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LOCALIZED SOLUTIONS OF ELLIPTIC

EQUATIONS: LOITERING AT THE HILLTOP

Joseph A. Iaia

Abstract. We find an infinite number of smooth, localized, radial solutions of ∆pu + f(u) = 0 in R
N - one with

each prescribed number of zeros - where ∆pu is the p-Laplacian of the function u.

1. Introduction

In this paper we will prove the existence of smooth, radial solutions with any prescribed number of zeros to:

∆pu + f(u) = 0 in R
N , (1.1)

u(x) → 0 as |x| → ∞, (1.2)

where ∆pu = ∇ · (|∇u|p−2∇u) (p > 1) is the p-Laplacian of the function u (note that p = 2 is the usual
Laplacian operator), f is the nonlinearity described below, and N ≥ 2,.

Solutions of (1.1)-(1.2) arise as critical points of the functional J : S → R defined by:

J(u) =

∫

RN

1

p
|∇u|p − F (u) dx

where F (u) =
∫ u

0 f(t) dt and S = {u ∈ W 1,p(RN ) | F (u) ∈ L1(RN )}.
Setting r = |x| and assuming that u is a radial function so that u(x) = u(|x|) = u(r) then:

∆pu = |u′|p−2[(p − 1)u′′ +
N − 1

r
u′] =

1

rN−1
(rN−1|u′|p−2u′)′

where ′ denotes differentiation with respect to the variable r.

We consider therefore looking for solutions of:

|u′|p−2[(p − 1)u′′ +
N − 1

r
u′] + f(u) =

1

rN−1
(rN−1|u′|p−2u′)′ + f(u) = 0 (1.3)

lim
r→0+

u′(r) = 0, (1.4)

lim
r→∞

u(r) = 0. (1.5)

Remark: The case p = 2 was examined in [2]. There the authors proved the existence of an infinite number
of solutions of (1.3)-(1.5) - one with each precribed number of zeros - for nonlinearities f similar to the ones
examined in this paper. In this paper we have weaker assumptions than those in [2] and we also have only
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that p > 1. Existence of ground states of (1.3)-(1.5) for quite general nonlinearities f was established in [1].
Our extra assumptions on f allow us to prove the existence of an infinite number of solutions of (1.3)-(1.5).

For p 6= 2, equation (1.3) is degenerate at points where u′ = 0 and we will see later that in some instances
this prevents u from being twice differentiable at some points. We see however that by multiplying (1.3) by
rN−1, integrating on (0, r), and using (1.4) we obtain:

−rN−1|u′(r)|p−2u′(r) =

∫ r

0

tN−1f(u(t)) dt. (1.6)

Therefore, instead of seeking solutions of (1.3)-(1.5) in C2[0,∞) we will attempt to find u ∈ C1[0,∞)
satisfying (1.4)-(1.6).

The type of nonlinearity we are interested in is one for which F (u) ≡
∫ u

0
f(t) dt has the shape of a “hilltop.”

We require that f : [−δ, δ] → R and:

f is odd, there exists K > 0 such that |f(x) − f(y)| ≤ K|x − y| for all x, y ∈ [−δ, δ] and (1.7)

there exists β, δ such that 0 < β < δ with f < 0 on (0, β), f > 0 on (β, δ), and f(δ) = 0. (1.8)

We also require:

there exists γ with β < γ < δ such that F < 0 on (0, γ) and F > 0 on (γ, δ). (1.9)

Finally we assume:
∫

0

1
p
√

|F (t)|
dt = ∞ if p > 2 (1.10)

and:
∫ δ 1

p
√

F (δ) − F (t)
dt = ∞ if p > 2. (1.11)

Main Theorem. Let f be a function satisfying (1.7)-(1.11). Then there exist an infinite number of solutions
of (1.4)-(1.6), at least one with each prescribed number of zeros.

Remark: Assumption (1.8) can be weakened to allow f to have a finite number of zeros, 0 < β1 < β2 <

· · · < βn < δ where f < 0 on (0, β1), f > 0 on (βn−1, βn) and we still require assumption (1.9). A key fact
that we would then need to prove is that the solution of a certain initial value problem is unique. Sufficient
conditions to assure this are (1.10)-(1.11) and the following:

∫ βl+1 1
p
√

F (βl+1) − F (t)
dt = ∞ if p > 2 and if f > 0 on (βl, βl+1)

and
∫

βl

1
p
√

F (βl) − F (t)
dt = ∞ if p > 2 and if f < 0 on (βl, βl+1).

Remark: Let 0 < β < δ and suppose qi ≥ 1 for i = 1, 2, 3. If p > 2 then also suppose q1 ≥ p − 1 and
q3 ≥ p − 1. Let f be an odd function such that f(u) = uq1 |u − β|q2−1(u − β)(δ − u)q3 for 0 < u < δ and
suppose F (δ) > 0. Then (1.7)-(1.11) are satisfied and the Main Theorem applies to all such functions f .

Remark: If 1 < p ≤ 2 then it follows from the fact that f is locally Lipschitz that (1.10) and (1.11) are
satisfied. Since f is locally Lipschitz at u = 0, it follows that |F (u)| ≤ Cu2 in some neighborhood of u = 0
for some C > 0. Then since 1 < p ≤ 2:

∫

0

1
p
√

|F (t)|
dt ≥ 1

C
1
p

∫

0

1

t
2
p

= ∞.

A similar argument shows that (1.11) also holds for 1 < p ≤ 2.
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2. Existence, Uniqueness, and Continuity

We denote C(S) = {f : S → R | f is continuous on S.}
Let f be locally Lipschitz and let d ∈ R with |d| ≤ δ. Denote u(r, d) as a solution of the initial value problem:

−rN−1|u′(r)|p−2u′(r) =

∫ r

0

tN−1f(u(t)) dt. (2.1)

u(0) = d. (2.2)

We will show using the contraction mapping principle that a solution of (2.1)-(2.2) exists.

For p > 1 we denote Φp(x) = |x|p−2x. Note that Φp is continuous for p > 1 and Φ−1
p = Φp′ where 1

p
+ 1

p′
= 1.

