LOCALIZED SOLUTIONS OF ELLIPTIC EQUATIONS: LOITERING AT THE HILLTOP

Joseph A. Iaia

Abstract. We find an infinite number of smooth, localized, radial solutions of $\Delta_{p} u+f(u)=0$ in \mathbb{R}^{N} - one with each prescribed number of zeros - where $\Delta_{p} u$ is the p-Laplacian of the function u.

1. Introduction

In this paper we will prove the existence of smooth, radial solutions with any prescribed number of zeros to:

$$
\begin{gather*}
\Delta_{p} u+f(u)=0 \text { in } \mathbb{R}^{N}, \tag{1.1}\\
u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty \tag{1.2}
\end{gather*}
$$

where $\Delta_{p} u=\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)(p>1)$ is the p-Laplacian of the function u (note that $p=2$ is the usual Laplacian operator), f is the nonlinearity described below, and $N \geq 2$,

Solutions of (1.1)-(1.2) arise as critical points of the functional $J: S \rightarrow \mathbb{R}$ defined by:

$$
J(u)=\int_{\mathbb{R}^{N}} \frac{1}{p}|\nabla u|^{p}-F(u) d x
$$

where $F(u)=\int_{0}^{u} f(t) d t$ and $S=\left\{u \in W^{1, p}\left(\mathbb{R}^{N}\right) \mid F(u) \in L^{1}\left(\mathbb{R}^{N}\right)\right\}$.
Setting $r=|x|$ and assuming that u is a radial function so that $u(x)=u(|x|)=u(r)$ then:

$$
\Delta_{p} u=\left|u^{\prime}\right|^{p-2}\left[(p-1) u^{\prime \prime}+\frac{N-1}{r} u^{\prime}\right]=\frac{1}{r^{N-1}}\left(r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}
$$

where ' denotes differentiation with respect to the variable r.
We consider therefore looking for solutions of:

$$
\begin{align*}
\left|u^{\prime}\right|^{p-2}\left[(p-1) u^{\prime \prime}+\frac{N-1}{r} u^{\prime}\right]+f(u) & =\frac{1}{r^{N-1}}\left(r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(u)=0 \tag{1.3}\\
\lim _{r \rightarrow 0^{+}} u^{\prime}(r) & =0, \tag{1.4}\\
\lim _{r \rightarrow \infty} u(r) & =0 . \tag{1.5}
\end{align*}
$$

Remark: The case $p=2$ was examined in [2]. There the authors proved the existence of an infinite number of solutions of (1.3)-(1.5) - one with each precribed number of zeros - for nonlinearities f similar to the ones examined in this paper. In this paper we have weaker assumptions than those in [2] and we also have only

[^0]that $p>1$. Existence of ground states of (1.3)-(1.5) for quite general nonlinearities f was established in [1]. Our extra assumptions on f allow us to prove the existence of an infinite number of solutions of (1.3)-(1.5).
For $p \neq 2$, equation (1.3) is degenerate at points where $u^{\prime}=0$ and we will see later that in some instances this prevents u from being twice differentiable at some points. We see however that by multiplying (1.3) by r^{N-1}, integrating on $(0, r)$, and using (1.4) we obtain:
\[

$$
\begin{equation*}
-r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)=\int_{0}^{r} t^{N-1} f(u(t)) d t \tag{1.6}
\end{equation*}
$$

\]

Therefore, instead of seeking solutions of (1.3)-(1.5) in $C^{2}[0, \infty)$ we will attempt to find $u \in C^{1}[0, \infty)$ satisfying (1.4)-(1.6).

The type of nonlinearity we are interested in is one for which $F(u) \equiv \int_{0}^{u} f(t) d t$ has the shape of a "hilltop." We require that $f:[-\delta, \delta] \rightarrow \mathbb{R}$ and:

$$
\begin{align*}
& f \text { is odd, there exists } K>0 \text { such that }|f(x)-f(y)| \leq K|x-y| \text { for all } x, y \in[-\delta, \delta] \text { and } \tag{1.7}\\
& \text { there exists } \beta, \delta \text { such that } 0<\beta<\delta \text { with } f<0 \text { on }(0, \beta), f>0 \text { on }(\beta, \delta) \text {, and } f(\delta)=0 \text {. } \tag{1.8}
\end{align*}
$$

We also require:

$$
\begin{equation*}
\text { there exists } \gamma \text { with } \beta<\gamma<\delta \text { such that } F<0 \text { on }(0, \gamma) \text { and } F>0 \text { on }(\gamma, \delta) \text {. } \tag{1.9}
\end{equation*}
$$

Finally we assume:

$$
\begin{equation*}
\int_{0} \frac{1}{\sqrt[p]{|F(t)|}} d t=\infty \text { if } p>2 \tag{1.10}
\end{equation*}
$$

and:

$$
\begin{equation*}
\int^{\delta} \frac{1}{\sqrt[p]{F(\delta)-F(t)}} d t=\infty \text { if } p>2 \tag{1.11}
\end{equation*}
$$

Main Theorem. Let f be a function satisfying (1.7)-(1.11). Then there exist an infinite number of solutions of (1.4)-(1.6), at least one with each prescribed number of zeros.

Remark: Assumption (1.8) can be weakened to allow f to have a finite number of zeros, $0<\beta_{1}<\beta_{2}<$ $\cdots<\beta_{n}<\delta$ where $f<0$ on $\left(0, \beta_{1}\right), f>0$ on $\left(\beta_{n-1}, \beta_{n}\right)$ and we still require assumption (1.9). A key fact that we would then need to prove is that the solution of a certain initial value problem is unique. Sufficient conditions to assure this are (1.10)-(1.11) and the following:

$$
\int^{\beta_{l+1}} \frac{1}{\sqrt[p]{F\left(\beta_{l+1}\right)-F(t)}} d t=\infty \text { if } p>2 \text { and if } f>0 \text { on }\left(\beta_{l}, \beta_{l+1}\right)
$$

and

$$
\int_{\beta_{l}} \frac{1}{\sqrt[p]{F\left(\beta_{l}\right)-F(t)}} d t=\infty \text { if } p>2 \text { and if } f<0 \text { on }\left(\beta_{l}, \beta_{l+1}\right)
$$

Remark: Let $0<\beta<\delta$ and suppose $q_{i} \geq 1$ for $i=1,2,3$. If $p>2$ then also suppose $q_{1} \geq p-1$ and $q_{3} \geq p-1$. Let f be an odd function such that $f(u)=u^{q_{1}}|u-\beta|^{q_{2}-1}(u-\beta)(\delta-u)^{q_{3}}$ for $0<u<\delta$ and suppose $F(\delta)>0$. Then (1.7)-(1.11) are satisfied and the Main Theorem applies to all such functions f.
Remark: If $1<p \leq 2$ then it follows from the fact that f is locally Lipschitz that (1.10) and (1.11) are satisfied. Since f is locally Lipschitz at $u=0$, it follows that $|F(u)| \leq C u^{2}$ in some neighborhood of $u=0$ for some $C>0$. Then since $1<p \leq 2$:

$$
\int_{0} \frac{1}{\sqrt[p]{|F(t)|}} d t \geq \frac{1}{C^{\frac{1}{p}}} \int_{0} \frac{1}{t^{\frac{2}{p}}}=\infty
$$

A similar argument shows that (1.11) also holds for $1<p \leq 2$.

2. Existence, Uniqueness, and Continuity

We denote $C(S)=\{f: S \rightarrow \mathbb{R} \mid f$ is continuous on S. $\}$
Let f be locally Lipschitz and let $d \in \mathbb{R}$ with $|d| \leq \delta$. Denote $u(r, d)$ as a solution of the initial value problem:

$$
\begin{align*}
-r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r) & =\int_{0}^{r} t^{N-1} f(u(t)) d t . \tag{2.1}\\
u(0) & =d . \tag{2.2}
\end{align*}
$$

We will show using the contraction mapping principle that a solution of (2.1)-(2.2) exists.
For $p>1$ we denote $\Phi_{p}(x)=|x|^{p-2} x$. Note that Φ_{p} is continuous for $p>1$ and $\Phi_{p}^{-1}=\Phi_{p^{\prime}}$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. For future reference we note that $\Phi_{p}^{\prime}(x)=(p-1)|x|^{p-2}$ and $\left|\Phi_{p}(x)\right|=|x|^{p-1}$.

