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ASYMPTOTIC BEHAVIOR OF POSITIVE LARGE SOLUTIONS OF

SEMILINEAR DIRICHLET PROBLEMS

HABIB MÂAGLI, SONIA BEN OTHMAN, AND RYM CHEMMAM

Abstract. Let Ω be a smooth bounded domain in Rn, n ≥ 2. This paper deals with the
existence and the asymptotic behavior of positive solutions of the following problems

∆u = a(x)uα, α > 1 and ∆u = a(x)eu,

with the boundary condition u|∂Ω = +∞. The weight function a(x) is positive in Cγloc(Ω),
0 < γ < 1, and satisfies an appropriate assumption related to Karamata regular variation
theory.

Our arguments are based on the sub-supersolution method.

1. Introduction

Let Ω be a C2 bounded domain in Rn , n ≥ 2. In this paper, we deal with existence and
estimates of solutions to the following elliptic problems

(1.1)


∆u = a(x)uα, x ∈ Ω, α > 1,

u > 0, in Ω,

lim
δ(x)→0

u (x) = +∞

and

(1.2)


∆u = a(x)eu, x ∈ Ω,

u > 0, in Ω,

lim
δ(x)→0

u (x) = +∞.

Here, a is a positive function in Cγloc (Ω) , 0 < γ < 1, satisfying an appropriate condition
related to Karamata regular variation theory and δ(x) = dist(x, ∂Ω).
Problems like (1.1) and (1.2) have been largely studied and their solutions are sometimes
called large (or explosive) solutions. We refer the reader to ([1], [2], [5-9], [11-15], [18-20],
[22-24]).
In [14], motivated by certain geometric problems, Loewner and Nirenberg studied problem
(1.1) with a ≡ 1 and α = n+2

n−2 , n ≥ 3. Later in [1], Bandle and Marcus considered problem

(1.1) with a is a positive continuous function in Ω such that a and 1/a are both bounded.
The authors described the asymptotic behavior near the boundary of the unique large
solution of problem (1.1).
The study of large solutions of problem (1.2) in the case a ≡ 1 goes back to the pioneering
Bieberbach’s paper in 1916, for n = 2 and Rademacher’s work in 1943, for n = 3, (see [2]
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and [19]). Later in [15], Lazer and McKenna considered problem (1.2) with a in C(Ω) and
they gave estimates near the boundary on the unique solution of problem (1.2).
More recently, some results of existence and nonexistence of solutions to problems (1.1)
and (1.2) are established when the weight a(x) is unbounded near ∂Ω (see [5], [18], [22],
[23], [24]). For instance, in [5] Chuaqui et al. considered problems (1.1) and (1.2), where
the function a satisfies the following conditions.

(A1) a ∈ Cγloc(Ω), 0 < γ < 1,

(A2) There exist positive constants C1, C2 such that

C1 (δ (x))−λ ≤ a(x) ≤ C2 (δ (x))−λ , λ > 0.

Then they proved the following theorems.

Theorem 1. Assume (A1) and (A2). Then problem (1.1) has no positive solutions if
λ ≥ 2, and it has a unique positive solution u ∈ C2,γ (Ω) when 0 < λ < 2. Moreover, there
exist m, M > 0 such that

(1.3) m (δ(x))
2−λ
1−α ≤ u(x) ≤M (δ(x))

2−λ
1−α , x ∈ Ω.

Theorem 2. Assume (A1) and (A2). Then problem (1.2) has no solutions if λ ≥ 2, and
it has a unique solution u ∈ C2,γ (Ω) when 0 < λ < 2. Moreover, there exist m1, M1 > 0
such that

(1.4) m1 (δ(x))λ−2 ≤ eu(x) ≤M1 (δ(x))λ−2 , x ∈ Ω.

In this paper, we take up problems (1.1) and (1.2) respectively as an extension of the above
results. More precisely, we prove the existence of classical solutions for both problems (1.1)
and (1.2) and we establish the asymptotic behavior of such solutions where the function a
is required to be in a large class of functions related to Karamata regular variation theory.
To state our results in details, we need some notations.