For future reference we note that Φ′
p(x) = (p − 1)|x|p−2 and |Φp(x)| = |x|p−1.

We rewrite (2.1) as:

−u′ =
1

r
N−1
p−1

Φp′ [

∫ r

0

tN−1f(u(t)) dt]. (2.3)

Integrating on (0, r) and using (2.2) gives:

u = d −
∫ r

0

1

t
N−1
p−1

Φp′ [

∫ t

0

sN−1f(u(s)) ds] dt. (2.4)

Thus we see that solutions of (2.1)-(2.2) are fixed points of the mapping:

Tu = d −
∫ r

0

1

t
N−1
p−1

Φp′ [

∫ t

0

sN−1f(u(s)) ds] dt. (2.5)

Lemma 2.1. Let f be locally Lipschitz and let d be a real number such that |d| ≤ δ. Then there exists a
solution u ∈ C1[0, ε) of (2.1)-(2.2) for some ε > 0. In addition, u′(0) = 0.

Proof.

First, if f(d) = 0 then u ≡ d is a solution of (2.1)-(2.2) and u′(0) = 0.

So we now assume that f(d) 6= 0. Denote Bε
R(d) = {u ∈ C[0, ε) such that ‖u − d‖ < R} where ‖ · ‖ is the

supremum norm. We will now show that if ε > 0 and R > 0 are small enough then T : Bε
R(d) → Bε

R(d) and

that T is a contraction mapping. Since f is bounded on [ |d|2 ,
|d|+δ

2 ], say by M , it follows from (2.5) that:

|Tu − d| ≤
∫ r

0

1

t
N−1
p−1

(
MtN

N
)

1
p−1 = (

p − 1

p
)(

M

N
)

1
p−1 r

p
p−1 ≤ (

p − 1

p
)(

M

N
)

1
p−1 ε

p
p−1 .

Therefore we see that ‖Tu − d‖ < R if ε is chosen small enough and hence T : Bε
R(d) → Bε

R(d) for ε small
enough.

Next by the mean value theorem we see that for some h with 0 < h < 1 we have:

|Φp′ [

∫ t

0

sN−1f(u(s)) ds] − Φp′ [

∫ t

0

sN−1f(v(s)) ds]| =

1

p − 1
|
∫ t

0

sN−1[hf(u) + (1 − h)f(v)] ds|
2−p

p−1 |
∫ t

0

sN−1[f(u) − f(v)] ds|. (2.6)

Case 1: 1 < p ≤ 2
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Using again that f is bounded on [d − 1, d + 1] by M and that the local Lipschitz constant is K (i.e. for
u, v ∈ Bε

1(d) we have |f(u) − f(v)| ≤ K|u − v|) we obtain by (2.5)-(2.6):

‖Tu − Tv‖ ≤ K

p − 1
‖u − v‖

∫ r

0

1

t
N−1
p−1

M
2−p

p−1 (
tN

N
)

2−p

p−1
tN

N

= C1‖u − v‖
∫ r

0

t
1

p−1 dt ≤ C2ε
p

p−1 ‖u − v‖

where C1, C2 are constants depending only on p, N, K, and M .

Case 2: p > 2

Since f(d) 6= 0 and f is continuous we may choose R small enough so that:

L ≡ min
[d−R,d+R]

|f | > 0.

Therefore,

|
∫ t

0

sN−1[hf(u) + (1 − h)f(v)] ds| ≥ LtN

N
. (2.7)

Thus, by (2.5)-(2.7) we have

‖Tu− Tv‖ ≤ K

p − 1
(
L

N
)

2−p

p−1 ‖u − v‖
∫ r

0

1

t
N−1
p−1

t
N(2−p)

p−1
tN

N
dt

=
K

(p − 1)

1

N
1

p−1 L
p−2
p−1

‖u − v‖
∫ r

0

t
1

p−1 dt ≤ C3ε
p

p−1 ‖u − v‖

where C3 depends only on p, N, K, and M .

Therefore in both cases we see that T is a contraction for R and ε small enough. Thus by the contraction
mapping principle, there is a unique u ∈ C[0, ε1) such that Tu = u. That is, there is a continuous function
u such that u satisfies (2.4) on [0, ε1) for some ε1 > 0. In addition, since f(d) 6= 0 we see that the right hand
side of (2.4) is continuously differentiable on (0, ε) for some ε with 0 < ε ≤ ε1 and therefore u ∈ C1(0, ε).
Also, subtracting d from (2.4), dividing by r, and taking the limit as r → 0+ gives u′(0) = 0. Finally, dividing
(2.1) by rN−1 and taking the limit as r → 0+ we see that lim

r→0+
u′(r) = 0. Therefore, u ∈ C1[0, ε). �

Note we see from (2.3) that u ∈ C2 at all points where u′ 6= 0.

If u′(r0) = 0 then using (2.1) we obtain:

−|u′(r)|p−2u′(r) =
1

rN−1

∫ r

r0

tN−1f(u(t)) dt.

It then follows that:

lim
r→r0

|u′(r)|p−2u′(r)

r − r0
=

{

− f(u(r0))
N

if r0 = 0
−f(u(r0)) if r0 > 0.

(2.8)

Remark: If 1 < p ≤ 2 then we see from (2.8) that u′′(r0) exists and rewriting (1.3) as:

(p − 1)u′′ +
N − 1

r
u′ + |u′|2−pf(u) = 0,

we see that u ∈ C2[0, ε).

Remark: If p > 2 then u might not be twice differentiable at points where u′ = 0. In fact if u′(r0) = 0 and

f(u(r0)) 6= 0 then by (2.8) we see that lim
r→r0

|u
′(r)

r−r0
| = ∞ and so u is not twice differentiable at r0.
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Lemma 2.2. Let f satisfy (1.7)-(1.9). If u is a solution of the initial value problem (2.1)-(2.2) with |d| ≤ δ

on some interval (0, R) with R ≤ ∞, then:

F (u) ≤ F (d) on (0, R) (2.9)

and
p − 1

p
|u′|p ≤ F (d) + |F (β)| ≤ F (δ) + |F (β)| on (0, R). (2.10)

Proof.