We rewrite (2.1) as:

$$
\begin{equation*}
-u^{\prime}=\frac{1}{r^{\frac{N-1}{p-1}}} \Phi_{p^{\prime}}\left[\int_{0}^{r} t^{N-1} f(u(t)) d t\right] \tag{2.3}
\end{equation*}
$$

Integrating on $(0, r)$ and using (2.2) gives:

$$
\begin{equation*}
u=d-\int_{0}^{r} \frac{1}{t^{\frac{N-1}{p-1}}} \Phi_{p^{\prime}}\left[\int_{0}^{t} s^{N-1} f(u(s)) d s\right] d t \tag{2.4}
\end{equation*}
$$

Thus we see that solutions of (2.1)-(2.2) are fixed points of the mapping:

$$
\begin{equation*}
T u=d-\int_{0}^{r} \frac{1}{t^{\frac{N-1}{p-1}}} \Phi_{p^{\prime}}\left[\int_{0}^{t} s^{N-1} f(u(s)) d s\right] d t \tag{2.5}
\end{equation*}
$$

Lemma 2.1. Let f be locally Lipschitz and let d be a real number such that $|d| \leq \delta$. Then there exists a solution $u \in C^{1}[0, \epsilon)$ of (2.1)-(2.2) for some $\epsilon>0$. In addition, $u^{\prime}(0)=0$.

Proof.

First, if $f(d)=0$ then $u \equiv d$ is a solution of (2.1)-(2.2) and $u^{\prime}(0)=0$.
So we now assume that $f(d) \neq 0$. Denote $B_{R}^{\epsilon}(d)=\{u \in C[0, \epsilon)$ such that $\|u-d\|<R\}$ where $\|\cdot\|$ is the supremum norm. We will now show that if $\epsilon>0$ and $R>0$ are small enough then $T: B_{R}^{\epsilon}(d) \rightarrow B_{R}^{\epsilon}(d)$ and that T is a contraction mapping. Since f is bounded on $\left[\frac{|d|}{2}, \frac{|d|+\delta}{2}\right]$, say by M, it follows from (2.5) that:

$$
|T u-d| \leq \int_{0}^{r} \frac{1}{t^{\frac{N-1}{p-1}}}\left(\frac{M t^{N}}{N}\right)^{\frac{1}{p-1}}=\left(\frac{p-1}{p}\right)\left(\frac{M}{N}\right)^{\frac{1}{p-1}} r^{\frac{p}{p-1}} \leq\left(\frac{p-1}{p}\right)\left(\frac{M}{N}\right)^{\frac{1}{p-1}} \epsilon^{\frac{p}{p-1}} .
$$

Therefore we see that $\|T u-d\|<R$ if ϵ is chosen small enough and hence $T: B_{R}^{\epsilon}(d) \rightarrow B_{R}^{\epsilon}(d)$ for ϵ small enough.

Next by the mean value theorem we see that for some h with $0<h<1$ we have:

$$
\begin{gather*}
\left|\Phi_{p^{\prime}}\left[\int_{0}^{t} s^{N-1} f(u(s)) d s\right]-\Phi_{p^{\prime}}\left[\int_{0}^{t} s^{N-1} f(v(s)) d s\right]\right|= \\
\frac{1}{p-1}\left|\int_{0}^{t} s^{N-1}[h f(u)+(1-h) f(v)] d s\right|^{\frac{2-p}{p-1}}\left|\int_{0}^{t} s^{N-1}[f(u)-f(v)] d s\right| \tag{2.6}
\end{gather*}
$$

Case 1: $1<p \leq 2$

Using again that f is bounded on $[d-1, d+1]$ by M and that the local Lipschitz constant is K (i.e. for $u, v \in B_{1}^{\epsilon}(d)$ we have $\left.|f(u)-f(v)| \leq K|u-v|\right)$ we obtain by (2.5)-(2.6):

$$
\begin{gathered}
\|T u-T v\| \leq \frac{K}{p-1}\|u-v\| \int_{0}^{r} \frac{1}{t^{\frac{N-1}{p-1}}} M^{\frac{2-p}{p-1}}\left(\frac{t^{N}}{N}\right)^{\frac{2-p}{p-1}} \frac{t^{N}}{N} \\
=C_{1}\|u-v\| \int_{0}^{r} t^{\frac{1}{p-1}} d t \leq C_{2} \epsilon^{\frac{p}{p-1}}\|u-v\|
\end{gathered}
$$

where C_{1}, C_{2} are constants depending only on p, N, K, and M.
Case 2: $p>2$
Since $f(d) \neq 0$ and f is continuous we may choose R small enough so that:

$$
L \equiv \min _{[d-R, d+R]}|f|>0
$$

Therefore,

$$
\begin{equation*}
\left|\int_{0}^{t} s^{N-1}[h f(u)+(1-h) f(v)] d s\right| \geq \frac{L t^{N}}{N} . \tag{2.7}
\end{equation*}
$$

Thus, by (2.5)-(2.7) we have

$$
\begin{aligned}
& \|T u-T v\| \leq \frac{K}{p-1}\left(\frac{L}{N}\right)^{\frac{2-p}{p-1}}\|u-v\| \int_{0}^{r} \frac{1}{t^{\frac{N-1}{p-1}}} t^{\frac{N(2-p)}{p-1}} \frac{t^{N}}{N} d t \\
& =\frac{K}{(p-1)} \frac{1}{N^{\frac{1}{p-1}} L^{\frac{p-2}{p-1}}}\|u-v\| \int_{0}^{r} t^{\frac{1}{p-1}} d t \leq C_{3} \epsilon^{\frac{p}{p-1}}\|u-v\|
\end{aligned}
$$

where C_{3} depends only on p, N, K, and M.
Therefore in both cases we see that T is a contraction for R and ϵ small enough. Thus by the contraction mapping principle, there is a unique $u \in C\left[0, \epsilon_{1}\right)$ such that $T u=u$. That is, there is a continuous function u such that u satisfies (2.4) on $\left[0, \epsilon_{1}\right)$ for some $\epsilon_{1}>0$. In addition, since $f(d) \neq 0$ we see that the right hand side of (2.4) is continuously differentiable on ($0, \epsilon$) for some ϵ with $0<\epsilon \leq \epsilon_{1}$ and therefore $u \in C^{1}(0, \epsilon)$. Also, subtracting d from (2.4), dividing by r, and taking the limit as $r \rightarrow 0^{+}$gives $u^{\prime}(0)=0$. Finally, dividing (2.1) by r^{N-1} and taking the limit as $r \rightarrow 0^{+}$we see that $\lim _{r \rightarrow 0^{+}} u^{\prime}(r)=0$. Therefore, $u \in C^{1}[0, \epsilon)$.

Note we see from (2.3) that $u \in C^{2}$ at all points where $u^{\prime} \neq 0$.
If $u^{\prime}\left(r_{0}\right)=0$ then using (2.1) we obtain:

$$
-\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)=\frac{1}{r^{N-1}} \int_{r_{0}}^{r} t^{N-1} f(u(t)) d t
$$

It then follows that:

$$
\lim _{r \rightarrow r_{0}} \frac{\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)}{r-r_{0}}=\left\{\begin{array}{l}
-\frac{f\left(u\left(r_{0}\right)\right)}{N} \text { if } r_{0}=0 \tag{2.8}\\
-f\left(u\left(r_{0}\right)\right) \text { if } r_{0}>0
\end{array}\right.
$$

Remark: If $1<p \leq 2$ then we see from (2.8) that $u^{\prime \prime}\left(r_{0}\right)$ exists and rewriting (1.3) as:

$$
(p-1) u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+\left|u^{\prime}\right|^{2-p} f(u)=0
$$

we see that $u \in C^{2}[0, \epsilon)$.
Remark: If $p>2$ then u might not be twice differentiable at points where $u^{\prime}=0$. In fact if $u^{\prime}\left(r_{0}\right)=0$ and $f\left(u\left(r_{0}\right)\right) \neq 0$ then by (2.8) we see that $\lim _{r \rightarrow r_{0}}\left|\frac{u^{\prime}(r)}{r-r_{0}}\right|=\infty$ and so u is not twice differentiable at r_{0}.

Lemma 2.2. Let f satisfy (1.7)-(1.9). If u is a solution of the initial value problem (2.1)-(2.2) with $|d| \leq \delta$ on some interval $(0, R)$ with $R \leq \infty$, then:

$$
\begin{equation*}
F(u) \leq F(d) \text { on }(0, R) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{p-1}{p}\left|u^{\prime}\right|^{p} \leq F(d)+|F(\beta)| \leq F(\delta)+|F(\beta)| \text { on }(0, R) \tag{2.10}
\end{equation*}
$$

Proof.

We define the "energy" of a solution as:

$$
\begin{equation*}
E=\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u) . \tag{2.11}
\end{equation*}
$$

Differentiating E and using (2.1) gives:

$$
\begin{equation*}
E^{\prime}=-\frac{N-1}{r}\left|u^{\prime}\right|^{p} \leq 0 \tag{2.12}
\end{equation*}
$$

Integrating this on $(0, r)$ and using (1.8) gives:

$$
\begin{equation*}
\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u)=E \leq E(0)=F(d) \leq F(\delta) \text { for } r>0 \tag{2.13}
\end{equation*}
$$

Inequalities (2.9)-(2.10) follow from (1.8)-(1.9) and (2.13).
Now by (1.9) we know that F is negative on $(0, \gamma)$ and by (1.8) we know that F is increasing on (β, δ). Therefore if $|d|<\delta$ then $F(d)<F(\delta)$. On the other hand if $\left|u\left(r_{0}\right)\right|=\delta$ for some $r_{0}>0$ then by (2.9) $F(\delta) \leq F(d)$ - a contradiction. Hence if $|d|<\delta$ then $|u|<\delta$.
Lemma 2.3. Let f satisfy (1.7)-(1.9). Let d be a real number such that $|d| \leq \delta$. Then a solution of (2.1)(2.2) exists on $[0, \infty)$.