For two nonnegative functions f and g defined on a set S, the notation f (x) ≈ g (x),
x ∈ S, means that there exists c > 0 such that

1

c
f(x) ≤ g(x) ≤ cf(x), for all x ∈ S.

We denote by ϕ1 the positive normalized (i.e max
x∈Ω

ϕ1(x) = 1) eigenfunction corresponding

to the first positive eigenvalue λ1 of the Laplace operator (−∆). It is well known (see [20]
for example) that ϕ1 is a positive function in C2

(
Ω
)

and we have for x ∈ Ω,

(1.5) ϕ1 (x) ≈ δ(x),

and

(1.6) ϕ2
1 (x) + |5ϕ1(x)|2 ≈ 1.

We shall use K to denote the set of Karamata functions L defined on (0, η] by

L (t) := c exp

(∫ η

t

z(s)

s
ds

)
,

for some η > 0, where c > 0 and z ∈ C1((0, η]) such that z(0) = 0 and lim
t→0+

tz′(t) = 0.
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Now, let us state our hypothesis on the function a.
(H) a ∈ Cγloc(Ω), 0 < γ < 1 and satisfies for each x ∈ Ω

a(x) ≈ δ (x)−λ L (δ (x)) ,

where λ ≤ 2 and L ∈ K defined on (0, η], (η > diam(Ω)) such that
∫ η

0 t
1−λL(t)dt <∞.

Our main results are the following.

Theorem 3. Let a be a function satisfying (H). Then problem (1.1) has a positive solution
u ∈ C2,γ (Ω) satisfying for x ∈ Ω,

(1.7) u(x) ≈ (δ (x))
2−λ
1−α θ (δ (x)) ,

where θ is the function defined on (0, η) by

(1.8) θ(t) :=


(L(t))

1
1−α , if λ < 2,(∫ t

0

L(s)

s
ds

) 1
1−α

, if λ = 2.

Theorem 4. Let a be a function satisfying (H). Then problem (1.2) has a positive solution
u ∈ C2,γ (Ω) satisfying for x ∈ Ω,

(1.9) eu(x) ≈ (δ (x))λ−2 Ψ (δ (x)) ,

where Ψ is the function defined on (0, η) by

(1.10) Ψ(t) :=


(L(t))−1, if λ < 2,(∫ t

0

L(s)

s
ds

)−1

, if λ = 2.

Remark 1. 1) We need to verify condition
∫ η

0 t
1−λL(t)dt <∞, only if λ = 2. This is due

to Lemma 3 below.
2) We note that the functions θ and Ψ defined respectively by (1.8) and (1.10) belong to
K(see Lemma 1 and Lemma 4 below).
3) If we take L = 1 and λ < 2 in hypothesis (H), then we find again estimates (1.3) and
(1.4).
4) Our results extend Theorems 1 and 2. Namely, we obtain existence and asymptotic
behavior of solutions of problems (1.1) and (1.2) when the weight a belongs to Cγloc(Ω) and
satisfies

a(x) ≈ δ (x)−2 L (δ (x)) ,

where L ∈ K and
∫ η

0
L(s)
s ds <∞.

The paper is organized as follows. In Section 2, we present some useful properties of
Karamata functions. Section 3 deals with proofs of our main results. The last section is
reserved to some applications.
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2. The Karamata class K

Our approach relies on the Karamata regular variation theory established by Karamata in
1930 which is a basic tool in stochastic process (see [3], [17], [21] and references therein).
This theory has been applied to study the asymptotic behavior of solutions to differential
equations. We refer the reader to [4], [6], [16], [20] and [24] for more details. In what
follows, we recapitulate some basic properties of functions in K.

Lemma 1. Let L1, L2 ∈ K, p ∈ R and ε > 0. Then we have

L1L2 ∈ K, Lp1 ∈ K
and

lim
t→0+

tεL1(t) = 0.