We define the “energy” of a solution as:

E =
p − 1

p
|u′|p + F (u). (2.11)

Differentiating E and using (2.1) gives:

E′ = −N − 1

r
|u′|p ≤ 0. (2.12)

Integrating this on (0, r) and using (1.8) gives:

p − 1

p
|u′|p + F (u) = E ≤ E(0) = F (d) ≤ F (δ) for r > 0. (2.13)

Inequalities (2.9)-(2.10) follow from (1.8)-(1.9) and (2.13).

Now by (1.9) we know that F is negative on (0, γ) and by (1.8) we know that F is increasing on (β, δ).
Therefore if |d| < δ then F (d) < F (δ). On the other hand if |u(r0)| = δ for some r0 > 0 then by (2.9)
F (δ) ≤ F (d) - a contradiction. Hence if |d| < δ then |u| < δ. �

Lemma 2.3. Let f satisfy (1.7)-(1.9). Let d be a real number such that |d| ≤ δ. Then a solution of (2.1)-
(2.2) exists on [0,∞).

Proof.

If |d| = δ then u ≡ d is a solution on [0,∞) and so we now suppose that |d| < δ.

Let [0, R) be the maximal interval of existence for a solution of (2.1)-(2.2). From lemma 2.1 we know that
R > 0. Now suppose that R < ∞. By lemma 2.2, it follows that u and u′ are uniformly bounded by
M = δ + F (δ) + |F (β)| on [0, R). Therefore by the mean value theorem |u(x) − u(y)| ≤ M |x − y| for all
x, y ∈ [0, R).
Thus, there exists b1 ∈ R such that:

lim
r→R−

u(r) = b1.

By (2.3) there exists b2 ∈ R such that:
lim

r→R−

u′(r) = b2.

If b2 6= 0 we can apply the standard existence theorem for ordinary differential equations and extend our
solution of (2.1)-(2.2) to [0, R + ε) for some ε > 0 contradicting the maximality of [0, R).

If b2 = 0 and f(b1) 6= 0 we can again apply the contraction mapping principle as we did in lemma 2.1 to
extend our solution of (2.1)-(2.2) to [0, R + ε) for some ε > 0 contradicting the maximality of [0, R).

Finally, if b2 = 0 and f(b1) = 0, we can extend our solution by defining u(r) ≡ b1 for r > R contradicting
the maximality of [0, R).

Thus in each of these cases we see that R cannot be finite and so a solution of (2.1)-(2.2) exists on [0,∞). �
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Lemma 2.4. Let f satisfy (1.7)-(1.10). Let d be a real number such that |d| < δ. Then there is a unique
solution of (2.1)-(2.2) on [0,∞).

Proof.

Case 1: d = ±β

In this case we have E(0) = F (β) (recall that F is even) and since E′ ≤ 0 (by (2.12)) we have E(r) ≤
E(0) = F (β) for r ≥ 0. On the other hand, F has a minimum at u = ±β and so we see that E(r) =
p−1

p
|u′|p + F (u) ≥ F (β). Thus E ≡ F (β). Thus, −N−1

r
|u′|p = E′ ≡ 0 and hence u(r) ≡ ±β.

Case 2: d = 0.

Here we have E(0) = 0 and since E′ ≤ 0 we have E(r) ≤ 0 for r ≥ 0.

Let r1 = sup{ r ≥ 0 |E(r) = 0}. If r1 = ∞ then u(r) ≡ 0.

So suppose r1 < ∞. If r1 = 0 then we have u(r1) = 0 and u′(r1) = 0.

If r1 > 0 then since E′ ≤ 0 we have E(r) ≡ 0 on [0, r1] hence −N−1
r

|u′|p = E′ ≡ 0 and so u ≡ 0 on [0, r1].
Therefore we also have u(r1) = 0 and u′(r1) = 0.

Now using (2.1) we obtain:

−rN−1|u′|p−2u′ =

∫ r

r1

tN−1f(u) dt. (2.15)

Since:
p − 1

p
|u′|p + F (u) = E(r) < E(0) = 0 for r > r1, (2.16)

it follows that |u(r)| > 0 for r > r1. Combining this with the fact that u(r1) = 0, we see that there exists an
ε > 0 such that 0 < |u(r)| < β for r1 < r < r1 + ε. By (1.8) it follows that |f(u)| > 0 for r1 < r < r1 + ε.
Therefore, by (2.15) we see that |u′| > 0 for r1 < r < r1 + ε. Using this fact and rewriting (2.16) we see that:

|u′|
p
√

|F (u)|
< (

p

p − 1
)

1
p for r1 < r < r1 + ε. (2.17)

Integrating (2.17) on (r1, r1 + ε), using (1.10), and that F is even gives:

∞ =

∫ |u(r1+ε)|

0

1
p
√

|F (t)|
dt =

∫ r1+ε

r1

|u′|
p
√

|F (u)|
≤ (

p

p − 1
)

1
p ε,

a contradiction. Thus we see that r1 = ∞ and hence u ≡ 0.

Case 3: f(d) 6= 0.

We saw that the mapping T defined in lemma 2.1 is a contraction mapping. Therefore, T has a unique fixed
point so that if u1 and u2 are solutions of (2.1)-(2.2) then there exists an ε > 0 such that u1(r) ≡ u2(r)
on [0, ε). Let [0, R) be the maximal half-open interval such that u1(r) ≡ u2(r) on [0, R). By continuity,
u1(r) ≡ u2(r) on [0, R] and u′

1(r) ≡ u′
2(r) on [0, R].

As in the proof of lemma 2.3, if u′
1(R) 6= 0 then it follows from the standard existence-uniqueness theorem of

ordinary differential equations that u1(r) ≡ u2(r) on [0, R + ε) for some ε > 0 contradicting the maximality
of [0, R).