Proof.

If $|d|=\delta$ then $u \equiv d$ is a solution on $[0, \infty)$ and so we now suppose that $|d|<\delta$.
Let $[0, R)$ be the maximal interval of existence for a solution of (2.1)-(2.2). From lemma 2.1 we know that $R>0$. Now suppose that $R<\infty$. By lemma 2.2 , it follows that u and u^{\prime} are uniformly bounded by $M=\delta+F(\delta)+|F(\beta)|$ on $[0, R)$. Therefore by the mean value theorem $|u(x)-u(y)| \leq M|x-y|$ for all $x, y \in[0, R)$.
Thus, there exists $b_{1} \in \mathbb{R}$ such that:

$$
\lim _{r \rightarrow R^{-}} u(r)=b_{1} .
$$

By (2.3) there exists $b_{2} \in \mathbb{R}$ such that:

$$
\lim _{r \rightarrow R^{-}} u^{\prime}(r)=b_{2} .
$$

If $b_{2} \neq 0$ we can apply the standard existence theorem for ordinary differential equations and extend our solution of (2.1)-(2.2) to $[0, R+\epsilon)$ for some $\epsilon>0$ contradicting the maximality of $[0, R)$.
If $b_{2}=0$ and $f\left(b_{1}\right) \neq 0$ we can again apply the contraction mapping principle as we did in lemma 2.1 to extend our solution of (2.1)-(2.2) to $[0, R+\epsilon)$ for some $\epsilon>0$ contradicting the maximality of $[0, R)$.
Finally, if $b_{2}=0$ and $f\left(b_{1}\right)=0$, we can extend our solution by defining $u(r) \equiv b_{1}$ for $r>R$ contradicting the maximality of $[0, R)$.
Thus in each of these cases we see that R cannot be finite and so a solution of (2.1)-(2.2) exists on $[0, \infty)$.
EJQTDE, 2006 No. 12, p. 5

Lemma 2.4. Let f satisfy (1.7)-(1.10). Let d be a real number such that $|d|<\delta$. Then there is a unique solution of (2.1)-(2.2) on $[0, \infty)$.

Proof.

Case 1: $d= \pm \beta$
In this case we have $E(0)=F(\beta)$ (recall that F is even) and since $E^{\prime} \leq 0$ (by (2.12)) we have $E(r) \leq$ $E(0)=F(\beta)$ for $r \geq 0$. On the other hand, F has a minimum at $u= \pm \beta$ and so we see that $E(r)=$ $\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u) \geq F(\beta)$. Thus $E \equiv F(\beta)$. Thus, $-\frac{N-1}{r}\left|u^{\prime}\right|^{p}=E^{\prime} \equiv 0$ and hence $u(r) \equiv \pm \beta$.
Case 2: $d=0$.
Here we have $E(0)=0$ and since $E^{\prime} \leq 0$ we have $E(r) \leq 0$ for $r \geq 0$.
Let $r_{1}=\sup \{r \geq 0 \mid E(r)=0\}$. If $r_{1}=\infty$ then $u(r) \equiv 0$.
So suppose $r_{1}<\infty$. If $r_{1}=0$ then we have $u\left(r_{1}\right)=0$ and $u^{\prime}\left(r_{1}\right)=0$.
If $r_{1}>0$ then since $E^{\prime} \leq 0$ we have $E(r) \equiv 0$ on $\left[0, r_{1}\right]$ hence $-\frac{N-1}{r}\left|u^{\prime}\right|^{p}=E^{\prime} \equiv 0$ and so $u \equiv 0$ on $\left[0, r_{1}\right]$. Therefore we also have $u\left(r_{1}\right)=0$ and $u^{\prime}\left(r_{1}\right)=0$.
Now using (2.1) we obtain:

$$
\begin{equation*}
-r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}=\int_{r_{1}}^{r} t^{N-1} f(u) d t \tag{2.15}
\end{equation*}
$$

Since:

$$
\begin{equation*}
\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u)=E(r)<E(0)=0 \text { for } r>r_{1} \tag{2.16}
\end{equation*}
$$

it follows that $|u(r)|>0$ for $r>r_{1}$. Combining this with the fact that $u\left(r_{1}\right)=0$, we see that there exists an $\epsilon>0$ such that $0<|u(r)|<\beta$ for $r_{1}<r<r_{1}+\epsilon$. By (1.8) it follows that $|f(u)|>0$ for $r_{1}<r<r_{1}+\epsilon$. Therefore, by (2.15) we see that $\left|u^{\prime}\right|>0$ for $r_{1}<r<r_{1}+\epsilon$. Using this fact and rewriting (2.16) we see that:

$$
\begin{equation*}
\frac{\left|u^{\prime}\right|}{\sqrt[p]{|F(u)|}}<\left(\frac{p}{p-1}\right)^{\frac{1}{p}} \text { for } r_{1}<r<r_{1}+\epsilon \tag{2.17}
\end{equation*}
$$

Integrating (2.17) on $\left(r_{1}, r_{1}+\epsilon\right)$, using (1.10), and that F is even gives:

$$
\infty=\int_{0}^{\left|u\left(r_{1}+\epsilon\right)\right|} \frac{1}{\sqrt[p]{|F(t)|}} d t=\int_{r_{1}}^{r_{1}+\epsilon} \frac{\left|u^{\prime}\right|}{\sqrt[p]{|F(u)|}} \leq\left(\frac{p}{p-1}\right)^{\frac{1}{p}} \epsilon
$$

a contradiction. Thus we see that $r_{1}=\infty$ and hence $u \equiv 0$.
Case 3: $f(d) \neq 0$.
We saw that the mapping T defined in lemma 2.1 is a contraction mapping. Therefore, T has a unique fixed point so that if u_{1} and u_{2} are solutions of (2.1)-(2.2) then there exists an $\epsilon>0$ such that $u_{1}(r) \equiv u_{2}(r)$ on $[0, \epsilon)$. Let $[0, R)$ be the maximal half-open interval such that $u_{1}(r) \equiv u_{2}(r)$ on $[0, R)$. By continuity, $u_{1}(r) \equiv u_{2}(r)$ on $[0, R]$ and $u_{1}^{\prime}(r) \equiv u_{2}^{\prime}(r)$ on $[0, R]$.
As in the proof of lemma 2.3, if $u_{1}^{\prime}(R) \neq 0$ then it follows from the standard existence-uniqueness theorem of ordinary differential equations that $u_{1}(r) \equiv u_{2}(r)$ on $[0, R+\epsilon)$ for some $\epsilon>0$ contradicting the maximality of $[0, R)$.
If $u_{1}^{\prime}(R)=0$ and $f\left(u_{1}(R)\right) \neq 0$ then we can again apply the contraction mapping principle as in lemma 2.1 and show that $u_{1}(r) \equiv u_{2}(r)$ on $[0, R+\epsilon)$ for some $\epsilon>0$ contradicting the maximality of $[0, R)$.
If $u_{1}^{\prime}(R)=0$ and $u_{1}(R)=\beta$ then as in Case 1 above we can show that $u_{1}(r) \equiv \beta$ for $r>R$ and $u_{2}(r) \equiv \beta$ for $r>R$. This contradicts the definition of R. A similar argument applies if $u_{1}^{\prime}(R)=0$ and $u_{1}(R)=-\beta$.

EJQTDE, 2006 No. 12, p. 6

Finally, if $u_{1}^{\prime}(R)=0$ and $u_{1}(R)=0$, then as in Case 2 above we can show that $u_{1}(r) \equiv 0$ for $r>R$ and $u_{2}(r) \equiv 0$ for $r>R$. This contradicts the definition of R.
Thus we see that in all cases we have $R=\infty$. This completes the proof.
Remark: Without assumptions (1.10) and (1.11), solutions of the initial value problem (2.1)-(2.2) are not necessarily unique! For example, let $f(u)=-|u|^{q-1} u$ where $1 \leq q<p-1$. In addition to $u \equiv 0$,

$$
u=C(p, q, N) r^{\frac{p}{p-1-q}}
$$

where $C(p, q, N)=\left[\frac{(p-1-q)^{p}}{p^{p-1}[p q+N(p-1-q)]}\right]^{\frac{1}{p-1-q}}$ is also a solution of $(2.1)-(2.2)$ with $u(0)=0$ and $u^{\prime}(0)=0$. Note however that $\int_{0} \frac{1}{\sqrt[p]{|F(t)|}} d t=\int_{0} \frac{(q+1)^{\frac{1}{p}}}{t^{\frac{q+1}{p}}} d t<\infty$ since $1 \leq q<p-1$. Similarly, if $f(u)=-|\delta-u|^{q-1}(\delta-u)$ and $1 \leq q<p-1$ then $u \equiv \delta$ and

$$
u=\delta-C(p, q, N) r^{\frac{p}{p-1-q}}
$$

(with the same $C(p, q, N)$ as earlier) are both solutions of (2.1)-(2.2) but (1.11) is not satisfied.
Lemma 2.5. Let u be a solution of (2.1)-(2.2) with $\gamma<d<\delta$ and suppose there exists an $r_{1}>0$ such that $u\left(r_{1}\right)=0$. If (1.10) holds then $u^{\prime}\left(r_{1}\right) \neq 0$.