Example 1. Let m ∈ N∗. Let c > 0, (µ1, µ2, ..., µm) ∈ Rm and ω be a sufficiently large
positive real number such that the function

L(t) = c
m∏
k=1

(
logk

(
ω
t

))µk
is defined and positive on (0, η] , for some η > 0, where logk x = log ◦ log ◦... ◦ log x (k
times). Then L ∈ K.

Lemma 2. A function L is in K if and only if L is a positive function in C2 ((0, η])
satisfying

(2.1) lim
t→0+

tL′(t)

L(t)
= lim

t→0+

t2L′′(t)

L(t)
= 0.

Proof. Let L ∈ K. Since L (t) := c exp(

∫ η

t

z(s)

s
ds), then for t ∈ (0, η], we have

tL′(t)

L(t)
= −z(t) and

t2L′′(t)

L(t)
= −tz′(t) + z(t) + z2(t).

So, using the fact that z(0) = 0 and lim
t→0+

tz′(t) = 0, we deduce (2.1).

Conversely, let L be a positive function in C2 ((0, η]) satisfying (2.1). For t ∈ (0, η], put

(2.2) z(t) = − tL
′(t)

L(t)
,

then z ∈ C1((0, η]) and lim
t→0+

z(t) = 0. Moreover, we have

L (t) = L(η) exp

(∫ η

t

z(s)

s
ds

)
.

Now, by derivation of (2.2), we obtain for t ∈ (0, η],

tz′(t) = − tL
′(t)

L(t)
− t2L′′(t)

L(t)
+

(
tL′(t)

L(t)

)2

.
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Hence, by (2.1) we deduce that lim
t→0+

tz′(t) = 0 and we conclude that L ∈ K.

Lemma 3. (Karamata’s theorem) Let µ ∈ R and L be a function in K defined on (0, η].
Then the following statements hold true.
(i) If µ < −1, then

∫ η
0 s

µL(s)ds diverges and∫ η

t
sµL(s)ds ∼

t→0+
− t

1+µL(t)

µ+ 1
.

(ii) If µ > −1, then
∫ η

0 s
µL(s)ds converges and∫ t

0
sµL(s)ds ∼

t→0+

t1+µL(t)

µ+ 1
.

Lemma 4. Let L ∈ K defined on (0, η], then the function

t→
∫ η

t

L(s)

s
ds ∈ K.

If further

∫ η

0

L(s)

s
ds converges, then the function

t→
∫ t

0

L(s)

s
ds ∈ K.

Lemma 5. Let L ∈ K and ϕ1 be the first eigenfunction of (−∆) in Ω. Then we have

L (ϕ1 (x)) ≈ L (δ (x)) , x ∈ Ω.

Proof. Let L ∈ K, then there exist a constant c > 0 and z ∈ C ([0, η]) ∩ C1 ((0, η]) such
that z(0) = 0 and for t ∈ (0, η] , η > diam (Ω) ,

L(t) := c exp

(∫ η

t

z(s)

s
ds

)
.

Let ζ = sup
s∈[0,η]

|z(s)| . By using (1.5), there exists c1 > 1 such that

1

c1
δ (x) ≤ ϕ1 (x) ≤ c1δ (x) .

Then we deduce that ∣∣∣∣∣
∫ ϕ1(x)

δ(x)

z(s)

s
ds

∣∣∣∣∣ ≤ ζ log c1.

Hence,

c−ζ1 L(δ (x)) ≤ L (ϕ1 (x)) ≤ cζ1L (δ (x)) , x ∈ Ω.

This ends the proof.
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3. Proofs of main results

To prove our existence results, we use the sub-supersolution method. For that, we consider
the following more general problem

(3.1)

 ∆u = f(x, u), in Ω,

lim
δ(x)→0

u (x) = +∞.

Definition 1. A function u ∈ C2(Ω) is called a subsolution of (3.1) if ∆u ≥ f(x, u), in Ω,

lim
δ(x)→0

u (x) = +∞.

Definition 2. A function u ∈ C2(Ω) is called a supersolution of (3.1) if ∆u ≤ f(x, u), in Ω,

lim
δ(x)→0

u (x) = +∞.