If u′
1(R) = 0 and f(u1(R)) 6= 0 then we can again apply the contraction mapping principle as in lemma 2.1

and show that u1(r) ≡ u2(r) on [0, R + ε) for some ε > 0 contradicting the maximality of [0, R).

If u′
1(R) = 0 and u1(R) = β then as in Case 1 above we can show that u1(r) ≡ β for r > R and u2(r) ≡ β

for r > R. This contradicts the definition of R. A similar argument applies if u′
1(R) = 0 and u1(R) = −β.
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Finally, if u′
1(R) = 0 and u1(R) = 0, then as in Case 2 above we can show that u1(r) ≡ 0 for r > R and

u2(r) ≡ 0 for r > R. This contradicts the definition of R.

Thus we see that in all cases we have R = ∞. This completes the proof. �

Remark: Without assumptions (1.10) and (1.11), solutions of the initial value problem (2.1)-(2.2) are not
necessarily unique! For example, let f(u) = −|u|q−1u where 1 ≤ q < p − 1. In addition to u ≡ 0,

u = C(p, q, N)r
p

p−1−q

where C(p, q, N) = [ (p−1−q)p

pp−1[pq+N(p−1−q)] ]
1

p−1−q is also a solution of (2.1)-(2.2) with u(0) = 0 and u′(0) = 0. Note

however that
∫

0
1

p
√

|F (t)|
dt =

∫

0
(q+1)

1
p

t
q+1

p

dt < ∞ since 1 ≤ q < p − 1. Similarly, if f(u) = −|δ − u|q−1(δ − u)

and 1 ≤ q < p − 1 then u ≡ δ and

u = δ − C(p, q, N)r
p

p−1−q

(with the same C(p, q, N) as earlier ) are both solutions of (2.1)-(2.2) but (1.11) is not satisfied.

Lemma 2.5. Let u be a solution of (2.1)-(2.2) with γ < d < δ and suppose there exists an r1 > 0 such that
u(r1) = 0. If (1.10) holds then u′(r1) 6= 0.

Proof.

This proof is from [1].

Suppose by way of contradiction that u(r1) = 0 and u′(r1) = 0. It follows that E(r1) = 0. (In fact, it
follows from lemma 2.4 that u ≡ 0 on [r1,∞)). Now let r0 = inf{r ≤ r1 |E(r) = 0}. Since E is continuous,
decreasing, and E(0) = F (d) > 0 we see that r0 > 0 and that E(r) > 0 for 0 ≤ r < r0.
If r0 < r1 then E(r) ≡ 0 on (r0, r1) and thus −N−1

r
|u′|p = E′(r) ≡ 0 on (r0, r1). Therefore u ≡ 0 on (r0, r1)

and thus u(r0) = u′(r0) = 0.

Integrating (2.12) on (r, r0) and using that E(r0) = 0 gives:

p − 1

p
|u′|p + F (u) =

∫ r0

r

N − 1

r
|u′|p dt. (2.18)

Letting w =
∫ r0

r
N−1

r
|u′|p dt, we see that w′ = −N−1

r
|u′|p. Thus (2.18) becomes:

w′ +
α

r
w =

α

r
F (u) where α =

p(N − 1)

p − 1
. (2.19)

By (1.9) it follows that there is an ε with 0 < ε < 1
2r0 such that F (u(r)) ≤ 0 on (r0 − ε, r0). and so solving

the first order linear equation (2.19) gives:

w =
α

rα

∫ r0

r

tα−1|F (u)| dt for r0 − ε < r < r0.

Rewriting (2.18) we obtain:

|u′|p =
p

p − 1
[|F (u)| + α

rα

∫ r0

r

tα−1|F (u(t))| dt] for r0 − ε < r < r0. (2.20)

In addition, since E(r) > 0 for r < r0, we see that:

|u′| > (
p

p − 1
)

1
p

p
√

|F (u)| ≥ 0 for r0 − ε < r < r0.
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Thus u is monotone on (r0 − ε, r0).
Since F ′ = f < 0 on (0, β) (by (1.8)) we see that:

|F (u(t))| < |F (u(r))| for r0 − ε < r < t < r0. (2.21)

Substituting (2.21) into (2.20) gives:

|u′|p ≤ (
p

p − 1
)
rα
0

rα
|F (u)| ≤ (

p

p − 1
)(

r0

r0 − ε
)α|F (u)| ≤ 2α(

p

p − 1
)|F (u)| for r0 − ε < r < r0.

Finally, dividing by |F (u)|, taking roots, integrating on (r, r0), and using (1.10) we obtain:

∞ =

∫ |u(r)|

0

1
p
√

|F (t)|
dt ≤ 2

N−1
p−1 (

p

p − 1
)

1
p (r0 − r)

a contradiction. Thus u′(r1) 6= 0 and this completes the proof. �

Lemma 2.6. Let u be a solution of (2.1)-(2.2) where γ < d < δ. Then u′ < 0 on a maximal nonempty open
interval (0, Md,1), where either:

(a) Md,1 = ∞, lim
r→∞

u′(r) = 0, lim
r→∞

u(r) = L where |L| < d and f(L) = 0,

or

(b) Md,1 is finite, u′(Md,1) = 0, and f(u(Md,1)) ≤ 0.

In either case, it follows that there exists a unique (finite) number τd ∈ (0, Md,1) such that u(τd) = γ and
u′ < 0 on (0, τd].

Proof.

From (2.8) we have:

lim
r→0+

|u′(r)|p−2u′(r)

r
= −f(d)

N
.

For γ < d < δ the right hand side of the above equation is negative by (1.8). Hence for small values of r > 0
we see that u(r, d) is decreasing.

If u is not everywhere decreasing, then there is a first critical point, r = Md,1 > 0, with u′(Md,1) = 0 and
u′ < 0 on (0, Md,1). From (2.1) we have:

rN−1|u′(r)|p−2u′(r) =

∫ Md,1

r

tN−1f(u(t)) dt.