Proof.

This proof is from [1].
Suppose by way of contradiction that $u\left(r_{1}\right)=0$ and $u^{\prime}\left(r_{1}\right)=0$. It follows that $E\left(r_{1}\right)=0$. (In fact, it follows from lemma 2.4 that $u \equiv 0$ on $\left[r_{1}, \infty\right)$). Now let $r_{0}=\inf \left\{r \leq r_{1} \mid E(r)=0\right\}$. Since E is continuous, decreasing, and $E(0)=F(d)>0$ we see that $r_{0}>0$ and that $E(r)>0$ for $0 \leq r<r_{0}$.
If $r_{0}<r_{1}$ then $E(r) \equiv 0$ on $\left(r_{0}, r_{1}\right)$ and thus $-\frac{N-1}{r}\left|u^{\prime}\right|^{p}=E^{\prime}(r) \equiv 0$ on $\left(r_{0}, r_{1}\right)$. Therefore $u \equiv 0$ on $\left(r_{0}, r_{1}\right)$ and thus $u\left(r_{0}\right)=u^{\prime}\left(r_{0}\right)=0$.

Integrating (2.12) on $\left(r, r_{0}\right)$ and using that $E\left(r_{0}\right)=0$ gives:

$$
\begin{equation*}
\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u)=\int_{r}^{r_{0}} \frac{N-1}{r}\left|u^{\prime}\right|^{p} d t \tag{2.18}
\end{equation*}
$$

Letting $w=\int_{r}^{r_{0}} \frac{N-1}{r}\left|u^{\prime}\right|^{p} d t$, we see that $w^{\prime}=-\frac{N-1}{r}\left|u^{\prime}\right|^{p}$. Thus (2.18) becomes:

$$
\begin{equation*}
w^{\prime}+\frac{\alpha}{r} w=\frac{\alpha}{r} F(u) \text { where } \alpha=\frac{p(N-1)}{p-1} . \tag{2.19}
\end{equation*}
$$

By (1.9) it follows that there is an ϵ with $0<\epsilon<\frac{1}{2} r_{0}$ such that $F(u(r)) \leq 0$ on $\left(r_{0}-\epsilon, r_{0}\right)$. and so solving the first order linear equation (2.19) gives:

$$
w=\frac{\alpha}{r^{\alpha}} \int_{r}^{r_{0}} t^{\alpha-1}|F(u)| d t \text { for } r_{0}-\epsilon<r<r_{0}
$$

Rewriting (2.18) we obtain:

$$
\begin{equation*}
\left|u^{\prime}\right|^{p}=\frac{p}{p-1}\left[|F(u)|+\frac{\alpha}{r^{\alpha}} \int_{r}^{r_{0}} t^{\alpha-1}|F(u(t))| d t\right] \text { for } r_{0}-\epsilon<r<r_{0} \tag{2.20}
\end{equation*}
$$

In addition, since $E(r)>0$ for $r<r_{0}$, we see that:

$$
\left|u^{\prime}\right|>\left(\frac{p}{p-1}\right)^{\frac{1}{p}} \sqrt[p]{|F(u)|} \geq 0 \text { for } r_{0}-\epsilon<r<r_{0}
$$

EJQTDE, 2006 No. 12, p. 7

Thus u is monotone on $\left(r_{0}-\epsilon, r_{0}\right)$.
Since $F^{\prime}=f<0$ on $(0, \beta)$ (by (1.8)) we see that:

$$
\begin{equation*}
|F(u(t))|<|F(u(r))| \text { for } r_{0}-\epsilon<r<t<r_{0} \tag{2.21}
\end{equation*}
$$

Substituting (2.21) into (2.20) gives:

$$
\left|u^{\prime}\right|^{p} \leq\left(\frac{p}{p-1}\right) \frac{r_{0}^{\alpha}}{r^{\alpha}}|F(u)| \leq\left(\frac{p}{p-1}\right)\left(\frac{r_{0}}{r_{0}-\epsilon}\right)^{\alpha}|F(u)| \leq 2^{\alpha}\left(\frac{p}{p-1}\right)|F(u)| \text { for } r_{0}-\epsilon<r<r_{0}
$$

Finally, dividing by $|F(u)|$, taking roots, integrating on $\left(r, r_{0}\right)$, and using (1.10) we obtain:

$$
\infty=\int_{0}^{|u(r)|} \frac{1}{\sqrt[p]{|F(t)|}} d t \leq 2^{\frac{N-1}{p-1}}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\left(r_{0}-r\right)
$$

a contradiction. Thus $u^{\prime}\left(r_{1}\right) \neq 0$ and this completes the proof.
Lemma 2.6. Let u be a solution of (2.1)-(2.2) where $\gamma<d<\delta$. Then $u^{\prime}<0$ on a maximal nonempty open interval $\left(0, M_{d, 1}\right)$, where either:
(a) $M_{d, 1}=\infty, \lim _{r \rightarrow \infty} u^{\prime}(r)=0, \lim _{r \rightarrow \infty} u(r)=L$ where $|L|<d$ and $f(L)=0$,
or
(b) $M_{d, 1}$ is finite, $u^{\prime}\left(M_{d, 1}\right)=0$, and $f\left(u\left(M_{d, 1}\right)\right) \leq 0$.

In either case, it follows that there exists a unique (finite) number $\tau_{d} \in\left(0, M_{d, 1}\right)$ such that $u\left(\tau_{d}\right)=\gamma$ and $u^{\prime}<0$ on $\left(0, \tau_{d}\right]$.

Proof.

From (2.8) we have:

$$
\lim _{r \rightarrow 0^{+}} \frac{\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)}{r}=-\frac{f(d)}{N} .
$$

For $\gamma<d<\delta$ the right hand side of the above equation is negative by (1.8). Hence for small values of $r>0$ we see that $u(r, d)$ is decreasing.
If u is not everywhere decreasing, then there is a first critical point, $r=M_{d, 1}>0$, with $u^{\prime}\left(M_{d, 1}\right)=0$ and $u^{\prime}<0$ on ($0, M_{d, 1}$). From (2.1) we have:

$$
r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)=\int_{r}^{M_{d, 1}} t^{N-1} f(u(t)) d t
$$

If $f\left(u\left(M_{d, 1}\right)\right)>0$ then the above equation implies $u^{\prime}>0$ for $r<M_{d, 1}$ and r sufficiently close to $M_{d, 1}$ which contradicts that $u^{\prime}<0$ on $\left(0, M_{d, 1}\right)$. Therefore $f\left(u\left(M_{d, 1}\right)\right) \leq 0$ and so $u\left(M_{d, 1}\right) \leq \beta<\gamma$. Thus, there exists $\tau_{d} \in\left(0, M_{d, 1}\right)$ with the stated properties.
On the other hand, suppose that $u(r)$ is decreasing for all $r>0$. We showed in lemma 2.2 that $|u(r)|<d<\delta$ for $r>0$. Thus $\lim _{r \rightarrow \infty} u(r)=L$ with $|L| \leq d<\delta$.
Dividing (2.1) by r^{N} and taking limits as $r \rightarrow \infty$ we see that:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\left|u^{\prime}\right|^{p-2} u^{\prime}}{r}=-\frac{f(L)}{N} \tag{2.22}
\end{equation*}
$$

EJQTDE, 2006 No. 12, p. 8

We know from (2.10) that u^{\prime} is bounded for all $r \geq 0$ and so the limit of the left hand side of (2.22) is 0 . Thus $f(L)=0$ and since $|L| \leq d<\delta$ we see that $L=-\beta, 0$, or β. Thus there exists a (finite) τ_{d} with the stated properties.