Lemma 6. ([23]) Let f(x, s) be locally Hölder continuous in Ω× (0,∞) and continuously
differentiable with respect to the second variable. Suppose that (3.1) has an explosive
supersolution u and an explosive subsolution u such that u ≤ u on Ω, then (3.1) has at
least one solution u ∈ C2,γ(Ω) satisfying u ≤ u ≤ u on Ω.

Now, we will prove our results. First, we note that the proof of Theorem 4 is essentially
the same as the proof of Theorem 3 in the exponential case, so it will be omitted.

Proof of Theorem 3. Let a be a function satisfying (H). As an application of Lemma 6,
we need to construct a supersolution u and a subsolution u which satisfy u ≤ u on Ω. For
that, let λ ≤ 2, τ = 2−λ

1−α and θ be the function given by (1.8). Put v = ϕτ1θ(εϕ1), where ϕ1

is the normalized eigenfunction of −∆ in Ω associated to the first eigenvalue λ1and ε > 0
is to be chosen small.
We claim that there exists c > 0 such that 1

cv and cv are respectively a subsolution and a
supersolution of problem (1.1).
Indeed, a straightforward computation shows that

∆v = ϕτ−2
1 θ (εϕ1)


λ1ϕ

2
1

(
−τ − εϕ1θ

′ (εϕ1)

θ (εϕ1)

)
+ |5ϕ1|2

(
τ (τ − 1) + 2τ

εϕ1θ
′ (εϕ1)

θ (εϕ1)
+

(εϕ1)2 θ′′ (εϕ1)

θ (εϕ1)

)
 .
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So, we distinguish the following cases.

I τ < 0

In this case, we have λ < 2. Using Lemma 1, the function θ belongs to K, then it follows
from (2.1) and Lemma 2 that

(3.2) lim
ε→0

(
sup
x∈Ω

εϕ1(x)θ′ (εϕ1(x))

θ (εϕ1(x))

)
= lim

ε→0

(
sup
x∈Ω

(εϕ1(x))2 θ′′ (εϕ1(x))

θ (εϕ1(x))

)
= 0.

Hence, there exists 0 < ε < 1 such that

−τ
2
< −τ − εϕ1θ

′ (εϕ1)

θ (εϕ1)
< −3

2
τ, in Ω

and

τ (τ − 1)

2
≤ τ (τ − 1) + 2τ

εϕ1θ
′ (εϕ1)

θ (εϕ1)
+

(εϕ1)2 θ′′ (εϕ1)

θ (εϕ1)
≤ 3

2
τ (τ − 1) , in Ω.

Therefore, by using (1.6), we get for x ∈ Ω

∆v (x) ≈ (ϕ1 (x))τ−2 θ (εϕ1(x)) .

Since θ ∈ K , il follows by Lemma 5 and (1.5) that for x ∈ Ω

∆v (x) v (x)−α ≈ (δ (x))τ(1−α)−2 θ1−α (δ(x)) ,

≈ δ (x)−λ L (δ (x)) ,

≈ a(x).

Hence, there exists M > 0 such that for x ∈ Ω

(3.3)
1

M
a(x)vα(x) ≤ ∆v (x) ≤Ma(x)vα(x).

By putting c = M
1

α−1 , it follows from (3.3) that u = 1
cv and u = cv are respectively

subsolution and supersolution of problem (1.1). Thus, we conclude by Lemma 6 that
problem (1.1) has a positive solution u such that

u ≤ u ≤ u.
Applying Lemma 5 and (1.5), we obtain

u(x) ≈ δ(x)
2−λ
1−α (L(δ(x))

1
1−α .

I τ = 0

In this case, we have λ = 2 and for x ∈ Ω, v(x) = θ(εϕ1)(x) =

(∫ εϕ1(x)

0

L(s)

s
ds

) 1
1−α

.