If f(u(Md,1)) > 0 then the above equation implies u′ > 0 for r < Md,1 and r sufficiently close to Md,1 which
contradicts that u′ < 0 on (0, Md,1). Therefore f(u(Md,1)) ≤ 0 and so u(Md,1) ≤ β < γ. Thus, there exists
τd ∈ (0, Md,1) with the stated properties.

On the other hand, suppose that u(r) is decreasing for all r > 0. We showed in lemma 2.2 that |u(r)| < d < δ

for r > 0. Thus lim
r→∞

u(r) = L with |L| ≤ d < δ.

Dividing (2.1) by rN and taking limits as r → ∞ we see that:

lim
r→∞

|u′|p−2u′

r
= −f(L)

N
. (2.22)
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We know from (2.10) that u′ is bounded for all r ≥ 0 and so the limit of the left hand side of (2.22) is 0.
Thus f(L) = 0 and since |L| ≤ d < δ we see that L = −β, 0, or β. Thus there exists a (finite) τd with the
stated properties.

Finally, the fact that lim
r→∞

u′(r) = 0 can be seen as follows. In lemma 2.2 we saw that the energy E(r) =

p−1
p

|u′(r)|p+F (u(r)) is decreasing and bounded below by F (β), therefore lim
r→∞

E(r) exists. Since lim
r→∞

u(r) =

L, we see that lim
r→∞

F (u(r)) = F (L). Also, since p−1
p

|u′(r)|p = E(r) − F (u(r)) and both E(r) and F (u(r))

have a limit as r → ∞, it follows that |u′| has a limit as r → ∞. This limit must be zero since u is bounded.
This completes the proof. �

Lemma 2.7. Suppose γ < d∗ < δ. Then lim
d→d∗

u(r, d) = u(r, d∗) uniformly on compact subsets of R and

lim
d→d∗

u′(r, d) = u′(r, d∗) uniformly on compact subsets of R. Further, if (1.11) holds then lim
d→δ−

u(r, d) = δ

uniformly on compact subsets of R.

Proof.

If not, then there exists an ε0 > 0, a compact set K, and sequences rj ∈ K, dj with γ < dj < δ and
lim

j→∞
dj = d∗ such that

|u(rj , dj) − u(rj , d
∗)| ≥ ε0 > 0 for every j. (2.23)

However, by lemma 2.2 we know that |u(r, dj)| < δ and |u′(r, dj)| ≤ ( p
p−1 )

1
p [F (δ) + |F (β)|] 1

p for all j so that

by the Arzela-Ascoli theorem there is a subsequence of the dj (still denote dj) such that u(r, dj) converges
uniformly on K to a function u(r) and |u(r)| ≤ δ. From (2.3) we see that u′(r, dj) converges uniformly on

K a function v(r) where −v = 1

r
N−1
p−1

Φp′ [
∫ r

0 tN−1f(u(t)) dt].

Taking limits in the equation u(r, dj) = dj +
∫ r

0 u′(s, dj) ds, we see that u(r) = d +
∫ r

0 v(s) ds. Hence

u′(r) = v(r), that is −u′ = 1

r
N−1
p−1

Φp′ [
∫ r

0 tN−1f(u(t)) dt], and thus u is a solution of (2.1)-(2.2) with d = d∗.

So by lemma 2.4, u(r) = u(r, d∗). Therefore, given ε = ε0 > 0 and the compact set K we see that for all
r ∈ K we have:

|u(r, dj) − u(r, d∗)| < ε0

which contradicts (2.23). This completes the proof of the first part of the theorem.

An identical argument shows that lim
d→δ−

u(r, d) = u(r) uniformly on compact sets where |u(r)| ≤ δ and u

solves (2.1)-(2.2) with d = δ. To complete the proof we need to show u(r) ≡ δ. Let r1 = sup{ r ≥ 0 | E(r) =
E(0) = F (δ)}. Since E is decreasing we see that if r1 = ∞ then E is constant and hence u ≡ δ and we are
done.

Therefore we suppose r1 < ∞.

By the definition of r1 we have:

p − 1

p
|u′|p + F (u) = E(r) < E(0) = F (δ) for r > r1. (2.24)

Thus, it follows that u(r) < δ for r > r1. Also by (1.8) it follows that f(u) > 0 for r1 < r < r1 + ε for some
ε > 0. Therefore, by (2.15) we see that u′ < 0 for r1 < r < r1 + ε. Using this fact and rewriting (2.24) we
see that:

−u′

p
√

F (δ) − F (u)
< (

p

p − 1
)

1
p for r1 < r < r1 + ε. (2.25)

Integrating (2.25) on (r1, r1 + ε) and using (1.11) gives:

∞ =

∫ δ

u(r1+ε)

1
p
√

F (δ) − F (t)
dt =

∫ r1+ε

r1

−u′

p
√

F (δ) − F (u)
≤ (

p

p − 1
)

1
p ε,

a contradiction. Hence r1 = ∞ and u ≡ δ. �

EJQTDE, 2006 No. 12, p. 9



3. Energy Estimates

From lemma 2.6 we saw for γ < d < δ that u(r, d) is decreasing on [0, τd]. Therefore u−1(y, d) exists for
γ ≤ y ≤ d.

Lemma 3.1. For γ ≤ y < d < δ we have:

lim
d→δ−

u−1(y, d) = ∞.

Note: In particular this implies that τd → ∞ as d → δ− since u−1(γ, d) = τd.

Proof.

We fix y0 with γ ≤ y0 < d and suppose by way of contradiction that there exists dk with dk < δ and dk → δ,
u−1(y0, dk) = bk, and that the bk are bounded.
Then there is a subsequence of the bk (still denote bk) such that bk → b0 for some real number b. By
lemma 2.2 we have that |u(r, dk)| and |u′(r, dk)| are uniformly bounded on say [0, b+1]. Thus by lemma 2.7,
lim

k→∞
u(r, dk) = δ uniformly on [0, b + 1]. On the other hand, y0 = lim

k→∞
u(bk, dk) = δ - a contradiction since

y0 < d < δ. �

Lemma 3.2.