Finally, the fact that $\lim _{r \rightarrow \infty} u^{\prime}(r)=0$ can be seen as follows. In lemma 2.2 we saw that the energy $E(r)=$ $\frac{p-1}{p}\left|u^{\prime}(r)\right|^{p}+F(u(r))$ is decreasing and bounded below by $F(\beta)$, therefore $\lim _{r \rightarrow \infty} E(r)$ exists. Since $\lim _{r \rightarrow \infty} u(r)=$ L, we see that $\lim _{r \rightarrow \infty} F(u(r))=F(L)$. Also, since $\frac{p-1}{p}\left|u^{\prime}(r)\right|^{p}=E(r)-F(u(r))$ and both $E(r)$ and $F(u(r))$ have a limit as $r \rightarrow \infty$, it follows that $\left|u^{\prime}\right|$ has a limit as $r \rightarrow \infty$. This limit must be zero since u is bounded. This completes the proof.

Lemma 2.7. Suppose $\gamma<d^{*}<\delta$. Then $\lim _{d \rightarrow d^{*}} u(r, d)=u\left(r, d^{*}\right)$ uniformly on compact subsets of \mathbb{R} and $\lim _{d \rightarrow d^{*}} u^{\prime}(r, d)=u^{\prime}\left(r, d^{*}\right)$ uniformly on compact subsets of \mathbb{R}. Further, if (1.11) holds then $\lim _{d \rightarrow \delta^{-}} u(r, d)=\delta$ uniformly on compact subsets of \mathbb{R}.

Proof.

If not, then there exists an $\epsilon_{0}>0$, a compact set K, and sequences $r_{j} \in K, d_{j}$ with $\gamma<d_{j}<\delta$ and $\lim _{j \rightarrow \infty} d_{j}=d^{*}$ such that

$$
\begin{equation*}
\left|u\left(r_{j}, d_{j}\right)-u\left(r_{j}, d^{*}\right)\right| \geq \epsilon_{0}>0 \text { for every } j \tag{2.23}
\end{equation*}
$$

However, by lemma 2.2 we know that $\left|u\left(r, d_{j}\right)\right|<\delta$ and $\left|u^{\prime}\left(r, d_{j}\right)\right| \leq\left(\frac{p}{p-1}\right)^{\frac{1}{p}}[F(\delta)+|F(\beta)|]^{\frac{1}{p}}$ for all j so that by the Arzela-Ascoli theorem there is a subsequence of the d_{j} (still denote d_{j}) such that $u\left(r, d_{j}\right)$ converges uniformly on K to a function $u(r)$ and $|u(r)| \leq \delta$. From (2.3) we see that $u^{\prime}\left(r, d_{j}\right)$ converges uniformly on K a function $v(r)$ where $-v=\frac{1}{r^{\frac{N-1}{p-1}}} \Phi_{p^{\prime}}\left[\int_{0}^{r} t^{N-1} f(u(t)) d t\right]$.
Taking limits in the equation $u\left(r, d_{j}\right)=d_{j}+\int_{0}^{r} u^{\prime}\left(s, d_{j}\right) d s$, we see that $u(r)=d+\int_{0}^{r} v(s) d s$. Hence $u^{\prime}(r)=v(r)$, that is $-u^{\prime}=\frac{1}{r^{\frac{N-1}{p-1}}} \Phi_{p^{\prime}}\left[\int_{0}^{r} t^{N-1} f(u(t)) d t\right]$, and thus u is a solution of (2.1)-(2.2) with $d=d^{*}$. So by lemma 2.4, $u(r)=u\left(r, d^{*}\right)$. Therefore, given $\epsilon=\epsilon_{0}>0$ and the compact set K we see that for all $r \in K$ we have:

$$
\left|u\left(r, d_{j}\right)-u\left(r, d^{*}\right)\right|<\epsilon_{0}
$$

which contradicts (2.23). This completes the proof of the first part of the theorem.
An identical argument shows that $\lim _{d \rightarrow \delta^{-}} u(r, d)=u(r)$ uniformly on compact sets where $|u(r)| \leq \delta$ and u solves (2.1)-(2.2) with $d=\delta$. To complete the proof we need to show $u(r) \equiv \delta$. Let $r_{1}=\sup \{r \geq 0 \mid E(r)=$ $E(0)=F(\delta)\}$. Since E is decreasing we see that if $r_{1}=\infty$ then E is constant and hence $u \equiv \delta$ and we are done.
Therefore we suppose $r_{1}<\infty$.
By the definition of r_{1} we have:

$$
\begin{equation*}
\frac{p-1}{p}\left|u^{\prime}\right|^{p}+F(u)=E(r)<E(0)=F(\delta) \text { for } r>r_{1} . \tag{2.24}
\end{equation*}
$$

Thus, it follows that $u(r)<\delta$ for $r>r_{1}$. Also by (1.8) it follows that $f(u)>0$ for $r_{1}<r<r_{1}+\epsilon$ for some $\epsilon>0$. Therefore, by (2.15) we see that $u^{\prime}<0$ for $r_{1}<r<r_{1}+\epsilon$. Using this fact and rewriting (2.24) we see that:

$$
\begin{equation*}
\frac{-u^{\prime}}{\sqrt[p]{F(\delta)-F(u)}}<\left(\frac{p}{p-1}\right)^{\frac{1}{p}} \text { for } r_{1}<r<r_{1}+\epsilon \tag{2.25}
\end{equation*}
$$

Integrating (2.25) on ($r_{1}, r_{1}+\epsilon$) and using (1.11) gives:

$$
\infty=\int_{u\left(r_{1}+\epsilon\right)}^{\delta} \frac{1}{\sqrt[p]{F(\delta)-F(t)}} d t=\int_{r_{1}}^{r_{1}+\epsilon} \frac{-u^{\prime}}{\sqrt[p]{F(\delta)-F(u)}} \leq\left(\frac{p}{p-1}\right)^{\frac{1}{p}} \epsilon
$$

a contradiction. Hence $r_{1}=\infty$ and $u \equiv \delta$.

3. Energy Estimates

From lemma 2.6 we saw for $\gamma<d<\delta$ that $u(r, d)$ is decreasing on $\left[0, \tau_{d}\right]$. Therefore $u^{-1}(y, d)$ exists for $\gamma \leq y \leq d$.
Lemma 3.1. For $\gamma \leq y<d<\delta$ we have:

$$
\lim _{d \rightarrow \delta^{-}} u^{-1}(y, d)=\infty
$$

Note: In particular this implies that $\tau_{d} \rightarrow \infty$ as $d \rightarrow \delta^{-}$since $u^{-1}(\gamma, d)=\tau_{d}$.

Proof.

We fix y_{0} with $\gamma \leq y_{0}<d$ and suppose by way of contradiction that there exists d_{k} with $d_{k}<\delta$ and $d_{k} \rightarrow \delta$, $u^{-1}\left(y_{0}, d_{k}\right)=b_{k}$, and that the b_{k} are bounded.
Then there is a subsequence of the b_{k} (still denote b_{k}) such that $b_{k} \rightarrow b_{0}$ for some real number b. By lemma 2.2 we have that $\left|u\left(r, d_{k}\right)\right|$ and $\left|u^{\prime}\left(r, d_{k}\right)\right|$ are uniformly bounded on say $[0, b+1]$. Thus by lemma 2.7, $\lim _{k \rightarrow \infty} u\left(r, d_{k}\right)=\delta$ uniformly on $[0, b+1]$. On the other hand, $y_{0}=\lim _{k \rightarrow \infty} u\left(b_{k}, d_{k}\right)=\delta$ - a contradiction since $y_{0}<d<\delta$.

Lemma 3.2.

$$
\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \frac{d-y}{[F(d)-F(y)]^{\frac{1}{p}}} \leq\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_{y}^{d} \frac{d t}{[F(d)-F(t)]^{\frac{1}{p}}} \leq u^{-1}(y, d) \text { for } \gamma<y<d .
$$

Proof.

Rewriting (2.13) gives:

$$
\begin{equation*}
\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \frac{\left|u^{\prime}(r, d)\right|}{\left[F(d)-F(u(r, d)]^{\frac{1}{p}}\right.} \leq 1 . \tag{3.1}
\end{equation*}
$$

Since $u^{\prime}(r, d)<0$ on $\left(0, \tau_{d}\right)$, integrating (3.1) on ($0, r$) where $0<r \leq \tau_{d}$ we obtain:

$$
\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_{u(r, d)}^{d} \frac{d t}{[F(d)-F(t)]^{\frac{1}{p}}} \leq r
$$

Denoting $y=u(r, d)$ and using the fact that $F^{\prime}=f>0$ on (γ, δ) we obtain:

$$
\begin{equation*}
\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \frac{d-y}{[F(d)-F(y)]^{\frac{1}{p}}} \leq\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_{y}^{d} \frac{d t}{[F(d)-F(t)]^{\frac{1}{p}}} \leq u^{-1}(y, d) \tag{3.2}
\end{equation*}
$$

This completes the proof.