Since
∫ η

0
L(s)
s ds <∞, it follows from Lemma 4 and Lemma 1 that θ ∈ K.

Moreover, we have

(3.4) L(εϕ1) = (1− α)εϕ1θ
′(εϕ1)θ−α(εϕ1)
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and

εϕ1θ
′′(εϕ1)

θ′ (εϕ1)
= −1 +

εϕ1L
′(εϕ1)

L(εϕ1)
+ α

εϕ1θ
′(εϕ1)

θ (εϕ1)
.

Using the fact that L and θ are in K, we deduce by (2.1) that

lim
ε→0

(
sup
x∈Ω

(
(εϕ1(x)θ′′ (εϕ1(x)))

θ′ (εϕ1(x))
+ 1

))
= 0.

This together with (1.6) implies that there exists 0 < ε < 1 such that

λ1ϕ
2
1 − |5ϕ1|2 (

εϕ1θ
′′ (εϕ1)

θ′ (εϕ1)
) ≈ 1.

On the other hand, we have

∆v = −λ1εϕ1θ
′ (εϕ1) + ε2 |5ϕ1|2 θ′′ (εϕ1)

= −εϕ−1
1 θ′ (εϕ1)

(
− |5ϕ1|2 (

εϕ1θ
′′ (εϕ1)

θ′ (εϕ1)
) + λ1ϕ

2
1

)
, in Ω.

Hence, we get

(∆v) v−α ≈ −ϕ−1
1 θ′ (εϕ1) v−α, in Ω.

Thus, by using (3.4), (1.5) and Lemma 5, we obtain for x ∈ Ω

(∆v (x)) v (x)−α ≈ ϕ−2
1 (x)L (εϕ1 (x)) ,

≈ (δ (x))−2 L (δ (x)) ,

≈ a (x) .

Hence, there exists m > 1, such that for x ∈ Ω

1

m
a(x)vα(x) ≤ ∆v (x) ≤ ma(x)vα(x).

Put c = m
1

α−1 . It follows that u = 1
cv and u = cv are respectively subsolution and

supersolution of problem (1.1). Thus, we conclude by Lemma 6 that problem (1.1) has a
positive solution u such that

u ≤ u ≤ u.

Since θ ∈ K, we deduce by Lemma 5 and (1.5) that

u(x) ≈

(∫ δ(x)

0

L(s)

s
ds

) 1
1−α

.
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4. Applications

4.1. First application. Let a be a function satisfying (H). In this paragraph, we are
interested in the following problem

(4.1)


∆u− β

u |∇u|
2 = a(x)uα, in Ω,

u > 0, in Ω,

lim
δ(x)→0

u(x) = +∞,

where α > 1 and β ∈ R.
Consider the case β 6= 1,then by putting v = u1−β, we obtain by simple calculation the
following.
I If β < 1, then v satisfies

(4.2)


∆v = (1− β)a(x)v

α−β
1−β , in Ω,

v > 0, in Ω,

lim
δ(x)→0

v(x) = +∞.

Since α−β
1−β > 1, it follows by Theorem 3 that problem (4.2) has a solution v ∈ C2,γ (Ω)

such that

v(x) ≈


δ(x)

(2−λ)(1−β)
1−α (L(δ (x))

1−β
1−α , if λ < 2,(∫ δ(x)

0

L(t)

t
dt

) 1−β
1−α

, if λ = 2.

So, we deduce that problem (4.1) has a positive solution u ∈ C2,γ (Ω) satisfying

u(x) ≈


δ(x)

2−λ
1−α (L(δ (x))

1
1−α , if λ < 2,(∫ δ(x)

0

L(t)

t
dt

) 1
1−α

, if λ = 2.

I If β > 1, then v satisfies

(4.3)


−∆v = (β − 1)a(x)v

α−β
1−β , in Ω,

v > 0,

lim
δ(x)→0

v(x) = 0,

Since α−β
1−β < 1, then by ([16], theorem 1), problem (4.3) has a unique positive solution

v ∈ C(Ω) ∩ C2,γ(Ω) satisfying

v(x) ≈ δ(x)min(
(2−λ)(β−1)

α−1
,1)Φ (δ (x)) ,

EJQTDE, 2013 No. 57, p. 9



where for t ∈ (0, η], (η > diam(Ω)),

Φ(t) =



(∫ t

0

L(s)

s
ds

) 1−β
1−α

, if λ = 2,

(L(t))
1−β
1−α , if 1 + α−β

1−β < λ < 2,(∫ η

t

L(s)

s
ds

) 1−β
1−α

, if λ = 1 + α−β
1−β ,

1, if λ < 1 + α−β
1−β .