(
p − 1

p
)

1
p

d − y

[F (d) − F (y)]
1
p

≤ (
p − 1

p
)

1
p

∫ d

y

dt

[F (d) − F (t)]
1
p

≤ u−1(y, d) for γ < y < d.

Proof.

Rewriting (2.13) gives:

(
p − 1

p
)

1
p

|u′(r, d)|
[F (d) − F (u(r, d)]

1
p

≤ 1. (3.1)

Since u′(r, d) < 0 on (0, τd), integrating (3.1) on (0, r) where 0 < r ≤ τd we obtain:

(
p − 1

p
)

1
p

∫ d

u(r,d)

dt

[F (d) − F (t)]
1
p

≤ r.

Denoting y = u(r, d) and using the fact that F ′ = f > 0 on (γ, δ) we obtain:

(
p − 1

p
)

1
p

d − y

[F (d) − F (y)]
1
p

≤ (
p − 1

p
)

1
p

∫ d

y

dt

[F (d) − F (t)]
1
p

≤ u−1(y, d). (3.2)

This completes the proof. �

Lemma 3.3.

lim
d→δ−

[E(0) − E(τd)] = 0.

Integrating (2.12) on (0, τd) gives:

E(0) − E(τd) =

∫ τd

0

N − 1

t
|u′(t, d)|p dt.

Using (2.13) we obtain:

E(0) − E(τd) ≤ (
p

p − 1
)

p−1
p (N − 1)

∫ τd

0

1

t
[F (d) − F (u(t, d)]

p−1
p |u′(t, d)| dt.
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Now changing variables with y = u(t, d) we obtain:

E(0) − E(τd) ≤ (
p

p − 1
)

p−1
p (N − 1)

∫ d

γ

[F (d) − F (y)]
p−1

p

u−1(y, d)
dy. (3.3)

Since [F (d) − F (y)]
p−1

p ≤ F (δ)
p−1

p for γ ≤ y ≤ d we see by lemma 3.1 that:

lim
d→δ−

[F (d) − F (y)]
p−1

p

u−1(y, d)
= 0 for γ ≤ y < d. (3.4)

Also, by (3.2) and the mean value theorem we see that:

∫ d

γ

[F (d) − F (y)]
p−1

p

u−1(y, d)
dy ≤ (

p

p − 1
)

1
p

∫ d

γ

F (d) − F (y)

d − y
dy ≤ (

p

p − 1
)

1
p (δ − γ)max

[γ,δ]
f.

Therefore by (3.4) and the dominated convergence theorem it follows that:

lim
d→δ−

∫ d

γ

[F (d) − F (y)]
p−1

p

u−1(y, d)
dy = 0.

Therefore by (3.3):
lim

d→δ−

[E(0) − E(τd)] = 0.

This completes the proof. �

Lemma 3.4. Suppose u is monotonic on (τd, t). Then

E(τd) − E(t) ≤ C

τd

where C = 2δ(N − 1)( p
p−1 )

p−1
p [F (δ) + |F (β)|]

p−1
p . (Note that C is independent of d).

Proof.

Integrating (2.12) on (τd, t), estimating, and using (2.13) gives:

E(τd) − E(t) =

∫ t

τd

N − 1

s
|u′|p ds ≤ N − 1

τd

∫ t

τd

|u′|p−1|u′| ds

≤ N − 1

τd

(
p

p − 1
)

p−1
p

∫ t

τd

[F (δ) − F (u)]
p−1

p |u′| ds =
N − 1

τd

(
p

p − 1
)

p−1
p

∫ γ

u(t)

[F (δ) − F (t)]
p−1

p dt

≤ 2δ(N − 1)

τd

(
p

p − 1
)

p−1
p [F (δ) + |F (β)|]

p−1
p =

C

τd

where C = 2δ(N − 1)( p
p−1 )

p−1
p [F (δ) + |F (β)|]

p−1
p .

This completes the proof. �

Lemma 3.5. Suppose γ < d∗ < δ. Let u(r, d∗) be a solution of (2.1)-(2.2) with k zeros and suppose
lim

r→∞
u(r, d∗) = 0. Then for d sufficiently close to d∗, u(r, d) has at most k + 1 zeros.
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Proof.

From (2.12) we know that E′(r, d∗) ≤ 0 and since E is bounded from below by F (β), we see that lim
r→∞

E(r, d∗)

exists. Also by assumption lim
r→∞

u(r, d∗) = 0 and since F is continuous we have lim
r→∞

F (u(r, d∗)) = 0. Since

p−1
p

|u′(r, d∗)|p = E(r, d∗) − F (u(r, d∗)) and the limits of both terms on the right hand side of this equation

exist as r → ∞ we see that lim
r→∞

|u′(r, d∗)| exists and since by assumption lim
r→∞

u(r, d∗) = 0 (so that u(r, d∗)

is bounded) we therefore must have:

lim
r→∞

u′(r, d∗) = 0. (3.5)

Combining (3.5) with the assumption that lim
r→∞

u(r, d∗) = 0, we see by (2.11) that:

lim
r→∞

E(r, d∗) = 0. (3.6)

Combining (3.6) with the fact that E′(r, d∗) ≤ 0, we see that E(r, d∗) ≥ 0 for all r ≥ 0.

Claim.

E(r, d∗) > 0 for all r ≥ 0. (3.7)

Proof of claim. First note that E(0, d∗) = F (d∗) > 0. Now suppose E(r0, d
∗) = 0 for some r0 > 0. Then

from (3.6) and the fact that E is decreasing it then follows that E ≡ 0 on [r0,∞). Thus, −N−1
r

|u′|p−1 = E′ ≡
0 on [r0,∞). Therefore u(r, d∗) ≡ u(r0, d

∗) for r ≥ r0 and since lim
r→∞

u(r, d∗) = 0 we see that u(r, d∗) ≡ 0 for

r ≥ r0. This implies u′(r0, d
∗) = 0. However, by lemma 2.5 u′(r0, d

∗) 6= 0 - a contradiction. This completes
the proof of the claim.