Lemma 3.3.

$$
\lim _{d \rightarrow \delta^{-}}\left[E(0)-E\left(\tau_{d}\right)\right]=0
$$

Integrating (2.12) on $\left(0, \tau_{d}\right)$ gives:

$$
E(0)-E\left(\tau_{d}\right)=\int_{0}^{\tau_{d}} \frac{N-1}{t}\left|u^{\prime}(t, d)\right|^{p} d t
$$

Using (2.13) we obtain:

$$
E(0)-E\left(\tau_{d}\right) \leq\left(\frac{p}{p-1}\right)^{\frac{p-1}{p}}(N-1) \int_{0}^{\tau_{d}} \frac{1}{t}\left[F(d)-F(u(t, d)]^{\frac{p-1}{p}}\left|u^{\prime}(t, d)\right| d t\right.
$$

EJQTDE, 2006 No. 12, p. 10

Now changing variables with $y=u(t, d)$ we obtain:

$$
\begin{equation*}
E(0)-E\left(\tau_{d}\right) \leq\left(\frac{p}{p-1}\right)^{\frac{p-1}{p}}(N-1) \int_{\gamma}^{d} \frac{[F(d)-F(y)]^{\frac{p-1}{p}}}{u^{-1}(y, d)} d y \tag{3.3}
\end{equation*}
$$

Since $[F(d)-F(y)]^{\frac{p-1}{p}} \leq F(\delta)^{\frac{p-1}{p}}$ for $\gamma \leq y \leq d$ we see by lemma 3.1 that:

$$
\begin{equation*}
\lim _{d \rightarrow \delta^{-}} \frac{[F(d)-F(y)]^{\frac{p-1}{p}}}{u^{-1}(y, d)}=0 \text { for } \gamma \leq y<d \tag{3.4}
\end{equation*}
$$

Also, by (3.2) and the mean value theorem we see that:

$$
\int_{\gamma}^{d} \frac{[F(d)-F(y)]^{\frac{p-1}{p}}}{u^{-1}(y, d)} d y \leq\left(\frac{p}{p-1}\right)^{\frac{1}{p}} \int_{\gamma}^{d} \frac{F(d)-F(y)}{d-y} d y \leq\left(\frac{p}{p-1}\right)^{\frac{1}{p}}(\delta-\gamma) \max _{[\gamma, \delta]} f .
$$

Therefore by (3.4) and the dominated convergence theorem it follows that:

$$
\lim _{d \rightarrow \delta^{-}} \int_{\gamma}^{d} \frac{[F(d)-F(y)]^{\frac{p-1}{p}}}{u^{-1}(y, d)} d y=0
$$

Therefore by (3.3):

$$
\lim _{d \rightarrow \delta^{-}}\left[E(0)-E\left(\tau_{d}\right)\right]=0
$$

This completes the proof.
Lemma 3.4. Suppose u is monotonic on $\left(\tau_{d}, t\right)$. Then

$$
E\left(\tau_{d}\right)-E(t) \leq \frac{C}{\tau_{d}}
$$

where $C=2 \delta(N-1)\left(\frac{p}{p-1}\right)^{\frac{p-1}{p}}[F(\delta)+|F(\beta)|]^{\frac{p-1}{p}}$. (Note that C is independent of d).

Proof.

Integrating (2.12) on ($\left.\tau_{d}, t\right)$, estimating, and using (2.13) gives:

$$
\begin{gathered}
E\left(\tau_{d}\right)-E(t)=\int_{\tau_{d}}^{t} \frac{N-1}{s}\left|u^{\prime}\right|^{p} d s \leq \frac{N-1}{\tau_{d}} \int_{\tau_{d}}^{t}\left|u^{\prime}\right|^{p-1}\left|u^{\prime}\right| d s \\
\leq \frac{N-1}{\tau_{d}}\left(\frac{p}{p-1}\right)^{\frac{p-1}{p}} \int_{\tau_{d}}^{t}[F(\delta)-F(u)]^{\frac{p-1}{p}}\left|u^{\prime}\right| d s=\frac{N-1}{\tau_{d}}\left(\frac{p}{p-1}\right)^{\frac{p-1}{p}} \int_{u(t)}^{\gamma}[F(\delta)-F(t)]^{\frac{p-1}{p}} d t \\
\leq \frac{2 \delta(N-1)}{\tau_{d}}\left(\frac{p}{p-1}\right)^{\frac{p-1}{p}}[F(\delta)+|F(\beta)|]^{\frac{p-1}{p}}=\frac{C}{\tau_{d}}
\end{gathered}
$$

where $C=2 \delta(N-1)\left(\frac{p}{p-1}\right)^{\frac{p-1}{p}}[F(\delta)+|F(\beta)|]^{\frac{p-1}{p}}$.
This completes the proof.
Lemma 3.5. Suppose $\gamma<d^{*}<\delta$. Let $u\left(r, d^{*}\right)$ be a solution of (2.1)-(2.2) with k zeros and suppose $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=0$. Then for d sufficiently close to $d^{*}, u(r, d)$ has at most $k+1$ zeros.

EJQTDE, 2006 No. 12, p. 11

Proof.

From (2.12) we know that $E^{\prime}\left(r, d^{*}\right) \leq 0$ and since E is bounded from below by $F(\beta)$, we see that $\lim _{r \rightarrow \infty} E\left(r, d^{*}\right)$ exists. Also by assumption $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=0$ and since F is continuous we have $\lim _{r \rightarrow \infty} F\left(u\left(r, d^{*}\right)\right)=0$. Since $\frac{p-1}{p}\left|u^{\prime}\left(r, d^{*}\right)\right|^{p}=E\left(r, d^{*}\right)-F\left(u\left(r, d^{*}\right)\right)$ and the limits of both terms on the right hand side of this equation exist as $r \rightarrow \infty$ we see that $\lim _{r \rightarrow \infty}\left|u^{\prime}\left(r, d^{*}\right)\right|$ exists and since by assumption $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=0$ (so that $u\left(r, d^{*}\right)$ is bounded) we therefore must have:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} u^{\prime}\left(r, d^{*}\right)=0 \tag{3.5}
\end{equation*}
$$

Combining (3.5) with the assumption that $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=0$, we see by (2.11) that:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} E\left(r, d^{*}\right)=0 \tag{3.6}
\end{equation*}
$$

Combining (3.6) with the fact that $E^{\prime}\left(r, d^{*}\right) \leq 0$, we see that $E\left(r, d^{*}\right) \geq 0$ for all $r \geq 0$.

Claim.

$$
\begin{equation*}
E\left(r, d^{*}\right)>0 \text { for all } r \geq 0 . \tag{3.7}
\end{equation*}
$$

Proof of claim. First note that $E\left(0, d^{*}\right)=F\left(d^{*}\right)>0$. Now suppose $E\left(r_{0}, d^{*}\right)=0$ for some $r_{0}>0$. Then from (3.6) and the fact that E is decreasing it then follows that $E \equiv 0$ on $\left[r_{0}, \infty\right)$. Thus, $-\frac{N-1}{r}\left|u^{\prime}\right|^{p-1}=E^{\prime} \equiv$ 0 on $\left[r_{0}, \infty\right)$. Therefore $u\left(r, d^{*}\right) \equiv u\left(r_{0}, d^{*}\right)$ for $r \geq r_{0}$ and since $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=0$ we see that $u\left(r, d^{*}\right) \equiv 0$ for $r \geq r_{0}$. This implies $u^{\prime}\left(r_{0}, d^{*}\right)=0$. However, by lemma $2.5 u^{\prime}\left(r_{0}, d^{*}\right) \neq 0$ - a contradiction. This completes the proof of the claim.

By assumption $u\left(r, d^{*}\right)$ has k zeros. Let us denote the k th zero of $u\left(r, d^{*}\right)$ as y^{*}. Henceforth we assume without loss of generality that $u\left(r, d^{*}\right)>0$ for $r>y^{*}$. By (3.7) we see that $\frac{p-1}{p}\left|u^{\prime}\left(y^{*}, d^{*}\right)\right|^{p}=E\left(y^{*}, d^{*}\right)>0$. Also since $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=0$ it follows that there exists an $M^{*}>y^{*}$ such that $u^{\prime}\left(M^{*}, d^{*}\right)=0$. Again by (3.7) we see that $\stackrel{r \rightarrow \infty}{F}\left(u\left(M^{*}, d^{*}\right)\right)=E\left(M^{*}, d^{*}\right)>0$ which implies $u\left(M^{*}, d^{*}\right)>\gamma$. Now by (2.1) we obtain:

$$
-r^{N-1}\left|u^{\prime}\left(r, d^{*}\right)\right|^{p-1} u^{\prime}\left(r, d^{*}\right)=\int_{M^{*}}^{r} s^{N-1} f\left(u\left(s, d^{*}\right)\right) d s
$$

By (1.8) we have $f\left(u\left(M^{*}, d^{*}\right)\right)>0$, so from the above equation we see that $u\left(r, d^{*}\right)$ is decreasing for $r>M^{*}$ as long as $u\left(r, d^{*}\right)$ remains greater than β. In particular, since $\lim _{r \rightarrow \infty} u\left(r, d^{*}\right)=0$, we see that there exists s^{*}, t^{*} with $M^{*}<s^{*}<t^{*}$ such that $u\left(s^{*}\right)=\frac{u\left(M^{*}\right)+\gamma}{2}$ and $u\left(t^{*}\right)=\gamma$.
Now let d_{n} be any sequence such that $\lim _{n \rightarrow \infty} d_{n}=d^{*}$. Then by lemmas 2.4 and 2.7 , for some subsequence of d_{n} (still denoted d_{n}) we see that $u\left(r, d_{n}\right)$ converges uniformly on compact sets to $u\left(r, d^{*}\right)$ and that $u^{\prime}\left(r, d_{n}\right)$ converges uniformly on compact sets to $u^{\prime}\left(r, d^{*}\right)$.