Hence, problem (4.1) has a unique positive solution u ∈ C2,γ(Ω) satisfying

u(x) ≈



(∫ δ(x)

0

L(t)

t
dt

) 1
1−α ,

if λ = 2,

δ(x)
2−λ
1−α (L (δ (x)))

1
1−α , if 1 + α−β

1−β < λ < 2,

δ(x)
1

1−β

(∫ η

δ(x)

L(t)

t
dt

) 1
1−α

, if λ = 1 + α−β
1−β ,

δ (x)
1

1−β , if λ < 1 + α−β
1−β .

Now, for β = 1, putting v = log u, problem (4.1) becomes


∆v = a(x)e(α−1)v, in Ω,

v > 0, in Ω,

lim
δ(x)→0

v(x) = +∞.

Then, we deduce from Theorem 4 that problem (4.1) has a positive solution u ∈ C2,γ (Ω)
satisfying

u(x) ≈


δ(x)

2−λ
1−α (L(δ (x))

1
1−α , if λ < 2,(∫ δ(x)

0

L(t)

t
dt

) 1
1−α

, if λ = 2.

4.2. Second application. Let a be a function satisfying (H) such that

a(x) ≈ δ (x)−λ L1 (δ (x)) .

Let b ∈ Cγloc (Ω) , 0 < γ < 1, satisfying for each x ∈ Ω,

b(x) ≈ δ (x)−µ L2 (δ (x)) ,
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where µ ≤ λ and L2 ∈ K. We aim to study the following system

(4.4)


∆u = a(x)eu, in Ω,

∆v = b(x)euev, in Ω,

lim
δ(x)→0

u(x) = +∞, lim
δ(x)→0

v(x) = +∞.

Using Theorem 4, there exists a function u ∈ C2,γ (Ω) satisfying for x ∈ Ω

eu(x) ≈


(δ (x))λ−2 (L1 (δ (x)))−1 , if λ < 2,(∫ δ(x)

0

L1(t)

t
dt

)−1

, if λ = 2.

Hence, we will distinguish the following cases.
I If λ < 2, we have

b(x)eu(x) ≈ δ (x)−µ+λ−2 (L1(δ(x))−1 L2 (δ (x)) := δ (x)−µ+λ−2 L (δ (x)) .

It follows from Lemma 1 that L ∈ K. Now, suppose that
∫ η

0 t
λ−µ−1L(t)dt < ∞, then by

Theorem 4, we conclude that system (4.4) has a solution (u, v) ∈ C2,γ (Ω)×C2,γ (Ω) such
that

eu(x) ≈ (δ (x))λ−2 (L1 (δ (x)))−1

and

ev(x) ≈


(δ (x))µ−λ (L (δ (x)))−1 , if µ < λ,(∫ δ(x)

0

L(t)

t
dt

)−1

, if µ = λ.

I If λ = 2, we have

b(x)eu(x) ≈ δ (x)−µ L2 (δ (x))

(∫ δ(x)

0

L1(t)

t
dt

)−1

:= δ (x)−µ L (δ (x)) .

It follows from Lemma 4 and Lemma 1 that L ∈ K. Now suppose that
∫ η

0 t
1−µL(t)dt <∞,

then we conclude by Theorem 4 that system (4.4) has a solution (u, v) ∈ C2,γ (Ω)×C2,γ (Ω)
such that

eu(x) ≈

(∫ δ(x)

0

L1(t)

t
dt

)−1

and

ev(x) ≈


(δ (x))µ−2 (L (δ (x)))−1 , if µ < 2,(∫ δ(x)

0

L(t)

t
dt

)−1

, if µ = 2.
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