By assumption u(r, d∗) has k zeros. Let us denote the kth zero of u(r, d∗) as y∗. Henceforth we assume

without loss of generality that u(r, d∗) > 0 for r > y∗. By (3.7) we see that p−1
p

|u′(y∗, d∗)|p = E(y∗, d∗) > 0.

Also since lim
r→∞

u(r, d∗) = 0 it follows that there exists an M∗ > y∗ such that u′(M∗, d∗) = 0. Again by (3.7)

we see that F (u(M∗, d∗)) = E(M∗, d∗) > 0 which implies u(M∗, d∗) > γ. Now by (2.1) we obtain:

−rN−1|u′(r, d∗)|p−1u′(r, d∗) =

∫ r

M∗

sN−1f(u(s, d∗)) ds.

By (1.8) we have f(u(M∗, d∗)) > 0, so from the above equation we see that u(r, d∗) is decreasing for r > M∗

as long as u(r, d∗) remains greater than β. In particular, since lim
r→∞

u(r, d∗) = 0, we see that there exists s∗,

t∗ with M∗ < s∗ < t∗ such that u(s∗) = u(M∗)+γ

2 and u(t∗) = γ.

Now let dn be any sequence such that lim
n→∞

dn = d∗. Then by lemmas 2.4 and 2.7, for some subsequence of

dn (still denoted dn) we see that u(r, dn) converges uniformly on compact sets to u(r, d∗) and that u′(r, dn)
converges uniformly on compact sets to u′(r, d∗).

In particular we see that u(r, dn) converges uniformly to u(r, d∗) on [0, t∗ + 1]. Since γ < d < δ, we see by
lemma 2.5 that if u(r0, d

∗) = 0 and r0 > 0 then u′(r0, d
∗) 6= 0 and so by lemma 2.7 for sufficiently large n we

see that u(r, dn) has exactly k zeros on [0, t∗+1]. Further for sufficiently large n there exists a tn ∈ [s∗, t∗+1]
such that u(tn, dn) = γ and lim

n→∞
tn = t∗.

We now assume by way of contradiction that u(r, dn) has at least (k + 2) interior zeros. We denote zn as
the (k + 1)st zero of u(r, dn) and wn as the (k + 2)nd zero of u(r, dn). Since u(r, dn) converges uniformly to
u(r, d∗) on [0, t∗ + 1], we see that for large n we have zn > t∗ + 1 and in fact:

lim
d→∞

zn = ∞, (3.8)
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for if some subsequence of zn (still denoted zn) were uniformly bounded by some B < ∞ then a further
subsequence (still denoted zn) would converge to some z∗ with y∗ < t∗+1 ≤ z∗ ≤ B. Since u(r, dn) converges
uniformly to u(r, d∗) on [0, z∗ + 1], we would then have that u(z∗, d∗) = 0 and since z∗ ≥ t∗ + 1 > y∗, z∗

would then be a (k +1)st zero of u(r, d∗). However by assumption u(r, d∗) has only k zeros - a contradiction.
Thus (3.8) holds.

By assumption γ < d∗ < δ so that for sufficiently large n we have that γ < dn < δ so by lemma 2.5 we
have that u′(wn, dn) 6= 0. Thus p−1

p
|u′(zn)|p = E(zn) ≥ E(wn) = p−1

p
|u′(wn)|p > 0 so we see that there

exists mn with zn < mn < wn, u′(r, dn) < 0 on [zn, mn), and u′(mn, dn) = 0. Also |u(mn, dn)| > γ since
F (u(mn)) = E(mn) ≥ E(wn) > 0. Hence there exists an, bn, cn with zn < an < bn < cn < mn such that

u(an) = −β, u(bn) = −β+γ
2 ≡ τ , and u(cn) = −γ.

Now as in the proof of lemma 2.7 with α = p(N−1)
p−1 we have (rαE)′ = αrα−1F (u). Integrating this on [tn, cn],

using the fact that F (u) ≤ 0 on [tn, cn], and that F (u(r, dn)) ≤ F (τ) < 0 on [an, bn] we obtain:

0 ≤ p − 1

p
cn|u′(cn)|p = cα

nE(cn) = tαnE(tn) +

∫ cn

tn

αrα−1F (u) dr ≤ tαnE(tn) +

∫ bn

an

αrα−1F (u) dr

≤ tαnE(tn) + F (τ)[bα
n − aα

n] ≤ tαnE(tn) + F (τ)bα−1
n [bn − an]. (3.9)

From lemma 2.2 we know that |u′| ≤ ( p
p−1 )

1
p [F (δ) + |F (β)|] 1

p . Integrating this on [an, bn] gives:

bn − an ≥ c > 0 (3.10)

where c = (γ−β
2 )( p

p−1 )
−1
p [F (δ) + |F (β)|]

−1
p . Substituting (3.10) into (3.9) and using the fact that F (τ) < 0

we see that we obtain:
0 ≤ tαnE(tn) + cF (τ)bα−1

n . (3.11)

In addition, since bn ≥ zn we see from (3.8) that:

lim
n→∞

bn = ∞. (3.12)

Finally, by lemma 2.7 we know that u(r, dn) converges uniformly to u(r, d∗) on [0, t∗ + 1] and u′(r, dn)
converges uniformly to u′(r, d∗) on [0, t∗ + 1] and tn → t∗. Therefore, we see that:

lim
n→∞

tαnE(tn, dn) = (t∗)αE(t∗, d∗) (3.13)

Substituting (3.12)-(3.13) into (3.11) and recalling that F (τ) < 0, and α = p(N−1)
p−1 > 1 (since N ≥ 2), we

see that the right hand side of (3.11) goes to −∞ as n → ∞ which contradicts the inequality in (3.11).
This completes the proof. �

4. Proof of the Main Theorem

Proof.

For k ∈ N ∪ {0}, define

Ak = {d ∈ (β, δ)|u(r, d) has exactly k zeros on [0,∞)}.