In particular we see that $u\left(r, d_{n}\right)$ converges uniformly to $u\left(r, d^{*}\right)$ on $\left[0, t^{*}+1\right]$. Since $\gamma<d<\delta$, we see by lemma 2.5 that if $u\left(r_{0}, d^{*}\right)=0$ and $r_{0}>0$ then $u^{\prime}\left(r_{0}, d^{*}\right) \neq 0$ and so by lemma 2.7 for sufficiently large n we see that $u\left(r, d_{n}\right)$ has exactly k zeros on $\left[0, t^{*}+1\right]$. Further for sufficiently large n there exists a $t_{n} \in\left[s^{*}, t^{*}+1\right]$ such that $u\left(t_{n}, d_{n}\right)=\gamma$ and $\lim _{n \rightarrow \infty} t_{n}=t^{*}$.
We now assume by way of contradiction that $u\left(r, d_{n}\right)$ has at least $(k+2)$ interior zeros. We denote z_{n} as the $(k+1)$ st zero of $u\left(r, d_{n}\right)$ and w_{n} as the $(k+2)$ nd zero of $u\left(r, d_{n}\right)$. Since $u\left(r, d_{n}\right)$ converges uniformly to $u\left(r, d^{*}\right)$ on $\left[0, t^{*}+1\right]$, we see that for large n we have $z_{n}>t^{*}+1$ and in fact:

$$
\begin{equation*}
\lim _{d \rightarrow \infty} z_{n}=\infty \tag{3.8}
\end{equation*}
$$

EJQTDE, 2006 No. 12, p. 12
for if some subsequence of z_{n} (still denoted z_{n}) were uniformly bounded by some $B<\infty$ then a further subsequence (still denoted z_{n}) would converge to some z^{*} with $y^{*}<t^{*}+1 \leq z^{*} \leq B$. Since $u\left(r, d_{n}\right)$ converges uniformly to $u\left(r, d^{*}\right)$ on $\left[0, z^{*}+1\right]$, we would then have that $u\left(z^{*}, d^{*}\right)=0$ and since $z^{*} \geq t^{*}+1>y^{*}, z^{*}$ would then be a $(k+1)$ st zero of $u\left(r, d^{*}\right)$. However by assumption $u\left(r, d^{*}\right)$ has only k zeros - a contradiction. Thus (3.8) holds.

By assumption $\gamma<d^{*}<\delta$ so that for sufficiently large n we have that $\gamma<d_{n}<\delta$ so by lemma 2.5 we have that $u^{\prime}\left(w_{n}, d_{n}\right) \neq 0$. Thus $\frac{p-1}{p}\left|u^{\prime}\left(z_{n}\right)\right|^{p}=E\left(z_{n}\right) \geq E\left(w_{n}\right)=\frac{p-1}{p}\left|u^{\prime}\left(w_{n}\right)\right|^{p}>0$ so we see that there exists m_{n} with $z_{n}<m_{n}<w_{n}, u^{\prime}\left(r, d_{n}\right)<0$ on $\left[z_{n}, m_{n}\right)$, and $u^{\prime}\left(m_{n}, d_{n}\right)=0$. Also $\left|u\left(m_{n}, d_{n}\right)\right|>\gamma$ since $F\left(u\left(m_{n}\right)\right)=E\left(m_{n}\right) \geq E\left(w_{n}\right)>0$. Hence there exists a_{n}, b_{n}, c_{n} with $z_{n}<a_{n}<b_{n}<c_{n}<m_{n}$ such that $u\left(a_{n}\right)=-\beta, u\left(b_{n}\right)=-\frac{\beta+\gamma}{2} \equiv \tau$, and $u\left(c_{n}\right)=-\gamma$.
Now as in the proof of lemma 2.7 with $\alpha=\frac{p(N-1)}{p-1}$ we have $\left(r^{\alpha} E\right)^{\prime}=\alpha r^{\alpha-1} F(u)$. Integrating this on $\left[t_{n}, c_{n}\right]$, using the fact that $F(u) \leq 0$ on $\left[t_{n}, c_{n}\right]$, and that $F\left(u\left(r, d_{n}\right)\right) \leq F(\tau)<0$ on $\left[a_{n}, b_{n}\right]$ we obtain:

$$
\begin{gather*}
0 \leq \frac{p-1}{p} c_{n}\left|u^{\prime}\left(c_{n}\right)\right|^{p}=c_{n}^{\alpha} E\left(c_{n}\right)=t_{n}^{\alpha} E\left(t_{n}\right)+\int_{t_{n}}^{c_{n}} \alpha r^{\alpha-1} F(u) d r \leq t_{n}^{\alpha} E\left(t_{n}\right)+\int_{a_{n}}^{b_{n}} \alpha r^{\alpha-1} F(u) d r \\
\leq t_{n}^{\alpha} E\left(t_{n}\right)+F(\tau)\left[b_{n}^{\alpha}-a_{n}^{\alpha}\right] \leq t_{n}^{\alpha} E\left(t_{n}\right)+F(\tau) b_{n}^{\alpha-1}\left[b_{n}-a_{n}\right] \tag{3.9}
\end{gather*}
$$

From lemma 2.2 we know that $\left|u^{\prime}\right| \leq\left(\frac{p}{p-1}\right)^{\frac{1}{p}}[F(\delta)+|F(\beta)|]^{\frac{1}{p}}$. Integrating this on $\left[a_{n}, b_{n}\right]$ gives:

$$
\begin{equation*}
b_{n}-a_{n} \geq c>0 \tag{3.10}
\end{equation*}
$$

where $c=\left(\frac{\gamma-\beta}{2}\right)\left(\frac{p}{p-1}\right)^{\frac{-1}{p}}[F(\delta)+|F(\beta)|]^{\frac{-1}{p}}$. Substituting (3.10) into (3.9) and using the fact that $F(\tau)<0$ we see that we obtain:

$$
\begin{equation*}
0 \leq t_{n}^{\alpha} E\left(t_{n}\right)+c F(\tau) b_{n}^{\alpha-1} \tag{3.11}
\end{equation*}
$$

In addition, since $b_{n} \geq z_{n}$ we see from (3.8) that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}=\infty \tag{3.12}
\end{equation*}
$$

Finally, by lemma 2.7 we know that $u\left(r, d_{n}\right)$ converges uniformly to $u\left(r, d^{*}\right)$ on $\left[0, t^{*}+1\right]$ and $u^{\prime}\left(r, d_{n}\right)$ converges uniformly to $u^{\prime}\left(r, d^{*}\right)$ on $\left[0, t^{*}+1\right]$ and $t_{n} \rightarrow t^{*}$. Therefore, we see that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}^{\alpha} E\left(t_{n}, d_{n}\right)=\left(t^{*}\right)^{\alpha} E\left(t^{*}, d^{*}\right) \tag{3.13}
\end{equation*}
$$

Substituting (3.12)-(3.13) into (3.11) and recalling that $F(\tau)<0$, and $\alpha=\frac{p(N-1)}{p-1}>1$ (since $N \geq 2$), we see that the right hand side of (3.11) goes to $-\infty$ as $n \rightarrow \infty$ which contradicts the inequality in (3.11). This completes the proof.

4. Proof of the Main Theorem

Proof.

For $k \in \mathbb{N} \cup\{0\}$, define

$$
A_{k}=\{d \in(\beta, \delta) \mid u(r, d) \text { has exactly } k \text { zeros on }[0, \infty)\}
$$

Observe first that $(\beta, \gamma) \subset A_{0}$ because for any $d \in(\beta, \gamma)$ we have $E(0, d)=F(d)<0$ so that by (2.12) $E(r, d)<0$ for all $r>0$. Thus $u(r, d)>0$ for if $u\left(r_{0}, d\right)=0$ then $E\left(r_{0}, d\right)=\frac{p-1}{p}\left|u^{\prime}\left(r_{0}, d\right)\right|^{p} \geq 0-\mathrm{a}$ contradiction. Thus we see that A_{0} is nonempty.

