

on the interval [0, t]. Moreover, it is the unique matrix solution of

(6.15) R(t, s) = I +

∫ t

s

R(t, u)

[

A(u) +

∫ u

s

B(u, v) dv

]

du

for 0 ≤ s ≤ t < ∞, which is derived by integrating (6.14) from s to t

and then interchanging the order of integration.
Now it becomes apparent from comparing (6.14) and (6.15) to (1.5)

and (1.3), respectively, that the principal matrix solution of the adjoint
equation (6.12) is identical to Grossman and Miller’s resolvent.

7. Equivalence of R(t, s) and Z(t, s)

The solutions of (3.1) and its adjoint

r′(s) = −r(s)A(s) −

∫ t

s

r(u)B(u, s) du

are related via the equation

(7.1)
∂

∂u
[r(u)Z(u, s)] = r(u)

∂

∂u
Z(u, s) + r′(u)Z(u, s)

for 0 ≤ s ≤ u ≤ t. We exploit this to prove that the principal matrix
solution and Grossman and Miller’s resolvent are one and the same.

Theorem 7.1. R(t, s) ≡ Z(t, s).

Proof. Select any t > 0. For a given row n-vector r0, let r(s) be the
unique solution of (6.12) on [0, t] such that r(t) = r0. Now integrate
both sides of (7.1) from s to t:

r(t)Z(t, s) − r(s)Z(s, s) =

∫ t

s

[r(u)Zu(u, s) + r′(u)Z(u, s)] du.

By (6.12), we have

(7.2) r0Z(t, s) − r(s) =

∫ t

s

[

r(u)Zu(u, s) − r(u)A(u)Z(u, s)

−

(
∫ t

u

r(v)B(v, u) dv

)

Z(u, s)

]

du.

EJQTDE, 2006 No. 14, p. 20



With an interchange in the order of integration, the iterated integral
becomes

(7.3)

∫ t

s

(
∫ t

u

r(v)B(v, u) dv

)

Z(u, s) du

=

∫ t

s

r(v)

(
∫ v

s

B(v, u)Z(u, s) du

)

dv

=

∫ t

s

r(u)

(
∫ u

s

B(u, v)Z(v, s) dv

)

du.

Making this change in (7.2), we obtain

(7.4) r0Z(t, s) − r(s) =

∫ t

s

r(u)

[

Zu(u, s) − A(u)Z(u, s)

−

∫ u

s

B(u, v)Z(v, s) dv

]

du.

By (4.7), the integrand is zero. Hence,

(7.5) r(s) = r0Z(t, s).

On the other hand,
r(s) = r0R(t, s)

by (6.13). Therefore, by uniqueness of the solution r(s),

(7.6) r0R(t, s) = r0Z(t, s).

Now let r0 be the transpose of the ith basis vector ei. Then (7.6)
implies that the ith rows of R(t, s) and Z(t, s) are equal for 0 ≤ s ≤ t.
The theorem follows as t is arbitrary. �

References

[1] Leigh C. Becker, Stability considerations for Volterra integro-differential equa-

tions, Ph.D. dissertation, Southern Illinois University, Carbondale, IL, 1979.
(A PDF version of the entire dissertation can be found at the Web site:
http://www.cbu.edu/˜lbecker/Research.htm.)

[2] Leigh C. Becker, Function bounds for solutions of Volterra equations and ex-
ponential asymptotic stability, Nonlinear Anal., to appear.

[3] L. C. Becker, T. A. Burton, and T. Krisztin, Floquet theory for a Volterra
equation, J. London Math. Soc. (2) 37 (1988), 141–147.

[4] T. A. Burton, Volterra Integral and Differential Equations, Second Edition,
Mathematics in Science and Engineering, Vol. 202, Elsevier, Amsterdam, 2005.
(First edition, Mathematics in Science and Engineering, Vol. 167, Academic
Press, Orlando, 1983.)

EJQTDE, 2006 No. 14, p. 21



[5] T. A. Burton, Stability and Periodic Solutions of Ordinary and Func-

tional Differential Equations, Dover Publications, Mineola, New York, 2005.
(Unabridged, slightly corrected version of the original edition published in the
series Mathematics in Science and Engineering, Vol. 178, Academic Press, Or-
lando, 1985.)

[6] T. A. Burton, Fixed points, Volterra Equations, and Becker’s Resolvent, Acta

Math. Hungar. 108 (3) (2005), 261–281.
[7] T. A. Burton, Integral Equations, Volterra Equations, and the Remarkable

Resolvent: Contractions, E. J. Qualitative Theory of Diff. Equ. 2 (3) (2006),
1–17.

[8] T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equa-

tions, Dover Publications, Mineola, New York, to appear 2006.
[9] C. Corduneanu, Principles of Differential and Integral Equations, Chelsea Pub-

lishing Co., New York, 1977.
[10] R. D. Driver, Existence and stability of solutions of a delay-differential system,

Arch. Rational Mech. Anal. 10 (1962), 401–426.
[11] P. Eloe, M. Islam, and Bo Zhang, Uniform asymptotic stability in linear

Volterra integrodifferential equations with application to delay systems, Dy-

nam. Systems Appl. 9 (2000), 331–344.
[12] S. I. Grossman and R. K. Miller, Perturbation Theory for Volterra Integrodif-

ferential Systems, J. Differential Equations 8 (1970), 457–474.
[13] L. M. Graves, The Theory of Functions of Real Variables, McGraw-Hill, New

York, 1946.
[14] Jack K. Hale, Ordinary Differential Equations, John Wiley & Sons, New York,

1969.
[15] Philip Hartman, Ordinary Differential Equations, reissue of 1982 second ed.,

Classics in Applied Mathematics 38, SIAM, Philadelphia, 2002.
[16] Witold Hurewicz, Lectures on Ordinary Differential Equations, The M.I.T.

Press, Cambridge, 1958.
[17] M. N. Islam and Y. N. Raffoul, Stability in Linear Volterra Integrodifferential

Equations with Nonlinear Perturbation, J. Integral Equations Appl. 17 (3)
(2005), 259–276.

[18] John M. H. Olmsted, Real Variables, Appleton-Century-Crofts, Inc., New
York, 1959.

[19] Y. N. Raffoul, Stability in Neutral Nonlinear Differential Equations with Func-
tional Delays Using Fixed Point Theory, Math. Comput. Modelling 40 (7–8)
(2004), 691–700.

[20] Yoshiyuki Hino and Satoru Murakami, Stability Properties of Linear Volterra
Equations, J. Differential Equations 89 (1991), 121–137.

[21] Yoshiyuki Hino and Satoru Murakami, Stabilities in linear integrodifferential
equations, Lecture Notes in Num. Appl. Anal. 15 (1996), 31–46.

[22] Bo Zhang, Asymptotic stability criteria and integrability properties of the
resolvent of Volterra and functional equations, Funkcialaj Ekvacioj 40 (1997),
335–351.

(Received August 11, 2006)

EJQTDE, 2006 No. 14, p. 22