Observe first that (β, γ) ⊂ A0 because for any d ∈ (β, γ) we have E(0, d) = F (d) < 0 so that by (2.12)
E(r, d) < 0 for all r > 0. Thus u(r, d) > 0 for if u(r0, d) = 0 then E(r0, d) = p−1

p
|u′(r0, d)|p ≥ 0 - a

contradiction. Thus we see that A0 is nonempty.
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We now assume that d > γ and we apply lemma 3.4 at t = Md,1 where Md,1 is defined in lemma 2.6 and we
combine this with lemma 3.3 to obtain:

lim
d→δ−

F (u(Md,1)) = F (δ) > 0.

Thus
|u(Md,1)| > γ for d sufficiently close to δ. (4.1)

This implies that Md,1 < ∞ for if Md,1 = ∞, then from lemma 2.6 we see that u(Md,1) = lim
r→∞

u(r),

|u(Md,1)| < d < δ, and f(u(Md,1)) = 0 which implies |u(Md,1)| ≤ β - contradicting (4.1). Thus Md,1 < ∞
and by lemma 2.6 we see that f(u(Md,1)) ≤ 0 so by (1.8) we have u(Md,1) ≤ β. Combining this with (4.1)
we see that we must have u(Md,1) < −γ < 0. Therefore for d < δ and d sufficiently close to δ, we see that
u(r, d) must have a first zero, zd,1.

Thus we see that A0 is bounded above by a quantity that is strictly less than δ. We now define:

d0 = supA0

and we note that d0 < δ.

Lemma 4.1.

u(r, d0) > 0 for r ≥ 0.

Proof.

Suppose there exists a smallest value of r, r0, such that u(r0, d0) = 0. By Lemma 2.5, u′(r0, d0) 6= 0 thus
u(r, d0) becomes negative for r slightly larger than r0. By lemma 2.7 it follows that if d < d0 is sufficiently
close to d0 then u(r, d) must also have a zero close to r0. However by the definition of d0 if d < d0 then
u(r, d) > 0 - a contradiction. This completes the proof. �

Lemma 4.2

u′(r, d0) < 0 for r > 0.

Proof

We will show that Md0,1 = ∞ where Md0,1 is defined in lemma 2.6. If Md0,1 < ∞ then by lemma 2.7
for d slightly larger than d0 we also have Md,1 < ∞. Also, since u(r, d0) > 0 then u(Md0,1, d0) > 0 and
again by lemma 2.7 we also have u(Md,1, d) > 0 for d sufficiently close to d0. By lemma 2.6 it follows
that f(u(Md,1, d)) ≤ 0 so that 0 ≤ u(Md,1, d) ≤ β thus E(Md,1, d) < 0. Since E is decreasing we see that
E(r, d) < 0 for r ≥ Md,1.
For d slightly larger than d0, u(r, d) must have a first zero, zd,1, (by definition of d0) and zd,1 > Md,1 since
u(r, d) > 0 on [0, Md,1]. Thus, we have 0 ≤ E(z1, d) ≤ E(Md,1, d) < 0 - a contradiction. This completes the
proof. �

From lemmas 2.6, 4.1, and 4.2 we see that lim
r→∞

u(r, d0) = L where f(L) = 0 where L < d0 < δ and since

u(r, d0) > 0 we have that L = 0 or L = β. We also see that lim
r→∞

E(r, d0) = F (L).

Lemma 4.3.

lim
d→d

+
0

zd,1 = ∞

Proof.

If zd,1 ≤ C for d > d0 then as in the proof of (3.8) there would be a subsequence dn with dn → d0 and
zdn,1 → z. By lemma 2.7 it then would follow that u(z, d0) = 0 which contradicts that u(r, d0) > 0. This
completes the proof. �

EJQTDE, 2006 No. 12, p. 14



Lemma 4.4. L = 0

Proof.

We know that L = 0 or L = β so suppose L = β. Then lim
r→∞

E(r, d0) = F (L) = F (β) < 0 so there exists an

r0 such that E(r0, d0) < 0. Thus for d > d0 and d sufficiently close to d0 we have by lemma 2.7 E(r0, d) < 0.
Since E(zd,1, d) ≥ 0 we see that zd,1 < r0 which contradicts lemma 4.3. Thus lim

r→∞
u(r, d0) = 0 and this

completes the proof. �

By definition of d0, if d > d0 then u(r, d) has at least one zero. By lemma 3.4, if d is close to d0 then u(r, d)
has at most one zero. Therefore for d > d0 and d sufficiently close to d0, u(r, d) has exactly one zero. Thus
the set A1 is nonempty and d0 < sup A1.

As we saw in the first part of the proof of the main theorem, Md,1 < ∞ and u(Md,1) < −γ for d sufficiently
close to δ. By a similar argument as in lemma 2.6, it can be shown that there exists an Md,2 with Md,1 <

Md,2 ≤ ∞ such that u′(r, d) > 0 on (Md,1, Md,2). Also, by lemma 3.4 we see that

0 ≤ E(0) − E(Md,2) = [E(0) − E(τd)] + [E(τd) − E(Md,1)] + [E(Md,1) − E(Md,2]

≤ [E(0) − E(τd)] +
C

τd

+
C

Md,1
where C is independent of d.

By lemmas 3.1, 3.3 and the fact that τd < Md,1 we see:

lim
d→δ−

F (u(Md,2)) = E(0) = F (δ) > 0.

As at the beginning of the proof of the main theorem we may also show that Md,2 < ∞ and u(Md,2) > γ

for d sufficiently close to δ. Therefore, there exists zd,2 such that Md,1 < zd,2 < Md,2 and u(zd,2, d) = 0.
Therefore A1 is bounded above by a quantity strictly less than δ.

Let:
d1 = supA1

and note that d0 < d1 < δ.

In a similar way in which we proved that u(r, d0) > 0 and lim
r→∞

u(r, d0) = 0 we can show that u(r, d1) has

exactly one zero and that lim
r→∞

u(r, d1) = 0.

In a similar way we may show by induction that Ak is nonempty and bounded above by a quantity strictly
less than δ. Let

dk = supAk.

It can be shown that u(r, dk) has exactly k zeros and that lim
r→∞

u(r, dk) = 0.

This completes the proof of the main theorem. �
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