We now assume that $d>\gamma$ and we apply lemma 3.4 at $t=M_{d, 1}$ where $M_{d, 1}$ is defined in lemma 2.6 and we combine this with lemma 3.3 to obtain:

$$
\lim _{d \rightarrow \delta^{-}} F\left(u\left(M_{d, 1}\right)\right)=F(\delta)>0
$$

Thus

$$
\begin{equation*}
\left|u\left(M_{d, 1}\right)\right|>\gamma \text { for } d \text { sufficiently close to } \delta . \tag{4.1}
\end{equation*}
$$

This implies that $M_{d, 1}<\infty$ for if $M_{d, 1}=\infty$, then from lemma 2.6 we see that $u\left(M_{d, 1}\right)=\lim _{r \rightarrow \infty} u(r)$, $\left|u\left(M_{d, 1}\right)\right|<d<\delta$, and $f\left(u\left(M_{d, 1}\right)\right)=0$ which implies $\left|u\left(M_{d, 1}\right)\right| \leq \beta$ - contradicting (4.1). Thus $M_{d, 1}^{\infty}<\infty$ and by lemma 2.6 we see that $f\left(u\left(M_{d, 1}\right)\right) \leq 0$ so by (1.8) we have $u\left(M_{d, 1}\right) \leq \beta$. Combining this with (4.1) we see that we must have $u\left(M_{d, 1}\right)<-\gamma<0$. Therefore for $d<\delta$ and d sufficiently close to δ, we see that $u(r, d)$ must have a first zero, $z_{d, 1}$.

Thus we see that A_{0} is bounded above by a quantity that is strictly less than δ. We now define:

$$
d_{0}=\sup A_{0}
$$

and we note that $d_{0}<\delta$.

Lemma 4.1.

$$
u\left(r, d_{0}\right)>0 \text { for } r \geq 0
$$

Proof.

Suppose there exists a smallest value of r, r_{0}, such that $u\left(r_{0}, d_{0}\right)=0$. By Lemma $2.5, u^{\prime}\left(r_{0}, d_{0}\right) \neq 0$ thus $u\left(r, d_{0}\right)$ becomes negative for r slightly larger than r_{0}. By lemma 2.7 it follows that if $d<d_{0}$ is sufficiently close to d_{0} then $u(r, d)$ must also have a zero close to r_{0}. However by the definition of d_{0} if $d<d_{0}$ then $u(r, d)>0-$ a contradiction. This completes the proof.

Lemma 4.2

$$
u^{\prime}\left(r, d_{0}\right)<0 \text { for } r>0 .
$$

Proof

We will show that $M_{d_{0}, 1}=\infty$ where $M_{d_{0}, 1}$ is defined in lemma 2.6. If $M_{d_{0}, 1}<\infty$ then by lemma 2.7 for d slightly larger than d_{0} we also have $M_{d, 1}<\infty$. Also, since $u\left(r, d_{0}\right)>0$ then $u\left(M_{d_{0}, 1}, d_{0}\right)>0$ and again by lemma 2.7 we also have $u\left(M_{d, 1}, d\right)>0$ for d sufficiently close to d_{0}. By lemma 2.6 it follows that $f\left(u\left(M_{d, 1}, d\right)\right) \leq 0$ so that $0 \leq u\left(M_{d, 1}, d\right) \leq \beta$ thus $E\left(M_{d, 1}, d\right)<0$. Since E is decreasing we see that $E(r, d)<0$ for $r \geq M_{d, 1}$.
For d slightly larger than $d_{0}, u(r, d)$ must have a first zero, $z_{d, 1}$, (by definition of d_{0}) and $z_{d, 1}>M_{d, 1}$ since $u(r, d)>0$ on $\left[0, M_{d, 1}\right]$. Thus, we have $0 \leq E\left(z_{1}, d\right) \leq E\left(M_{d, 1}, d\right)<0-$ a contradiction. This completes the proof.
From lemmas 2.6, 4.1, and 4.2 we see that $\lim _{r \rightarrow \infty} u\left(r, d_{0}\right)=L$ where $f(L)=0$ where $L<d_{0}<\delta$ and since $u\left(r, d_{0}\right)>0$ we have that $L=0$ or $L=\beta$. We also see that $\lim _{r \rightarrow \infty} E\left(r, d_{0}\right)=F(L)$.

Lemma 4.3.

$$
\lim _{d \rightarrow d_{0}^{+}} z_{d, 1}=\infty
$$

Proof.

If $z_{d, 1} \leq C$ for $d>d_{0}$ then as in the proof of (3.8) there would be a subsequence d_{n} with $d_{n} \rightarrow d_{0}$ and $z_{d_{n}, 1} \rightarrow z$. By lemma 2.7 it then would follow that $u\left(z, d_{0}\right)=0$ which contradicts that $u\left(r, d_{0}\right)>0$. This completes the proof.

Lemma 4.4. $L=0$

Proof.

We know that $L=0$ or $L=\beta$ so suppose $L=\beta$. Then $\lim _{r \rightarrow \infty} E\left(r, d_{0}\right)=F(L)=F(\beta)<0$ so there exists an r_{0} such that $E\left(r_{0}, d_{0}\right)<0$. Thus for $d>d_{0}$ and d sufficiently close to d_{0} we have by lemma $2.7 E\left(r_{0}, d\right)<0$. Since $E\left(z_{d, 1}, d\right) \geq 0$ we see that $z_{d, 1}<r_{0}$ which contradicts lemma 4.3. Thus $\lim _{r \rightarrow \infty} u\left(r, d_{0}\right)=0$ and this completes the proof.

By definition of d_{0}, if $d>d_{0}$ then $u(r, d)$ has at least one zero. By lemma 3.4, if d is close to d_{0} then $u(r, d)$ has at most one zero. Therefore for $d>d_{0}$ and d sufficiently close to $d_{0}, u(r, d)$ has exactly one zero. Thus the set A_{1} is nonempty and $d_{0}<\sup A_{1}$.

As we saw in the first part of the proof of the main theorem, $M_{d, 1}<\infty$ and $u\left(M_{d, 1}\right)<-\gamma$ for d sufficiently close to δ. By a similar argument as in lemma 2.6, it can be shown that there exists an $M_{d, 2}$ with $M_{d, 1}<$ $M_{d, 2} \leq \infty$ such that $u^{\prime}(r, d)>0$ on $\left(M_{d, 1}, M_{d, 2}\right)$. Also, by lemma 3.4 we see that

$$
\begin{aligned}
0 \leq E(0)- & E\left(M_{d, 2}\right)=\left[E(0)-E\left(\tau_{d}\right)\right]+\left[E\left(\tau_{d}\right)-E\left(M_{d, 1}\right)\right]+\left[E\left(M_{d, 1}\right)-E\left(M_{d, 2}\right]\right. \\
\leq & {\left[E(0)-E\left(\tau_{d}\right)\right]+\frac{C}{\tau_{d}}+\frac{C}{M_{d, 1}} \text { where } C \text { is independent of d. } }
\end{aligned}
$$

By lemmas 3.1, 3.3 and the fact that $\tau_{d}<M_{d, 1}$ we see:

$$
\lim _{d \rightarrow \delta^{-}} F\left(u\left(M_{d, 2}\right)\right)=E(0)=F(\delta)>0 .
$$

As at the beginning of the proof of the main theorem we may also show that $M_{d, 2}<\infty$ and $u\left(M_{d, 2}\right)>\gamma$ for d sufficiently close to δ. Therefore, there exists $z_{d, 2}$ such that $M_{d, 1}<z_{d, 2}<M_{d, 2}$ and $u\left(z_{d, 2}, d\right)=0$. Therefore A_{1} is bounded above by a quantity strictly less than δ.

Let:

$$
d_{1}=\sup A_{1}
$$

and note that $d_{0}<d_{1}<\delta$.
In a similar way in which we proved that $u\left(r, d_{0}\right)>0$ and $\lim _{r \rightarrow \infty} u\left(r, d_{0}\right)=0$ we can show that $u\left(r, d_{1}\right)$ has exactly one zero and that $\lim _{r \rightarrow \infty} u\left(r, d_{1}\right)=0$.
In a similar way we may show by induction that A_{k} is nonempty and bounded above by a quantity strictly less than δ. Let

$$
d_{k}=\sup A_{k}
$$

It can be shown that $u\left(r, d_{k}\right)$ has exactly k zeros and that $\lim _{r \rightarrow \infty} u\left(r, d_{k}\right)=0$.
This completes the proof of the main theorem.

References

1. B. Franchi, E. Lanconelli, and J. Serrin, Existence and Uniqueness of Nonnegative Solutions of Quasilinear Equations in \mathbb{R}^{N}, Advances in Mathematics 118 (1996), 177-243.
2. J. Iaia, H. Warchall, and F.B. Weissler, Localized Solutions of Sublinear Elliptic Equations: Loitering at the Hilltop, Rocky Mountain Journal of Mathematics 27(4) (1997), 1131-1157.
(Received June 6, 2006)

[^0]: 1991 Mathematics Subject Classification. Primary 34B15: Secondary 35J65.
 Key words and phrases. radial, p-Laplacian.

